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Trans-Sasakian manifolds homothetic to Sasakian manifolds

By SHARIEF DESMUKH (Riyadh), UDAY CHAND DE (Calcutta)
and FALLEH AL-SOLAMY (Jeddah)

Abstract. In this paper, we obtain necessary and sufficient conditions for a 3-

dimensional compact and connected trans-Sasakian manifold of type (α, β) to be homo-

thetic to a Sasakian manifold. We also show that if a compact trans-Sasakian manifold

admits an isometric immersion in the Euclidean space R4 with Reeb vector field being

transformation of unit normal vector field under the complex structure of R4, then it

is homothetic to a Sasakian manifold. We also introduce the axiom of flat torus for a

3-dimensional trans-Sasakian manifold and show that a 3-dimensional connected trans-

Sasakian manifold with Ricci curvature in the direction of Reeb vector field a nonzero

constant, satisfying axiom of flat torus is homothetic to a Sasakian manifold.

1. Introduction

Let (M,ϕ, ξ, η, g) be a (2n+ 1)-dimensional almost contact metric manifold

(cf. [1]). Then the product M = M ×R has natural almost complex structure J

with the product metric G being almost Hermitian metric. The geometry of the

almost Hermitian manifold (M,J,G) dictates the geometry of the almost contact

metric manifold (M,ϕ, ξ, η, g) and gives different structures on M , a Sasakian

structure, a quasi-Sasakian structure, a Kenmotsu structure and others (cf. [1],

[2], [12]). It is known that there are sixteen different types of structures on the

almost Hermitian manifold (M,J,G) (cf. [10]), using the structure in the classW4

on (M,J,G) a structure (ϕ, ξ, η, g, α, β) on M called a trans-Sasakian structure
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is introduced (cf. [16]) which generalizes Sasakian structure and Kenmotsu struc-

ture on an almost contact metric manifold (cf. [2], [14]), where α, β are smooth

functions defined on M . Since the introduction of trans-Sasakian manifolds, very

important contributions of Blair and Oubiña [2] and Marrero [14] have ap-

peared studying the geometry of trans-Sasakian manifolds. In general, a trans-

Sasakian manifold (M,ϕ, ξ, η, g, α, β) is called a trans-Sasakain manifold of type

(α, β). The trans-Sasakian manifolds of type (0, 0), (α, 0) and (0, β) are called

the cosymplectic, α-Sasakian and β-Kenmotsu manifolds, respectively. Some au-

thors have studied α-Sasakian and β-Kenmotsu manifolds with α, β as constants,

however in this paper we consider α-Sasakian and β-Kenmotsu manifolds with

both α, β as functions. Marrero [14] has shown that a trans-Sasakian manifold

of dimension ≥ 5 is either a cosymplectic manifold, an α-Sasakian manifold or a

β-Kenmotsu.

Since then there have been an emphasis on studying the geometry of 3-

dimensional trans-Sasakian manifolds, putting some restrictions on the smooth

functions α, β appearing in the definition of trans-Sasakian manifolds or the Reeb

vector field ξ. There are several examples of trans-Sasakian manifolds constructed

mostly on 3-dimensional non-compact simply connected Riemannian manifolds

(cf. [2], [15]). Recall that a trans-Sasakian manifold of type (α, β) is said to be

proper if neither of the functions α or β is zero. As Marrero [14] has classified

trans-Sasakian manifolds in dimension≥ 5 and has shown that there are no proper

trans-Sasakian manifolds in these dimensions, one naturally raises the question:

‘under what conditions a 3-dimensional trans-Sasakian manifold is not proper?’.

This question was taken up in [9], and in this paper we continue answering

this question by obtaining two different necessary and sufficient conditions for a

trans-Sasakian manifold to be homothetic to a Sasakian manifold.

It is well known that a Killing vector field is a Jacobi-type vector field and

the converse is not true (see [7] for a definition of Jacobi-type vector fields) and

that the Reeb vector field on a Sasakian manifold being Killing is a Jacobi-type

vector field. We use this fact to show that the Reeb vector field of a 3-dimensional

compact and connected trans-Sasakian manifold with the Ricci curvature Ric(ξ, ξ)

a positive constant, is a Jacobi-type vector field if and only if the trans-Sasakian

manifold is homothetic to a Sasakian manifold (see Theorem 3.1).

We also show that the Reeb vector field ξ of a 3-dimensional compact and

connected trans-Sasakian manifold with Ricci curvature Ric(ξ, ξ) a constant, is a

conformal vector field if and only if the trans-Sasakian manifold is homothetic to

a Sasakian manifold (see Theorem 3.2). It is known that a compact 3-dimensional

smooth manifold can be immersed in the Euclidean space R4 (cf. [5]); we use this
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result that a 3-dimensional compact trans-Sasakian manifold can be immersed

in the Euclidean space R4 and under the condition that this immersion is an

isometric immersion with Reeb vector field ξ is related to the unit normal vector

field N of the immersion by ξ = −JN , to show that the trans-Sasakian manifold is

homothetic to a Sasakian manifold (In fact, isometric to S3(c) see Theorem 4.1).

Finally, we introduce the axiom of flat torus for a 3-dimensional compact

trans-Sasakian manifold analogous to such axioms in [3], [4] and [17] and show

that a trans-Sasakian manifold with nonzero constant Ric(ξ, ξ), satisfying this

axiom, is homothetic to a Sasakian manifold (see Theorem 5.1).

2. Preliminaries

Let (M,ϕ, ξ, η, g) be a (2n+ 1)-dimensional contact metric manifold, with ϕ

is a (1, 1)-tensor field, ξ is a unit vector field and η is smooth 1-form dual to ξ

with respect to the Riemannian metric g such that

ϕ2 = −I + η ⊗ ξ, ϕ(ξ) = 0, η ◦ ϕ = 0, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ) (2.1)

X,Y ∈ X(M), where X(M) denotes the Lie algebra of smooth vector fields on M

(cf. [1]). If there are smooth functions α, β on an almost contact metric manifold

(M,ϕ, ξ, η, g) satisfying

(∇ϕ)(X,Y ) = α (g(X,Y )ξ − η(Y )X) + β (g(ϕX, Y )ξ − η(Y )ϕX) , (2.2)

then it is called a trans-Sasakian manifold. ( (∇ϕ)(X,Y ) = ∇XϕY − ϕ(∇XY ),

X,Y ∈ X(M) and ∇ is the Levi Civita connection with respect to the met-

ric g, cf. [2], [7], [10]. ) We shall denote this trans-Sasakian manifold by

(M,ϕ, ξ, η, g, α, β) and call it a trans-Sasakian manifold of type (α, β). From

equations (2.1) and (2.2) it follows that

∇Xξ = −αϕ(X) + β(X − η(X)ξ), X ∈ X(M). (2.3)

It is clear that a trans-Sasakian manifold of type (1, 0) is a Sasakian mani-

fold (cf. [1]) and a trans-Sasakian manifold of type (0, 1) is Kenmotsu manifold

(cf. [10]). A trans-Sasakian manifold of type (0, 0) is called a cosymplectic mani-

fold (cf. [9]).

Let Ric be the Ricci tensor of a Riemannian manifold (M, g). Then the

Ricci operator Q is a symmetric tensor field of type (1, 1) defined by Ric(X,Y ) =

g(QX,Y ), X,Y ∈ X(M). We state following results, which we need in the sequel.
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Lemma 2.1. [9] Let (M,ϕ, ξ, η, g, α, β) be a 3-dimensional trans-Sasakian

manifold. Then ξ(α) + 2αβ = 0.

Lemma 2.2. [9] Let (M,ϕ, ξ, η, g, α, β) be a 3-dimensional trans-Sasakian

manifold. Then its Ricci operator satisfies

Q(ξ) = ϕ (∇α)−∇β + 2(α2 − β2)ξ − g(∇β, ξ)ξ,

where ∇α, ∇β are the gradients of the smooth functions α, β.

Theorem 2.1. [15] Let (M, g) be a Riemannian manifold. If M admits a

Killing vector field ξ of constant length satisfying

k2 (∇X∇Y ξ −∇∇XY ξ) = g(Y, ξ)X − g(X,Y )ξ; X,Y ∈ X(M)

for a nonzero constant k, then M is homothetic to a Sasakian manifold.

Recall that a smooth vector field u on a Riemannian manifold (M, g) is said

to be a Jacobi-type vector field if it satisfies (cf. [7], [8])

∇X∇Xu−∇∇XXu+R(u,X)X = 0, X ∈ X(M), (2.4)

where R is the curvature tensor field. It is clear that each Killing vector field is a

Jacobi-type vector field, however a Jacobi-type vector field need not be a Killing

vector field. For example, the position vector field on the Euclidean space Rn is

a Jacobi-type vector field which is not a Killing vector field.

3. The Reeb vector field ξ as Jacobi-type vector field

Recall that the Reeb vector field ξ on a (2n+ 1)-dimensional Sasakian mani-

fold is a Killing vector field and therefore it is a Jacobi-type vector field. Note that

an α-Sasakian manifold with constant α satisfies the hypothesis of Theorem 2.1

and is therefore homothetic to a Sasakian manifold. However, owing to the im-

portance of Theorem 2.1, we shall refer to it for proving that a trans-Sasakian

manifold is homothetic to a Sasakian manifold instead of the above observation

about an α-Sasakian manifold with constant α.

Theorem 3.1. Let (M,ϕ, ξ, η, g, α, β) be a 3-dimensional compact and con-

nected trans-Sasakian manifold. Suppose that the Ricci curvature Ric(ξ, ξ) of

(M, g) is a nonzero constant. Then M is homothetic to a Sasakian manifold if

and only if the vector field ξ is a Jacobi-type vector field.
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Proof. Suppose ξ is a Jacobi-type vector field. Then (2.4) gives

∇X∇Xξ −∇∇XXξ +R(ξ,X)X = 0, X ∈ X(M).

Using (2.3) in the equation above, after an easy calculation we obtain

−X(α)ϕX +X(β)X + 2αβη(X)ϕX + (α2 − β2)η(X)X

−
{
X(β) + (α2 + β2)g(X,X) + 2β2η(X)2

}
ξ

+R(ξ,X)X = 0.

Taking trace, we find

Q(ξ) = ϕ (∇α)−∇β +
{

2(α2 + β2) + ξ(β)
}
ξ.

Now, combining this equation with Lemma 2.2, we obtain

ξ(β) = −2β2. (3.1)

Using (2.3), it follows that

div ξ = 2β. (3.2)

Equations (3.1) and (3.2) give

div
(
β3ξ
)

= 3β2ξ(β) + β3 div ξ = −4β4,

so by Stokes’ theorem β = 0. Hence, by Lemma 2.2, Ric(ξ, ξ) = 2α2 is nonzero

constant, therefore α is a nonzero constant and thus equations (2.2) and (2.3)

give

α−2 (∇X∇Y ξ −∇∇XY ξ) = g(Y, ξ)X − g(X,Y )ξ,

thus proving that M is homothetic to a Sasakian manifold (cf. Theorem 2.1). The

converse is obvious.

Recall that a smooth vector field ξ on a Riemannian manifold (M, g) is said

to be a conformal vector field if

(£ξg) (X,Y ) = 2ρg(X,Y ), X, Y ∈ X(M), (3.3)

where £ξ is the Lie derivative with respect to ξ and ρ is a smooth function on M .

Now, we prove the following:
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Theorem 3.2. Let (M,ϕ, ξ, η, g, α, β) be a 3-dimensional compact and con-

nected trans-Sasakian manifold whose Ricci curvature Ric(ξ, ξ) is nonzero con-

stant. Then M is homothetic to a Sasakian manifold if and only if the vector

field ξ is a conformal vector field.

Proof. Suppose ξ is a conformal vector field. Using equations (2.3) and

(3.3), we get

βg(X,Y )− βη(X)η(Y ) = ρg(X,Y ), X, Y ∈ X(M). (3.4)

Taking X = Y = ξ in the equation above, we obtain ρ = 0. Hence ξ is a

Killing vector field and, consequently, is a Jacobi-type vector field. Thus we get

the result by Theorem 3.1. Conversely, if (M,ϕ, ξ, η, g, α, β) is homothetic to a

Sasakian manifold, the vector field ξ is Killing and therefore a conformal vector

field.

4. Trans-Sasakian manifolds isometrically immersed in R4

It is well known that if (M,ϕ, ξ, η, g, α, β) is a 3-dimensional compact trans-

Sasakian manifold, then there exists a smooth immersion Ψ : M → R4 (cf. [3]).

This immersion need not be an isometric immersion in to the Euclidean space

(R4, 〈, 〉). It is known that this Euclidean space has a complex structure J such

that (R4, J, 〈, 〉) is a Kaehler manifold. In this section, we show that if the immer-

sion Ψ : M → R4 is an isometric immersion with unit normal N with ξ = −JN ,

then M is homothetic to a Sasakian manifold. The main result of this section is

the following:

Theorem 4.1. Let (M,ϕ, ξ, η, g, α, β) be a 3-dimensional compact and con-

nected trans-Sasakian manifold. Then there exists an isometric immersion of M

in the Euclidean space R4 with unit normal N satisfying ξ = −JN if, and only

if, M is isometric to the Sasakian manifold S3(α2).

Proof. Let Ψ : M → R4 be the isometric immersion. The Euclidean space

(R4, J, 〈, 〉) is a Kaehler manifold with complex structure J and the Euclidean

metric 〈, 〉. We denote by A the shape operator of the hypersurface M . Define

an operator ψ : X(M) → X(M) by JX = ψ(X) + η(X)N , where ψ(X) is tan-

gential component of JX to M . Then using the properties of complex structure

J and Gauss–Wiengarten formulae for the hypersurface we immediately get the

following:

ψ2(X) = −X + η(X)ξ, ψ(ξ) = 0, η(ψ(X)) = 0, X ∈ X(M), (4.1)
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g(ψX,ψY ) = g(X,Y )− η(X)η(Y ), X, Y ∈ X(M), (4.2)

and

∇Xξ = ψAX, (∇Xψ) (Y ) = η(Y )AX − g(AX,Y )ξ, X, Y ∈ X(M). (4.3)

Using (2.3) in the first equation of (4.3), we get

−αϕX − βϕ2X = ψAX. (4.4)

Since A is symmetric and ψ is skew-symmetric, we have Tr(ψA) = 0 . Taking

trace in (4.4), we get β = 0. Then equations (2.3) and (4.3) give ψAX = −αϕX,

that is g(ψAX,X) = 0. Polarizing the equation g(ψX,AX) = 0, we get ψAX =

AψX, X ∈ X(M), which leads to ψAξ = 0. Hence, Aξ = λξ for a smooth

function λ. Since β = 0, equation (2.3) assures that ξ is a Killing vector field and

the one-parameter group {ft} of ξ consists of isometries which satisfy dft ◦ A =

A ◦ dft . Hence

[ξ, AX] = A [ξ,X] , X ∈ X(M).

Using equation (2.3) in the above equation, we get

(∇A) (ξ,X) = αAϕX − αϕAX, X ∈ X(M),

which, together with the Codazzi equation for hypersurfaces, equation (2.3) and

Aξ = λξ, gives

X(λ)ξ − λαϕX = −αϕAX.

Taking inner product with ξ in the above equation we get X(λ) = 0 . Thus λ is

a constant and

αϕ (AX − λX) = 0, X ∈ X(M). (4.5)

Note that the Ricci curvature of the hypersurface M , by Lemma 2.2 is given by

Ric(ξ, ξ) = 2α2, (4.6)

and on a compact hypersurface of the Euclidean space, there exists a point where

the Ricci curvature is strictly positive. Hence α 6= 0, thus equation (4.5) on

connected M gives ϕAX = λϕX. Operating ϕ on the last equation and using

Aξ = λξ, we get AX = λX, X ∈ X(M). Thus A = λI, and, consequently

M is isometric to S3(λ2). However, equation (4.6) gives α = λ, therefore M is

isometric to S3(α2).

The converse is trivial as S3(α2) has a Sasakian structure.
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5. Axiom of flat torus for trans-Sasakian manifolds

A Riemannian manifold (M, g) satisfies the axiom of planes if there exists a

2-dimensional totally geodesic submanifold tangent to any 2-dimensional section

of the tangent bundle TM at every point of the manifold (cf. [4]). Also, a Rie-

mannian manifold (M, g) satisfies the axiom of 2-spheres, if for each p ∈ M and

each 2-dimensional subspace π ⊂ TpM of the tangent space TpM , there exists a

2-dimensional umbilical submanifold N with parallel mean curvature vector field

such that p ∈ N and π = TpN (cf. [17]). Similarly, axioms of holomorphic and

antiholomorphic planes are defined for Kaehler manifolds (cf. [3], [17]). These

axioms are used to characterize the real and complex space forms. In this section

we introduce the axiom of flat torus for a 3-dimensional trans-Sasakian manifold

and show that a connected 3-dimensional trans-Sasakian manifold whose Ricci

curvature in the direction of the Reeb vector field ξ a nonzero constant and which

satisfies the axiom of flat torus is homothetic to Sasakian manifold.

Let (M,ϕ, ξ, η, g, α, β) be a 3-dimensional trans-Sasakian manifold and T 2 =

S1 × S1 be the 2-dimensional flat torus with product metric of constant cur-

vature 0. We say that the trans-Sasakian manifold (M,ϕ, ξ, η, g, α, β) satisfies

the axiom of flat torus if for each p ∈ M , there exists an isometric immersion

f : T 2 →M tangential to ξ and p ∈ f(T 2).

Theorem 5.1. Let (M,ϕ, ξ, η, g, α, β) be a 3-dimensional compact and sim-

ply connected trans-Sasakian manifold with nonzero constant Ric(ξ, ξ). If M

satisfies the axiom of flat torus, then M is homothetic to a Sasakian manifold.

Proof. We denote by the same letter g the metric of constant curvature 0

on the flat torus T 2 and by ∇̃ the Riemannian connection on the Riemannian

manifold (T 2, g). For an isometric immersion of T 2 into the trans-Sasakian man-

ifold (M,ϕ, ξ, η, g, α, β), we denote by N and A the local unit normal vector field

and the shape operator, respectively. Then we have the following Gauss and

Wiengarten formulae

∇XY = ∇̃XY + g(AX,Y )N, ∇XN = −AX, X, Y ∈ X(T 2). (5.1)

Since ϕ is skew symmetric, we have ϕN ∈ X(T 2), and thus we get a vector field

u ∈ X(T 2) defined by u = −ϕN . Since the vector field ξ is tangential to T 2 and

ϕξ = 0, we get η(u) = 0, and, consequently, the vector field u is a unit vector

field and hence {u, ξ} is a local orthonormal frame on T 2. Let ω be the smooth

1-form dual to the unit vector field u. We set

ϕX = ψX + ω(X)N, X ∈ X(T 2), (5.2)



Trans-Sasakian manifolds homothetic to Sasakian manifolds 447

where ψX is the tangential component of ϕX to T 2. As ω(ξ) = 0, equation (5.2)

gives ψ(ξ) = 0. Also, using ϕu = N in equation (5.2), we get ψu = 0. Thus the

orthonormal frame {u, ξ} annihilates ψ, consequently the equation (5.2) reduces

to

ϕX = ω(X)N, X ∈ X(T 2). (5.3)

Now, using equations (2.2), (5.1) and (5.3), we get

∇Xu = − (∇ϕ) (X,N) + ϕAX

= −βω(X)ξ + ω(AX)N, X ∈ X(T 2),

which on equating tangential and normal components gives

∇̃Xu = −βω(X)ξ, X ∈ X(T 2), (5.4)

where, by abuse of notation, β means the restriction of the given β to T 2. Also,

equations (2.3), (5.1) and (5.3) give

∇̃Xξ + g(AX, ξ)N = −αω(X)N + β(X − η(X)ξ),

that is,

∇̃Xξ = β(X − η(X)ξ), X ∈ X(RP 2)andAξ = −αu. (5.5)

Equations (5.4) and (5.5) give, in particular,

∇̃ξu = 0, ∇̃uξ = βu, ∇̃ξξ = 0, ∇̃uu = −βξ,
consequently the curvature tensor field R̃ of the Riemannian manifold (T 2, g)

satisfies

R̃(u, ξ)ξ = 0− ξ(β)u− β2u = −(ξ(β) + β2)u.

Taking inner product with u in the above equation and using the fact that (T 2, g)

is of constant curvature 0, we get

ξ(β) = −β2 (5.6)

on T 2. Since, through each point of M , there passes T 2, the above equation is

valid on the whole M . Using the equation (5.6) in Lemma 2.2, we get

Ric(ξ, ξ) = 2α2,

which proves that α is a nonzero constant. Then, on a connected M , Lemma 2.1,

gives β = 0. Finally, equations (2.2) and (2.3) together with Theorem 2.1, prove

that M is homothetic to Sasakain manifold.
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