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Continued fractional algebraic independence
of sequences

By JAROSLAV HANČL (Ostrava)

There are a lot of papers concerning algebraic independence ([3], [4]),
the transcendence of continued fractions, ([2], [4], [5], [11], [12], [13], [15])
and the irrationality of infinite series ([6], [7], [8], [9], [10], [14], [16], [17],
[18]), however there is no criterion describing the continued fractional al-
gebraic independence of sequences. This paper deals with such a criterion.

Definition. Let {ain}∞n=1 (i = 1, 2, . . . , k) be sequences of positive real
numbers. If for every sequence {cn}∞n=1 of positive integers, the continued
fractions [ai1c1, ai2c2, . . . ] (where i = 1, 2, . . . , k) are algebraically indepen-
dent, then the sequences {ain}∞n=1 are continued fractional algebraically
independent.

Theorem (Bundschuh [3]). Let β1, . . . , βk be given complex num-
bers, and let g : N → R+ satisfy g(n) → ∞ as n → ∞. Suppose that for
each τ ∈ {1. . . . , t} there exists an infinite set Nτ ⊂ N and τ sequences
{β1n}n∈Nτ , . . . , {βτn}n∈Nτ of algebraic numbers such that for each n ∈ Nτ

the inequalities

g(n)
τ−1∑
σ=1

|βσ − βσn| < |βτ − βτn| ≤

≤ exp(−g(n) [Q(β1n, . . . , βτn) : Q]
τ∑

σ=1

s(βσn)
∂(βσn)

hold, where ∂(β) and H(β) denote the degree and the height respectively
of an algebraic number β and s(β) = ∂(β)+ log H(β). Then β1, . . . , βt are
algebraically independent.
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Theorem 1. Let {ain}∞n=1 (i = 1, . . . , k) be sequences of positive in-

tegers. If

(1) lim sup(lg(lg a1n))/n = ∞

and

(2) ai+1,n 22n

> ain > (1 + 1/n) (ai+1,n + 1)

for i = 1, . . . , k − 1 hold, then {ain}∞n=1 are continued fractional alge-

braically independent sequences.

Proof. It is sufficient to prove that the continued fractions αi =
[ai1, ai2, . . . ] are algebraically independent. If {cn}∞n=1 denotes any se-
quence of positive integers, and bij = cjaij , then the sequences {bin}∞n=1

(i = 1, . . . , k) satisfy (1) and (2). (1) also implies that there is a mono-
tonically increasing sequence {Hn}∞n=1 of positive real numbers Hn, with
lim

n→∞
Hn = ∞, such that lim sup

n→∞
a
1/Hn

n
1n = ∞. Let us put Sn = a

1/Hn
n

1n .

Thus

(3) lim sup
n→∞

Sn = ∞.

Then for infinitely many n we have

(4) Sn+1 > (1 + 1/n2) max
1≤k≤n

Sk.

If not, then for a fixed N and for every positive integer n > N

Sn+1 < (1 + 1/n2) . . . (1 + 1/N2) max
1≤k≤N

Sk.

This implies

Sn+1 < K1

∞∏

i=N

(1 + 1/n2) = K2,

a contradiction with (3). Thus (4) holds. Now for infinitely many n we
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have

a
1/(Hn−1)
1,n+1 = S

Hn+1
n+1/(Hn−1)

n+1 >

> (1 + 1/n2)Hn+1
n /(Hn−1) · max

1≤k≤n
S

Hn+1
n /(Hn−1)

k >

> (1 + 1/n2)Hn+1
n /(Hn−1) · max

1≤k≤n
S

(Hn+1
n −1)/(Hn−1)

k ≥(5)

≥ (1 + 1/n2)Hn+1
n /(Hn−1)

n∏

i=1

max
1≤k≤n

S
Hi

n

k ≥

≥ (1 + 1/n2)Hn+1
n /(Hn−1)

n∏

i=1

a1i.

Using Bundschuh’s Theorem it is enough to prove that for infinitely many
n and for every j = 1, . . . , k

(6) g(n)
j−1∑

i=1

|αi − αin| < |αj − αjn| < H(α1n)−g(n)

hold, where αin = [ai1, . . . , ain] = pin/qin. It is well known that there is a
constant c = c(α1, . . . , αk) such that

(7)
c

ai,n+1q2
in

< |αi − αin| < 1
ai,n+1q2

in

(for the proof see e.g. [11] chapter 10) and

(8)
n∏

i=1

aji < qjn <

n∏

i=1

(aji + 1), (j = 1, . . . , n)

which can be proved by mathematical induction and using

qj,n+1 = an+1qjn + qj,n−1.

(6) and (7) imply that it is sufficient to prove that for infinitely many n

(9) g(n)jaj,n+1q
2
jn < c aj−1,n+1q

2
j−1,n

and

(10) q
g(n)
1n < aj,n+1q

2
jn

hold. (2) and (8) imply that

lim
n→∞

caj−1,n+1q
2
j−1,n(aj,n+1q

2
jn)−1 = ∞.
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Then we can put

(11) g(n) = min(Hn, caj−1,n+1q
2
j−1,n(aj,n+1q

2
jn)−1)

and this immediately implies (9). (5) implies

a1,n+1 > (1 + 1/n2)Hn+1
n

(
n∏

i=1

a1i

)Hn−1

.

Thus

n+1∏

i=1

a1i > (1 + 1/n2)Hn+1
n

(
n∏

i=1

a1i

)Hn

=

= (1 + 1/n2)Hn+1
n 2−nHn

(
n∏

i=1

2a1i

)Hn

≥

≥ (1 + 1/n2)Hn+1
n 2−nHn

(
n∏

i=1

(a1i + 1

)Hn

.

Using (8) we obtain

n+1∏

i=1

a1i ≥ (1 + 1/n2)Hn+1
n 2−nHn · qHn

1n .

This, (2) and (8) imply

(12)

(1 + 1/n2)Hn+1
n 2−nHn · qHn

1n ≤
n+1∏

i=1

aji2(j−1)2i ≤

≤ 2(j−1)2n+2 ·
n+1∏

i=1

aji ≤ 2(j−1)2n+2
aj,n+1q

2
jn

Now we have

lim
n→∞

2(j−1)2n+2 · 2nHn · (1 + 1/n2)−Hn+1
n = 0.

This, (11) and (12) imply (10) and the proof is finished.
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