On weakly symmetric Riemannian manifolds

By MILEVA PRVANOVIĆ (Beograd)

1. Introduction

The notion of weakly symmetric Riemannian manifold has recently been introduced and investigated by T. Q. Binh and L. Tamássy [1], [4]. This is a non-flat Riemannian manifold whose curvature tensor $R_{h i j k}$ satisfies the condition

$$
\begin{equation*}
\nabla_{r} R_{h i j k}=A_{r} R_{h i j k}+B_{h} R_{r i j k}+C_{i} R_{h r j k}+D_{j} R_{h i r k}+E_{k} R_{h i j r} \tag{1.1}
\end{equation*}
$$

where A, B, C, D, E are 1-forms which are not zero simultaneously and ∇ denotes covariant differentiation with respect to the Riemannian metric.

In the case $B=C=D=E=\frac{1}{2} A$, a weakly symmetric manifold is just a pseudo-symmetric manifold as introduced and investigated by M. C. Chaki [2], [3].

We mention still one case, namely the case $B=C=D=E \neq \frac{1}{2} A$, in which instead of (1.1), we have the condition

$$
\begin{equation*}
\nabla_{r} R_{h i j k}=F_{r} R_{h i j k}+D_{h} R_{r i j k}+D_{i} R_{h r j k}+D_{j} R_{h i r k}+D_{k} R_{h i j r} . \tag{1.2}
\end{equation*}
$$

Now, we recall the definition of a B-space, given by P. Venzi [5]. Let $\mathcal{L}(\Theta)$ be a vector space formed by all vectors Θ satisfying

$$
\begin{equation*}
\Theta_{\ell} R_{h i j k}+\Theta_{j} R_{h i k \ell}+\Theta_{k} R_{h i \ell j}=0 \tag{1.3}
\end{equation*}
$$

A Riemannian space is said to be a B-space if $\operatorname{dim} \mathcal{L}(\Theta) \geq 1$.
In $\S 2$ of the present paper, we prove that if a weakly symmetric Riemannian space is not a pseudo-symmetric manifold (in the sense of Chaki), then is a B-space. In $\S \S 3,4$ and 5 we determine the necessary and sufficient conditions for a B-space to be weakly symmetric. Doing this we shall show that the condition (1.1) always reduces to (1.2).

2. Weakly symmetric Riemannian space as a B-space

Symmetrizing (1.1) with respect to h and i, we get

$$
\begin{equation*}
\left(B_{h}-C_{h}\right) R_{r i j k}+\left(B_{i}-C_{i}\right) R_{r h j k}=0 . \tag{2.1}
\end{equation*}
$$

This relation implies $B_{h}=C_{h}$. In fact, let us suppose $B_{1} \neq C_{1}$. Then (2.1) with $h=i=1$ gives $2\left(B_{1}-C_{1}\right) R_{r 1 j k}=0$, and therefore $R_{r 1 j k}=0$ for all r, j, k. Putting now $h=1$ in (2.1), we have $\left(B_{1}-C_{1}\right) R_{r i j k}=0$, whence $R_{r i j k}=0$ for all r, i, j, k. But this contradicts our assumption that the manifold is non-flat. Thus $B_{1}=C_{1}$. Repeating the procedure for each $h=2, \ldots, n$ we get $B_{h}=C_{h}$. In a similar manner, symmetrizing (1.1) with respect to j and k we get $D_{j}=E_{j}$. Thus, the condition (1.1) reduces to

$$
\begin{equation*}
\nabla_{r} R_{h i j k}=A_{r} R_{h i j k}+B_{h} R_{r i j k}+B_{i} R_{h r j k}+D_{j} R_{h i r k}+D_{k} R_{h i j r} . \tag{2.2}
\end{equation*}
$$

Applying the second Bianchi identity to (2.2), we get

$$
\begin{equation*}
\left(A_{r}-2 B_{r}\right) R_{h i j k}+\left(A_{h}-2 B_{h}\right) R_{i r j k}+\left(A_{i}-2 B_{i}\right) R_{r h j k}=0, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(A_{r}-2 D_{r}\right) R_{h i j k}+\left(A_{j}-2 D_{j}\right) R_{h i k r}+\left(A_{k}-2 D_{k}\right) R_{h i r j}=0 \tag{2.4}
\end{equation*}
$$

from which we find

$$
\begin{equation*}
\left(B_{r}-D_{r}\right) R_{h i j k}+\left(B_{h}-D_{h}\right) R_{i r j k}+\left(B_{i}-D_{i}\right) R_{r h j k}=0 \tag{2.5}
\end{equation*}
$$

We see that if $A_{i} \neq 2 B_{i}$ or $A_{i} \neq 2 D_{i}$, then the conditions (2.3) and (2.4) are of the form (1.3). Thus, we have proved

Theorem 1. If a weakly symmetric Riemannian manifold is not pseu-do-symmetric (in the sense of Chaki), then it is a B-space.

In he sequel, we try to find the conditions for a B-space to be weakly symmetric. First, we note that ([5], Theorem 1) for each B-space, $\operatorname{dim} \mathcal{L}(\Theta) \leq 2$. Thus, for further investigation, we have to consider two cases: $\operatorname{dim} \mathcal{L}(\Theta)=1$ and $\operatorname{dim} \mathcal{L}(\Theta)=2$.

3. The case of $\operatorname{dim} \mathcal{L}(\Theta)=1$

In view of (2.5), $B_{i}-D_{i} \in \mathcal{L}(\Theta)$ from which, taking into account the assumption $\operatorname{dim} \mathcal{L}(\Theta)=1$, we find

$$
\begin{equation*}
B_{i}=\beta \Theta_{i}+D_{i} \tag{3.1}
\end{equation*}
$$

On the other hand, for each B-space, there exists a symmetric tensor $T_{i j}$ such that ([5], Theorem 2)

$$
\begin{equation*}
R_{h i j k}=T_{h k} \Theta_{i} \Theta_{j}+T_{i j} \Theta_{h} \Theta_{k}-T_{h j} \Theta_{i} \Theta_{k}-T_{i k} \Theta_{h} \Theta_{j} \tag{3.2}
\end{equation*}
$$

where Θ is the basis vector of the space $\mathcal{L}(\Theta)$.
Thus, if this B-space is simultaneously weakly symmetric, then we have

$$
\begin{align*}
& \quad \Theta_{i} \Theta_{j} \nabla_{r} T_{h k}+\Theta_{h} \Theta_{k} \nabla_{r} T_{i j}-\Theta_{i} \Theta_{k} \nabla_{r} T_{h j}-\Theta_{h} \Theta_{j} \nabla_{r} T_{i k} \\
& \quad+\Theta_{h}\left(T_{i j} \nabla_{r} \Theta_{k}-T_{i k} \nabla_{r} \Theta_{j}\right)+\Theta_{i}\left(T_{h k} \nabla_{r} \Theta_{j}-T_{h j} \nabla_{r} \Theta_{k}\right) \\
& \quad+\Theta_{j}\left(T_{h k} \nabla_{r} \Theta_{i}-T_{i k} \nabla_{r} \Theta_{h}\right)+\Theta_{k}\left(T_{i j} \nabla_{r} \Theta_{h}-T_{h j} \nabla_{r} \Theta_{i}\right)= \tag{3.3}\\
& =A_{r} R_{h i j k}+D_{h} R_{r i j k}+D_{i} R_{h r j k}+D_{j} R_{h i r k}+D_{k} R_{h i j r} \\
& \quad+\beta\left(\Theta_{h} R_{r i j k}+\Theta_{i} R_{h r j k}\right) .
\end{align*}
$$

Now, let v^{i} be a vector field such that $\Theta_{a} v^{a}=1$ and let us put

$$
T_{h k} v^{h}=u_{k}, \quad T_{h k} v^{h} v^{k}=u_{k} u^{k}=\psi
$$

Then, transvecting (3.3) with $v^{h} v^{k}$ and using (3.2), we get

$$
\begin{align*}
\nabla_{r} T_{i j}= & s_{r} T_{i j}+t_{r} \Theta_{i} \Theta_{j}+\Theta_{i} H_{r j}+\Theta_{j} H_{r i}+u_{j} \nabla_{r} \Theta_{i}+u_{i} \nabla_{r} \Theta_{j} \\
& +D_{i}\left(\psi \Theta_{r} \Theta_{j}+T_{r j}-u_{j} \Theta_{r}\right)+D_{j}\left(\psi \Theta_{i} \Theta_{r}+T_{r i}-u_{i} \Theta_{r}\right), \tag{3.4}
\end{align*}
$$

where

$$
\begin{aligned}
s_{r}= & -2\left(\nabla_{r} \Theta_{a}\right) \Theta^{a}+A_{r}+\left(\beta+2 D_{a} v^{a}\right) \Theta_{r}, \\
t_{r}= & -\left(\nabla_{r} T_{a b}\right) v^{a} v^{b}+\psi A_{r}+\beta \psi \Theta_{r}+2 D_{a} v^{a} u_{r}, \\
H_{r j}= & \left(\nabla_{r} T_{a j}\right) v^{a}-\psi \nabla_{r} \Theta_{j}+\left(\nabla_{r} \Theta_{a}\right) v^{a} u_{j}-A_{r} u_{j} \\
& -\left(\beta+D_{a} v^{a}\right) u_{j} \Theta_{r}-D_{a} v^{a} T_{r j}-D_{j} u_{r} .
\end{aligned}
$$

On the other hand, differentiating (1.3) and using (2.2) and (1.3), we obtain

$$
\begin{gather*}
\left(\nabla_{r} \Theta_{\ell}-D_{\ell} \Theta_{r}\right) R_{h i j k}+\left(\nabla_{r} \Theta_{j}-D_{j} \Theta_{r}\right) R_{h i k \ell} \\
+\left(\nabla_{r} \Theta_{k}-D_{k} \Theta_{r}\right) R_{h i \ell j}=0 \tag{3.5}
\end{gather*}
$$

from which, contracting with $v^{h} v^{k}$, using (3.2) and putting

$$
p_{r}=\left(\nabla_{r} \Theta_{a}\right) \Theta^{a}-D_{a} v^{a} \Theta_{r},
$$

we get

$$
\begin{align*}
& T_{i j} \nabla_{r} \Theta_{\ell}-T_{i \ell} \nabla_{r} \Theta_{j}=\left(u_{j} \Theta_{i}+u_{i} \Theta_{j}\right) \nabla_{r} \Theta_{\ell} \\
& -\left(u_{\ell} \Theta_{i}+u_{i} \Theta_{\ell}\right) \nabla_{r} \Theta_{j}+\left[\left(T_{i j}+\psi \Theta_{i} \Theta_{j}\right.\right. \\
& \left.-u_{j} \Theta_{i}-u_{i} \Theta_{j}\right) D_{\ell}-\left(T_{i \ell}+\psi \Theta_{i} \Theta_{\ell}-u_{\ell} \Theta_{i}\right. \tag{3.6}\\
& \left.\left.-u_{i} \Theta_{\ell}\right) D_{j}\right] \Theta_{r}-\psi\left[\left(\nabla_{r} \Theta_{\ell}\right) \Theta_{j}-\left(\nabla_{r} \Theta_{j}\right) \Theta_{\ell}\right] \Theta_{i} \\
& -p_{r}\left[T_{i \ell} \Theta_{j}-T_{i j} \Theta_{\ell}+\left(u_{j} \Theta_{\ell}+u_{\ell} \Theta_{j}\right) \Theta_{i}\right] .
\end{align*}
$$

Thus, if the B-space considered is weakly symmetric, then $T_{i j}$ and Θ_{i} satisfy the conditions (3.4) and (3.6).

Conversely, let us consider the Riemannian space whose curvature tensor can be expressed in the form (3.2) (it is easy to see that such a space is a B-space). Further, let us suppose that $T_{i j}$ and Θ_{i} satisfy (3.4) and (3.5) where $s_{i}, t_{i}, u_{i}, p_{i}$ and D_{i} are some vector fields while $H_{r i}$ is some tensor field. Then we find that

$$
\nabla_{r} R_{h i j k}=\left(s_{r}+2 p_{r}\right) R_{h i j k}+D_{h} R_{r i j k}+D_{i} R_{h r j k}+D_{j} R_{h i r k}+D_{k} R_{h i j k} .
$$

Thus, we can state
Theorem 2. In a B-space there exists a symmetric tensor field $T_{i j}$ such that the curvature tensor has the form (3.2), where Θ_{i} is the vector of the basis of $\mathcal{L}(\Theta)$. In order that such a space with $\operatorname{dim} \mathcal{L}(\Theta)=1$ be weakly symmetric, it is necessary and sufficient that (3.4) and (3.6) hold. This weak symmetry is of the form (1.2).

4. The case when $\operatorname{dim} \mathcal{L}(\Theta)=1$ and the basis for $\mathcal{L}(\Theta)$ is not a null vector field

If a Riemannian manifold is a B-space, then ([5], Theorem 3)

$$
\Theta_{a} \Theta^{a} R_{h i j k}=\Theta_{i} \Theta_{j} R_{h k}+\Theta_{h} \Theta_{k} R_{i j}-\Theta_{h} \Theta_{j} R_{i k}-\Theta_{i} \Theta_{k} R_{h j}
$$

where $R_{i j}$ is the Ricci tensor. If $\operatorname{dim} \mathcal{L}(\Theta)=1$ and the basis for $\mathcal{L}(\Theta)$ is not a null vector, then we can suppose $\Theta_{a} \Theta^{a}=\varepsilon, \varepsilon=1$ or -1 , i.e. without loss of generality, the preceding relation can be written in the form

$$
\begin{equation*}
R_{h i j k}=\varepsilon\left(\Theta_{i} \Theta_{j} R_{h k}+\Theta_{h} \Theta_{k} R_{i j}-\Theta_{h} \Theta_{j} R_{i k}-\Theta_{i} \Theta_{k} R_{h j}\right) \tag{4.1}
\end{equation*}
$$

where now Θ is a unit basis vector for $\mathcal{L}(\Theta)$.
Transvecting (2.2) with $g^{h k}$, we have

$$
\begin{equation*}
\nabla_{r} R_{i j}=A_{r} R_{i j}+B_{i} R_{r j}+D_{j} R_{i r}+B_{a} R_{j i r}^{a}+D_{a} R_{i j r}^{a} . \tag{4.2}
\end{equation*}
$$

But, transvecting (2.5) with $g^{h k}$ we obtain

$$
B_{a} R_{j i r}^{a}=\left(B_{r}-D_{r}\right) R_{i j}-\left(B_{i}-D_{i}\right) R_{r j}+D_{a} R_{j i r}^{a}
$$

Substituting this into (4.2), we get

$$
\begin{equation*}
\nabla_{r} R_{i j}=\left(A_{r}+B_{r}-D_{r}\right) R_{i j}+D_{i} R_{r j}+D_{j} R_{i r}+D_{a}\left(R_{j i r}^{a}+R_{i j r}^{a}\right) \tag{4.3}
\end{equation*}
$$

In view of (2.4) and because of the assumption $\operatorname{dim} \mathcal{L}(\Theta)=1$, we have $A_{i}-2 D_{i} \in \mathcal{L}(\Theta)$. Thus, besides (3.1) we have $A_{i}=\alpha \Theta_{i}+2 D_{i}$. Using this, (3.1) and (4.1), we can rewrite (4.3) into the form

$$
\begin{gather*}
\nabla_{r} R_{i j}=\left(\gamma \Theta_{r}+2 D_{r}\right) R_{i j}+\left(D_{i}-\varepsilon D_{a} \Theta^{a} \Theta_{i}\right) R_{j r} \\
+\left(D_{j}-\varepsilon D_{a} \Theta^{a} \Theta_{j}\right) R_{i r}+2 \varepsilon D_{a} R_{r}^{a} \Theta_{i} \Theta_{j} \tag{4.4}\\
-\varepsilon\left(\Theta_{j} \Theta_{a} R_{i}^{a}+\Theta_{i} \Theta_{a} R_{j}^{a}\right) \Theta_{r}
\end{gather*}
$$

where γ is a scalar function.
We recall that in this section the vector field Θ satisfies $\Theta_{a} \Theta^{a}=\varepsilon$ and so we have $\left(\nabla_{r} \Theta_{a}\right) \Theta^{a}=0$. Also, transvecting (1.3) with $g^{h k}$, we find

$$
\Theta_{a} R^{a}{ }_{i \ell j}=\Theta_{j} R_{i \ell}-\Theta_{\ell} R_{i j},
$$

from which

$$
\begin{equation*}
\Theta_{a} R_{j}^{a}=\frac{1}{2} R \Theta_{j} \quad \text { and } \quad \Theta^{a} \Theta^{b} R_{i a b j}=\varepsilon R_{i j}-\frac{1}{2} R \Theta_{i} \Theta_{j}, \tag{4.5}
\end{equation*}
$$

where R is the scalar curvature of the manifold. Now, transvecting (3.5) with $\Theta^{h} \Theta^{k}$ we get

$$
\begin{gather*}
R_{i j} \nabla_{r} \Theta_{\ell}-R_{i \ell} \nabla_{r} \Theta_{j}= \\
=\left[R_{i j}\left(D_{\ell}-\varepsilon D_{a} \Theta^{a} \Theta_{\ell}\right)-R_{i \ell}\left(D_{j}-\varepsilon D_{a} \Theta^{a} \Theta_{j}\right)\right] \Theta_{r} \tag{4.6}\\
+\frac{1}{2} \varepsilon R\left[\left(\nabla_{r} \Theta_{\ell}-D_{\ell} \Theta_{r}\right) \Theta_{j}-\left(\nabla_{r} \Theta_{j}-D_{j} \Theta_{r}\right) \Theta_{\ell}\right] \Theta_{i}
\end{gather*}
$$

while (4.4) can be rewritten as follows:

$$
\begin{align*}
\nabla_{r} R_{i j}= & \left(\gamma \Theta_{r}+2 D_{r}\right) R_{i j}+\left(D_{i}-\varepsilon D_{a} \Theta^{a} \Theta_{i}\right) R_{r j} \\
& +\left(D_{j}-\varepsilon D_{a} \Theta^{a} \Theta_{j}\right) R_{i r}+\varepsilon\left(2 D_{a} R_{r}^{a}-R \Theta_{r}\right) \Theta_{i} \Theta_{j} . \tag{4.7}
\end{align*}
$$

Conversely, substituting (4.6) and (4.7) into

$$
\begin{aligned}
\nabla_{r} R_{h i j k}= & \varepsilon\left[\Theta_{i} \Theta_{j} \nabla_{r} R_{h k}+\Theta_{h} \Theta_{k} \nabla_{r} R_{i j}-\Theta_{h} \Theta_{j} \nabla_{r} R_{i k}-\Theta_{i} \Theta_{k} \nabla_{r} R_{h j}\right. \\
& +\Theta_{h}\left(R_{i j} \nabla_{r} \Theta_{k}-R_{i k} \nabla_{r} \Theta_{j}\right)+\Theta_{i}\left(R_{h k} \nabla_{r} \Theta_{j}-R_{h j} \nabla_{r} \Theta_{k}\right) \\
& \left.+\Theta_{j}\left(R_{k h} \nabla_{r} \Theta_{i}-R_{k i} \nabla_{r} \Theta_{h}\right)+\Theta_{k}\left(R_{j i} \nabla_{r} \Theta_{h}-R_{j h} \nabla_{r} \Theta_{i}\right)\right]
\end{aligned}
$$

and using (4.1), we get

$$
\begin{aligned}
\nabla_{r} R_{h i j k}= & {\left[\left(\gamma-2 \varepsilon D_{a} \Theta^{a}\right) \Theta_{r}+2 D_{r}\right] R_{h i j k} } \\
& +D_{h} R_{r i j k}+D_{i} R_{h r j k}+D_{j} R_{h i r k}+D_{k} R_{h i j r}
\end{aligned}
$$

Thus we obatain
Theorem 3. Let us consider a B-space such that $\operatorname{dim} \mathcal{L}(\Theta)=1$ and the basis for $\mathcal{L}(\Theta)$ is a unit vector field. In order that such a space be weakly symmetric, it is necessary and sufficient that the Ricci tensor and the basis vector Θ satisfy (4.6) and (4.7). This weak symmetry is of the form (1.2).

5. The case of $\operatorname{dim} \mathcal{L}(\Theta)=2$

P. Venzi proved in [5] that a Riemannian manifold is a B-space characterized by $\operatorname{dim} \mathcal{L}(\Theta)=2$ if and only if there exists a coordinate system such that

$$
\begin{equation*}
R_{h i j k}=\phi\left(\Theta_{h} \tilde{\Theta}_{i}-\tilde{\Theta}_{h} \Theta_{i}\right)\left(\Theta_{j} \tilde{\Theta}_{k}-\tilde{\Theta}_{j} \Theta_{k}\right) \tag{5.1}
\end{equation*}
$$

where ϕ is a scalar function while the basis vectors Θ and $\tilde{\Theta}$ satisfy

$$
\begin{align*}
& \nabla_{r} \tilde{\Theta}_{h}=a_{r} \tilde{\Theta}_{h}+b_{r} \Theta_{h}+c_{h} \tilde{\Theta}_{r}+d_{h} \Theta_{r} \\
& \nabla_{r} \Theta_{h}=e_{r} \tilde{\Theta}_{h}+f_{r} \Theta_{h}+g_{h} \tilde{\Theta}_{r}+r_{h} \Theta_{r} \tag{5.2}
\end{align*}
$$

Thus, for a B-space which is weakly symmetric, we have

$$
\begin{align*}
& {\left[\frac{\nabla_{r} \phi}{\phi}+2\left(a_{r}+f_{r}\right)-A_{r}\right]\left(\Theta_{h} \tilde{\Theta}_{i}-\tilde{\Theta}_{h} \Theta_{i}\right)\left(\Theta_{j} \tilde{\Theta}_{k}-\tilde{\Theta}_{j} \Theta_{k}\right)} \\
& +\left[c_{i} \Theta_{h} \tilde{\Theta}_{r}+d_{i} \Theta_{h} \Theta_{r}+g_{h} \tilde{\Theta}_{i} \tilde{\Theta}_{r}+r_{h} \tilde{\Theta}_{i} \Theta_{r}\right. \\
& -c_{h} \Theta_{i} \tilde{\Theta}_{r}-d_{h} \Theta_{i} \Theta_{r}-g_{i} \tilde{\Theta}_{h} \tilde{\Theta}_{r}-r_{i} \tilde{\Theta}_{h} \Theta_{r} \\
& \left.-B_{h}\left(\Theta_{r} \tilde{\Theta}_{i}-\tilde{\Theta}_{r} \Theta_{i}\right)-B_{i}\left(\Theta_{h} \tilde{\Theta}_{r}-\tilde{\Theta}_{h} \Theta_{r}\right)\right]\left(\Theta_{j} \tilde{\Theta}_{k}-\tilde{\Theta}_{j} \Theta_{k}\right) \tag{5.3}\\
& +\left[c_{k} \Theta_{j} \tilde{\Theta}_{r}+d_{k} \Theta_{j} \Theta_{r}+g_{j} \tilde{\Theta}_{k} \tilde{\Theta}_{r}+r_{j} \tilde{\Theta}_{k} \Theta_{r}\right. \\
& -c_{j} \Theta_{k} \tilde{\Theta}_{k}-d_{j} \Theta_{k} \Theta_{r}-g_{k} \tilde{\Theta}_{j} \tilde{\Theta}_{r}-r_{k} \tilde{\Theta}_{j} \Theta_{r} \\
& \left.-D_{j}\left(\Theta_{r} \tilde{\Theta}_{k}-\tilde{\Theta}_{r} \Theta_{k}\right)-D_{k}\left(\Theta_{j} \tilde{\Theta}_{r}-\tilde{\Theta}_{j} \Theta_{k}\right)\right]\left(\Theta_{h} \tilde{\Theta}_{i}-\tilde{\Theta}_{h} \Theta_{i}\right)=0
\end{align*}
$$

Let v and \tilde{v} be vector fields such that

$$
\begin{array}{ll}
\Theta_{a} v^{a}=1, & \tilde{\Theta}_{a} v^{a}=0, \\
\Theta_{a} \tilde{v}^{a}=0, & \tilde{\Theta}_{a} \tilde{v}^{a}=1
\end{array}
$$

(If the basis vectors Θ and $\tilde{\Theta}$ are orthogonal and not null vectors, we can choose them to be unit vectors and then we can put $v^{a}=\Theta^{a}, \tilde{v}^{a}=\tilde{\Theta}^{a}$.)

Transvecting (5.3) with $v^{j} \tilde{v}^{k} \tilde{v}^{r} v^{i}$ and $v^{j} \tilde{v}^{k} v^{r} \tilde{v}^{i}$ and subtracting, we find

$$
r_{h}=\varrho \Theta_{h}+\tilde{\varrho} \tilde{\Theta}_{h}+c_{h},
$$

while transvecting with $v^{j} \tilde{v}^{k} \tilde{v}^{r} \tilde{v}^{i}$ and $v^{j} \tilde{v}^{k} v^{r} v^{i}$ we get respectively

$$
g_{h}=\gamma \Theta_{h}+\tilde{\gamma} \tilde{\Theta}_{h}, \quad d_{h}=\delta \Theta_{h}+\tilde{\delta} \tilde{\Theta}_{h},
$$

where $\varrho, \tilde{\varrho}, \gamma, \tilde{\gamma}, \delta, \tilde{\delta}$ are scalar functions. Thus, the conditions (5.2) reduce to

$$
\begin{align*}
\nabla_{r} \tilde{\Theta}_{h} & =\bar{a}_{r} \tilde{\Theta}_{h}+\bar{b}_{r} \Theta_{h}+c_{h} \tilde{\Theta}_{r} \\
\nabla_{r} \Theta_{h} & =\bar{e}_{r} \tilde{\Theta}_{h}+\bar{f}_{r} \Theta_{h}+c_{h} \Theta_{r} . \tag{5.4}
\end{align*}
$$

Conversely, let us consider a B-space statisfying $\operatorname{dim} \mathcal{L}(\Theta)=2$ and (5.4). Then it is easy to see that $\nabla_{r} R_{h i j k}$ has the form (1.2). Thus we can state

Theorem 4. Let us consider a B-space characterized by $\operatorname{dim} \mathcal{L}(\Theta)=2$ Then there exists a coordinate system such that (5.1) holds. In order that this B-space be weakly symmetric, it is necessary and sufficient that the conditions (5.4) are satisfied, too. The weak symmetry is of the form (1.2).

References

[1] T. Q. Binh, On weakly symmetric Riemannian spaces, Publ. Math. Debrecen 42 (1-2) (1993), 103-107.
[2] M. C. Chaki, On pseudo-symmetric manifolds, An. Stiint. "Al. I. Cuza" Jaşi, sect. Ia Math. 33 (1987), 53-58.
[3] M. C. Chaki and U. C. De, On pseudo-symmetric spaces, Acta Math. Hung. 54 (3-4) (1989), 185-190.
[4] L. Tamássy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai 56 (1992), 663-669.
[5] P. Venzi, Una generalizzazione degli spazi ricorrenti, Revue Roumaine de Math. pure at appl. 30 (1985), 295-305.
mileva prvanović
11000 BEOGRAD
LJUBE STOJANOVIĆA 14
yogoslavia
(Received December 10, 1993; revised February 11, 1994)

