Continued fractional algebraic independence of sequences

By JAROSLAV HANČL (Ostrava)

There are a lot of papers concerning algebraic independence ([3], [4]), the transcendence of continued fractions, ([2], [4], [5], [11], [12], [13], [15]) and the irrationality of infinite series ([6], [7], [8], [9], [10], [14], [16], [17], [18]), however there is no criterion describing the continued fractional algebraic independence of sequences. This paper deals with such a criterion.

Definition. Let $\left\{a_{i n}\right\}_{n=1}^{\infty}(i=1,2, \ldots, k)$ be sequences of positive real numbers. If for every sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive integers, the continued fractions $\left[a_{i 1} c_{1}, a_{i 2} c_{2}, \ldots\right]$ (where $i=1,2, \ldots, k$) are algebraically independent, then the sequences $\left\{a_{i n}\right\}_{n=1}^{\infty}$ are continued fractional algebraically independent.

Theorem (BundSchuh [3]). Let $\beta_{1}, \ldots, \beta_{k}$ be given complex numbers, and let $g: \mathbb{N} \rightarrow \mathbb{R}_{+}$satisfy $g(n) \rightarrow \infty$ as $n \rightarrow \infty$. Suppose that for each $\tau \in\{1 \ldots, t\}$ there exists an infinite set $N_{\tau} \subset \mathbb{N}$ and τ sequences $\left\{\beta_{1 n}\right\}_{n \in N_{\tau}}, \ldots,\left\{\beta_{\tau n}\right\}_{n \in N_{\tau}}$ of algebraic numbers such that for each $n \in N_{\tau}$ the inequalities

$$
\begin{gathered}
g(n) \sum_{\sigma=1}^{\tau-1}\left|\beta_{\sigma}-\beta_{\sigma n}\right|<\left|\beta_{\tau}-\beta_{\tau n}\right| \leq \\
\leq \exp \left(-g(n)\left[\mathbb{Q}\left(\beta_{1 n}, \ldots, \beta_{\tau n}\right): \mathbb{Q}\right] \sum_{\sigma=1}^{\tau} \frac{s\left(\beta_{\sigma n}\right)}{\partial\left(\beta_{\sigma n}\right)}\right.
\end{gathered}
$$

hold, where $\partial(\beta)$ and $H(\beta)$ denote the degree and the height respectively of an algebraic number β and $s(\beta)=\partial(\beta)+\log H(\beta)$. Then $\beta_{1}, \ldots, \beta_{t}$ are algebraically independent.

Theorem 1. Let $\left\{a_{i n}\right\}_{n=1}^{\infty}(i=1, \ldots, k)$ be sequences of positive integers. If

$$
\begin{equation*}
\limsup \left(\lg \left(\lg a_{1 n}\right)\right) / n=\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i+1, n} 2^{2^{n}}>a_{i n}>(1+1 / n)\left(a_{i+1, n}+1\right) \tag{2}
\end{equation*}
$$

for $i=1, \ldots, k-1$ hold, then $\left\{a_{i n}\right\}_{n=1}^{\infty}$ are continued fractional algebraically independent sequences.

Proof. It is sufficient to prove that the continued fractions $\alpha_{i}=$ $\left[a_{i 1}, a_{i 2}, \ldots\right]$ are algebraically independent. If $\left\{c_{n}\right\}_{n=1}^{\infty}$ denotes any sequence of positive integers, and $b_{i j}=c_{j} a_{i j}$, then the sequences $\left\{b_{i n}\right\}_{n=1}^{\infty}$ $(i=1, \ldots, k)$ satisfy (1) and (2). (1) also implies that there is a monotonically increasing sequence $\left\{H_{n}\right\}_{n=1}^{\infty}$ of positive real numbers H_{n}, with $\lim _{n \rightarrow \infty} H_{n}=\infty$, such that $\limsup _{n \rightarrow \infty} a_{1 n}^{1 / H_{n}^{n}}=\infty$. Let us put $S_{n}=a_{1 n}^{1 / H_{n}^{n}}$. Thus

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} S_{n}=\infty \tag{3}
\end{equation*}
$$

Then for infinitely many n we have

$$
\begin{equation*}
S_{n+1}>\left(1+1 / n^{2}\right) \max _{1 \leq k \leq n} S_{k} \tag{4}
\end{equation*}
$$

If not, then for a fixed N and for every positive integer $n>N$

$$
S_{n+1}<\left(1+1 / n^{2}\right) \ldots\left(1+1 / N^{2}\right) \max _{1 \leq k \leq N} S_{k}
$$

This implies

$$
S_{n+1}<K_{1} \prod_{i=N}^{\infty}\left(1+1 / n^{2}\right)=K_{2}
$$

a contradiction with (3). Thus (4) holds. Now for infinitely many n we
have

$$
\begin{align*}
& a_{1, n+1}^{1 /\left(H_{n}-1\right)}=S_{n+1}^{H_{n+1}^{n+1} /\left(H_{n}-1\right)}> \\
& >\left(1+1 / n^{2}\right)^{H_{n}^{n+1} /\left(H_{n}-1\right)} \cdot \max _{1 \leq k \leq n} S_{k}^{H_{n}^{n+1} /\left(H_{n}-1\right)}> \\
& >\left(1+1 / n^{2}\right)^{H_{n}^{n+1} /\left(H_{n}-1\right)} \cdot \max _{1 \leq k \leq n} S_{k}^{\left(H_{n}^{n+1}-1\right) /\left(H_{n}-1\right)} \geq \tag{5}\\
& \geq\left(1+1 / n^{2}\right)^{H_{n}^{n+1} /\left(H_{n}-1\right)} \prod_{i=1}^{n} \max _{1 \leq k \leq n} S_{k}^{H_{n}^{i}} \geq \\
& \geq\left(1+1 / n^{2}\right)^{H_{n}^{n+1} /\left(H_{n}-1\right)} \prod_{i=1}^{n} a_{1 i}
\end{align*}
$$

Using Bundschuh's Theorem it is enough to prove that for infinitely many n and for every $j=1, \ldots, k$

$$
\begin{equation*}
g(n) \sum_{i=1}^{j-1}\left|\alpha_{i}-\alpha_{i n}\right|<\left|\alpha_{j}-\alpha_{j n}\right|<H\left(\alpha_{1 n}\right)^{-g(n)} \tag{6}
\end{equation*}
$$

hold, where $\alpha_{i n}=\left[a_{i 1}, \ldots, a_{i n}\right]=p_{i n} / q_{i n}$. It is well known that there is a constant $c=c\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ such that

$$
\begin{equation*}
\frac{c}{a_{i, n+1} q_{i n}^{2}}<\left|\alpha_{i}-\alpha_{i n}\right|<\frac{1}{a_{i, n+1} q_{i n}^{2}} \tag{7}
\end{equation*}
$$

(for the proof see e.g. [11] chapter 10) and

$$
\begin{equation*}
\prod_{i=1}^{n} a_{j i}<q_{j n}<\prod_{i=1}^{n}\left(a_{j i}+1\right), \quad(j=1, \ldots, n) \tag{8}
\end{equation*}
$$

which can be proved by mathematical induction and using

$$
q_{j, n+1}=a_{n+1} q_{j n}+q_{j, n-1}
$$

(6) and (7) imply that it is sufficient to prove that for infinitely many n

$$
\begin{equation*}
g(n) j a_{j, n+1} q_{j n}^{2}<c a_{j-1, n+1} q_{j-1, n}^{2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{1 n}^{g(n)}<a_{j, n+1} q_{j n}^{2} \tag{10}
\end{equation*}
$$

hold. (2) and (8) imply that

$$
\lim _{n \rightarrow \infty} c a_{j-1, n+1} q_{j-1, n}^{2}\left(a_{j, n+1} q_{j n}^{2}\right)^{-1}=\infty
$$

Then we can put

$$
\begin{equation*}
g(n)=\min \left(H_{n}, c a_{j-1, n+1} q_{j-1, n}^{2}\left(a_{j, n+1} q_{j n}^{2}\right)^{-1}\right) \tag{11}
\end{equation*}
$$

and this immediately implies (9). (5) implies

$$
a_{1, n+1}>\left(1+1 / n^{2}\right)^{H_{n}^{n+1}}\left(\prod_{i=1}^{n} a_{1 i}\right)^{H_{n}-1} .
$$

Thus

$$
\begin{aligned}
& \prod_{i=1}^{n+1} a_{1 i}>\left(1+1 / n^{2}\right)^{H_{n}^{n+1}}\left(\prod_{i=1}^{n} a_{1 i}\right)^{H_{n}}= \\
& =\left(1+1 / n^{2}\right)^{H_{n}^{n+1}} 2^{-n H_{n}}\left(\prod_{i=1}^{n} 2 a_{1 i}\right)^{H_{n}} \geq \\
& \geq\left(1+1 / n^{2}\right)^{H_{n}^{n+1}} 2^{-n H_{n}}\left(\prod_{i=1}^{n}\left(a_{1 i}+1\right)^{H_{n}}\right.
\end{aligned}
$$

Using (8) we obtain

$$
\prod_{i=1}^{n+1} a_{1 i} \geq\left(1+1 / n^{2}\right)^{H_{n}^{n+1}} 2^{-n H_{n}} \cdot q_{1 n}^{H_{n}} .
$$

This, (2) and (8) imply

$$
\begin{align*}
& \left(1+1 / n^{2}\right)^{H_{n}^{n+1}} 2^{-n H_{n}} \cdot q_{1 n}^{H_{n}} \leq \prod_{i=1}^{n+1} a_{j i} 2^{(j-1) 2^{i}} \leq \\
& \leq 2^{(j-1) 2^{n+2}} \cdot \prod_{i=1}^{n+1} a_{j i} \leq 2^{(j-1) 2^{n+2}} a_{j, n+1} q_{j n}^{2} \tag{12}
\end{align*}
$$

Now we have

$$
\lim _{n \rightarrow \infty} 2^{(j-1) 2^{n+2}} \cdot 2^{n H_{n}} \cdot\left(1+1 / n^{2}\right)^{-H_{n}^{n+1}}=0
$$

This, (11) and (12) imply (10) and the proof is finished.

References

[1] A. Baker, On Mahler's Classification of Transcendental Numbers, Acta Math. 111 (1964), 97-120.
[2] Сh. Baxa, Fast Growing Sequences of Partial Denominators (to appear).
[3] P. Bundschuh, A criterion for algebraic independence with some applications, Osaka J. Math. 25 (1988), 849-858.
[4] P. Bundschuh, Transcendental continued fractions, J. Number Theory 18 (1984), 91-98.
[5] J. L. Davison and J. O. Shallit, Continued Fractions for Some Alternating Series, Monatsh. Math. 111 (1991), 119-126.
[6] P. Erdös, Some Problems and Results on the Irrationality of the Sum of Infinite Series, J. Math. Sci. 10 (1975), 1-7.
[7] P. Erdös, On the Irrationality of Certain Series, problems and results, New Advances in Transcendence Theory edited by A. Baker, Cam. Univ. Press, 1988, pp. 102-109.
[8] P. Erdös and R. L. Graham, Old and New Problems in Combinatorial Number Theory, Monographie no $\mathbf{3 8}$ de L'Enseignement Mathématique Genéve, 1980, (Imp. Kunding).
[9] J. Hanč̆L, Expression of Real Numbers with the Help of Infinite Series, Acta Arith. LIX 2 (1991), 97-104.
[10] J. Hančl, A Criterion for Irrational Sequences, J. Number Theory 43 no. 1 (1993), 88-92.
[11] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, 1985.
[12] G. Nettler, Transcendental continued fractions, J. Number Theory 13 (1981), 456-462.
[13] W. J. LeVeque, Topics in Number Theory II, Addison-Wesley, London, 1961.
[14] J. Roberts, Elementary Number Theory, MIT Press, 1977.
[15] K. F. Roth, Rational Approximations to Algebraic Numbers, Mathematika 2, 1-20.
[16] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math., vol. 785, Springer, 1980.
[17] J. O. Shallit, Simple Continued Fractions for Some Irrational Numbers, J. Number Theory 11 (1979), 209-217.
[18] J. O. Shallit, Simple Continued Fractions for Irrational Numbers II, J. Number Theory 14 (1982), 228-231.

```
JAROSLAV HANČL
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OSTRAVA
DVOŘÁKOVA }
701 03 OSTRAVA 1
CZECH REPUBLIC
```

(Received December 14, 1993, revised March 22, 1994)

