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On the variety of bands in completely regular semigroups

By MARIO PETRICH (Brač)

Abstract. Completely regular semigroups, enriched by the unary operation of

inversion within their maximal subgroups, form a variety CR whose lattice of subvarieties

is denoted by L(CR). Its subvariety B of all bands plays a seminal role in any study of

the structure of L(CR). We present some new aspects of B relative to both CR and the

variety CS of completely simple semigroups.

Since B is neutral in L(CR), the latter is a subdirect product of the lattice (B] of

subvarieties of B and the lattice [B) of supervarieties of B. We determine the precise

image of L(CR) in (B]× [B).

For the relation B∨ defined on L(CR) by UB∨V if U ∨ B = V ∨ B, we prove that

each B∨-class is embeddable into (B].

We establish several results concerning the variety CS in the context of the rela-

tion B∨ and the structure of the lattice L(CS).

1. Introduction and summary

A band is a semigroup in which all elements are idempotent. One might

say that it is the bands that distinguish semigroups from groups. For they are

different from groups as they can be and are omnipresent in many studies of

semigroups, in particular of completely regular semigroups.

The totality B of all bands forms a subvariety of the variety of all semi-

groups, and with the identity mapping as a unary operation, forms a subvariety

of the variety CR of completely regular semigroups. For the latter are taken as
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unary semigroups with the operation of inversion within their maximal subgroups

thereby forming a variety. It is this latter aspect that is seminal to our study.

The lattice of all subvarieties of CR is denoted by L(CR). Various relations

on L(CR) are fundamental for the study of the structure of L(CR). We study only

two of them as follows.

On L(CR) define the relations B∧ and B∨ by

UB∧V ⇐⇒ U ∩B = V ∩B,

UB∨V ⇐⇒ U ∨B = V ∨B.

Since B has strong properties relative to L(CR), both of these relations are com-

plete retractions, their intersection is the equality relation on L(CR), and all their

classes are intervals. For any V ∈ L(CR), we write its classes as

VB∧ = [VB∧ ,V
B∧ ] and VB∨ = [VB∨ ,V

B∨ ].

In this way, we arrive at four operators on L(CR), namely

V→ VB∧ , V→ VB
∧
, V→ VB∨ , and V→ VB

∨

which play a fundamental role in the present paper. Moreover, VB∧ = V ∩ B,

VB
∧

was determined in [4], VB
∨

= V ∨B, and VB∨ is known only sporadically.

The present paper represents a brief study of these concepts, as well as their

role in CR and the variety CS of completely simple semigroups. Section 2 is a

preamble mainly concerning references. In Section 3, we determine the image of

L(CR) as a subdirect product of (B ] and [B ). We prove in Section 4 that every

B∨-class is embeddable into (B ]. In Section 5, we study the quotient L(CS)/B∨,

where L(CS) is the lattice of varieties of completely simple semigroups. We wind

up in Section 6 with an isomorphic copy of L(CS) in terms of triples.

2. Preamble

We adhere strictly to the terminology and notation of the book [9], and will

not repeat them here. The strong properties of B will be our faithful companion,

in particular that B is a neutral element in the lattice L(CR), as well as that the

mappings V→ V∩B and V→ V∨B are complete retractions of L(CR) onto (B ]

and [B ), respectively. For this, we refer to Fact 2.1 below. Recall that

(B ] = {V ∈ L(CR) |V ⊆ B}, [B ) = {V ∈ L(CR) |V ⊇ B},
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and [α, β] denotes an interval in any lattice.

We will take Polák’s theorem on the construction of the join of varieties

of completely regular semigroups for granted and refer the patient reader to the

task of getting familiar with his papers [10], [11]; for even a minimal introduction

to his theorem would take at least two dense pages. In this context, the ladders

play a seminal role.

These are our principal references, but there are a few others. Papers [5], [6]

are strongly related to the present work. We cite several results from the lat-

ter which are used in an auxiliary way and can be proved without great effort.

With these qualifications, one might say that the present paper is relatively self-

contained.

Fact 2.1. The variety B of all bands is neutral and infinitely both ∩- and

∨-distributive in L(CR).

Proof. See [12, various remarks and Corollary 2.9]. �

Corollary 2.2.

(i) B∧ ∩B∨ = ε, the equality relation on L(CR).

(ii) The mapping

V −→ VB∧
(
V ∈ L(CR)

)
is a complete retraction of L(CR) onto (B ].

(iii) The mapping

V −→ VB
∨ (

V ∈ L(CR)
)

is a complete retraction of L(CR) onto [B ).

(iv) L(CR)/B∧ ∼= (B ], L(CR)/B∨ ∼= [B ).

Proof. (i)–(iii) This is a direct consequence of Fact 2.1.

(iv) This follows from parts (ii) and (iii). �

This corollary gives a basic picture of the situation concerning the lattices (B ]

and [B ). We will also need a few technical facts from the literature as follows.

Fact 2.3.

(i) G ∨B = OBG.

(ii) CS ∨B = LOBG.

(iii) TB
∧

= G.

(iv) GB∨ = G.

(v) BB∨ = T.
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Proof. (i) See [6, Lemma 3.4(i)].

(ii) See [6, Lemma 3.4(ii)].

(iii) This follows from [4, Theorem 5.3].

(iv)(v) These follow from [6, Theorem 8.2(ii)]. �

We will often use some of the results in this section without reference, par-

ticularly the statement that B is neutral in L(CR).

3. A subdirect product representation of L(CR)

By Corollary 2.2(i), the lattice L(CR) is a subdirect product of (B ] and [B ).

We will now elaborate on this determining exactly the image of L(CR) in (B ]×[B ).

The lattice (B ] equals L(B), which is known, while the lattice [B ) is the lattice

of all varieties which contain all bands, which is not known.

In this and the next sections, we deduce the semigroup results from more

general lattice theoretical results. To this end, we now introduce some notation.

Let a be a neutral element of a lattice L. On L define the relations A∧ and

A∨ by

xA∧ y ⇐⇒ x ∧ a = y ∧ a and xA∨ y ⇐⇒ x ∨ a = y ∨ a,

respectively. For any x ∈ L, let

Ax = {y ∈ L | y ∧ a = x ∧ a},
Bx = {y ∈ L | y ∨ a = x ∨ a}.

For each x ∈ L, define

xa∧ = minAx, xa
∧

= maxAx, xa∨ = minBx, xa
∨

= maxBx.

Clearly xa∧ = x ∧ a and xa
∨

= x ∨ a.

We are now ready for the principal result of this section.

Theorem 3.1. Let a be a neutral element of a lattice L. The mappings

ϕ : x −→ (xa∧ , x
a∨), ψ : (y, z) −→ y ∨ za∨ = ya

∧
∧ z

are mutually inverse isomorphisms between L and the lattice

Γ = {(y, z) ∈ (a]× [a) | y ∨ za∨ = ya
∧
∧ z}

which is a subdirect product (a] and [a).
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Proof. Neutrality of a in L implies that ϕ is a monomorphism of L into

(a]× [a).

Let x ∈ L and set y = x ∧ a and z = x ∨ a. Then yA∧ x and zA∨ x. Using

[6, Lemma 4.2], we obtain

x = xa∧ ∨ xa∨ = ya∧ ∨ za∨ = y ∨ za∨ ,

x = xa
∧
∧ xa

∨
= ya

∧
∧ za

∨
= ya

∧
∧ z,

so ϕ maps L into Γ. Trivially ψ maps Γ into L. Since

xϕψ = (x ∧ a, x ∨ a)ψ = (x ∧ a) ∨ (x ∨ a)a∨

= xa∧ ∨ (xa
∨

)a∨ = xa∧ ∨ xa∨ = x,

(y, z)ψϕ = (ya
∧
∧ z)ϕ = (y ∨ za∨)ϕ

=
(
(ya
∧
∧ z) ∧ a, (y ∨ za∨) ∨ a

)
= (ya∧ ∧ z, y ∨ za

∨
) = (y ∧ x ∧ z, y ∨ a ∨ z)

= (y ∧ a, a ∨ z) = (y, z),

it follows that ϕ and ψ are mutually inverse bijections. Clearly each of them

preserves inclusion, and thus they are isomorphisms.

If y ∈ (a], then y∨aa∨ = ya
∧ ∧a and thus (y, a) ∈ Γ. Analogously, if z ∈ [a),

then a ∨ za∨ = aa
∧ ∧ z and (a, z) ∈ Γ. Therefore Γ is a subdirect product of (a]

and [a). �

For the case L = L(CR) and a = B, the above theorem gives a representation

of L(CR) as a subdirect product of (B ] and [B ) with the precise image of L(CR)

in the direct product (B ]× [B ). We will encounter this result in Section 6.

4. Embedding B∨-classes into L(B)

We have seen in [4] that L(CR)/B∧ ∼= L(B). Since the relation B∨ looks as a

kind of dual of B∧, we are led to expect some sort of duality between B∧ and B∨.

In fact, we will deduce the statement in the heading of this section from a

general theorem in lattice theory. The following result is not surprising.

Theorem 4.1. Let P ∈ L(CR). The mappings

ϕ : U −→ U ∩B, ψ : V −→ V ∨ P

are mutually inverse isomorphisms between [P,P ∨B] and [P ∩B,B].
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Proof. This is an immediate consequence of the result concerning a modular

lattice L: the intervals [a, a∨ b] and [a∧ b, b] are isomorphic, and mutually inverse

isomorphisms are established by the mappings

x −→ x ∨ a (x ∈ [a ∧ b, b]) and y −→ y ∧ b (y ∈ [a, a ∨ b]);

see [1, Theorem 348]. The present case is L = L(CR) and a = B, for it is well

known that L(CR) is a modular lattice and B is a neutral element of L(CR). �

As an immediate consequence, we have the following result.

Corollary 4.2. For any W ∈ L(CR), the mappings

ϕ : U −→ U ∩B, ψ : V −→ V ∨W

are mutually inverse isomorphisms between WB∨ and [WB∨B∧ ,B]. Consequently,

every B∨-class is embeddable into (B ].

Proof. Apply Theorem 4.1 to the case P = WB∨ . �

In the light of this corollary, we can visualize L(CR) as decomposed into the

B∨-classes, where each class can be identified with an interval of L(B) contain-

ing B, and is thus determined by its lower end. As a consequence, we obtain

a mapping L(CR)/B∨ −→ L(B) given by VB∨ −→ VB∨B∧ . A few interesting

special cases follow.

Proposition 4.3. Let V ∈ L(CR).

(i) VB∨B∧ = T if and only if V ⊆ OBG.

(ii) VB∨B∧ = RB if and only if V ∈ L(LOBG) \ L(OBG).

(iii) VB∨B∧ ∈ {T,RB} if and only if V ⊆ LOBG.

(iv) VB∨B∧ = B if and only if VB∨ ⊇ B.

Proof. We will use Fact 2.3 freely.

(i) If VB∨B∧ = T, then (VB∨B∧)B
∧

= TB
∧

= G, so that (VB∨)B
∧

= G and

thus

V ⊆ VB
∨

= (VB∨)B
∨
⊆ (VB∨)B

∧B∨ = GB
∨

= G ∨B = OBG.

Conversely, V ⊆ OBG implies that

VB∨ ⊆ OBGB∨ = (G ∨B)B∨ = GB∨ ∨BB∨ = G ∨ T = G,

so that VB∨B∧ ⊆ GB∧ = T.
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(ii) Suppose that VB∨B∧ = RB. Then establishing the inclusion V ⊆ LOBG

is analogous to establishing the inclusion V ⊆ OBG in part (i). The exclusion

V * OBG follows from part (i). Hence V ∈ L(LOBG) \ L(OBG).

The converse is also quite analogous to the proof of the converse of part (i).

(iii) This follows from parts (i) and (ii).

(iv) If VB∨B∧ = B, then VB∨ ⊇ VB∨B∧ = B. Conversely, if VB∨ ⊇ B, then

VB∨B∧ ⊇ BB∧ = B; but VB∨B∧ ⊆ B always holds, so VB∨B∧ = B. �

Proposition 4.4.

(i) If V ∈ L(OBG), then VB∨B∧ = V ∩B.

(ii) If V ∈ L(LOBG)\L(OBG), then VB∨B∧ = V ∩ RB.

(iii) CRB∨B∧ = B, BB∨B∧ = T.

Proof. (i) Let V ∈ L(OBG). By [6, Theorem 8.2], we have VB∨ = V ∩ G

whence VB∨B∧ = (V ∩ G) ∩B = V ∩B.

(ii) Let V ∈ L(LOBG)\L(OBG). By [6, Theorem 9.3], we have VB∨ = V ∩ CS

whence VB∨B∧ = (V ∩ CS) ∩B = V ∩ RB.

(iii) By [7, Theorem 5.7], CR is finitely join irreducible, which implies that

CRB∨ = CR whence CRB∨B∧ = B. It is well known that B is finitely join irre-

ducible, which implies that BB∨ = B whence BB∨B∧ = B. �

Remark 4.5. Consider the following special case. Take W ∈ L(G) in Corol-

lary 4.2. Then WB∨B∧ ⊆WB∧ = T and thus [WB∨B∧ ,B] = L(B).

On the other hand, the mapping χ in [5, Proposition 11.7] of the form

χ : V −→ V ∨W
(
V ∈ L(B)

)
embeds L(B) into the kernel class WK of W. By [2, Theorem 11], K is a con-

gruence on L(CR), and from [10, Theorem 2] we know that [T,B] is a K-class.

Thus

W = W ∨ TKW ∨ TK = W ∨B

so that [W,W ∨ B] ⊆ WK, and we get WB∨ ⊆ WK. Therefore ψ maps L(B)

onto WB∨, and χ maps L(B) into WK, and they have the same values. Hence

we may say (not quite accurately) that ψ = χ. This way, Corollary 4.2 implies

[5, Proposition 11.7 and Corollary 11.8].

5. B∨-relation on L(CS)

Next to the variety B of bands, the variety CS of completely simple semi-

groups is probably the most important variety of completely regular semigroups.
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The last two sections of the present work are dedicated to the various actions

of B on L(CR) in a somewhat unexpected manner, crowned with a Rees-type

representation of L(CS).

Here we describe the structure of L(CS)/B∨ where we now write B∨ instead

of B∨
∣∣
L(CS). Toward this end, we first determine the restriction of B∨ to L(CS)

which will lead to a concrete description of the quotient L(CS)/B∨. We will need

certain preliminaries.

Letting

K̃ = G ∪ (CS \ ReG) ∪
(
D ∩ (CR \ LO)

)
,

the following result holds.

Fact 5.1 ([3, Theorem 1]). For any U,V ∈ L(CR), we have UKV if and only

if U ∩ K̃ = V ∩ K̃.

It looks like an unexplainable coincidence that the set below should look like

a part K̃, however not relative to CR but relative to L(CR).

The following parameter will turn out in our construction.

Definition 5.2. On the set

Λ = L(G) ∪
(
L(CS) \ L(ReG)

)
define an operation of meet ∧ by

U ∧ V =

{
U ∩ V ∩ G if U,V /∈ L(ReG) and U ∩ V ∈ L(ReG)

U ∩ V otherwise

and retain the join operation ∨ in L(CS).

We hasten to establish basic properties of the algebra Λ. The next lemma

actually follows from Theorem 5.7, but it is instructive to see a direct proof.

Lemma 5.3. With the given operations, Λ is a lattice.

Proof. It is straightforward to check that Λ is closed under both opera-

tions. We already have the join ∨ which makes Λ an upper semilattice relative to

inclusion. So it suffices to show that Λ is a lower semilattice under meet ∧, again

with respect to inclusion.

Let U,U′ ∈ L(G) and V,V′ ∈ L(CS)\L(ReG). We must show that each of the

pairs (U,U′), (U,V), (V,V′) has a greatest lower bound. It suffices to check this

for the pair (V,V′) when V ∩ V′ ∈ L(ReG) since for other cases, we have X ∩ Y as

in L(CS).
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Assume that V,V′ /∈ L(ReG) but V ∩ V′ ∈ L(ReG), and let X ∈ Λ satisfy

X ⊆ V and X ⊆ V′. In L(CS) this implies that X ⊆ V ∩ V′ so that X ∈ L(ReG).

Since X ∈ Λ and V ∩ V′ ∈ L(ReG), we must have X ∈ L(ReG), which by the

definition of Λ yields that X ∈ L(G). Hence X ⊆ V∧V′ and V∧V′ is the greatest

lower bound of V and V′ in Λ. �

The support of the lattice Λ has an interesting property.

Lemma 5.4. Every variety in Λ is the minimum in its K-class in L(CR).

Proof. Let U ∈ L(CR) and V ∈ Λ be K-related. Then Fact 5.1 implies that

U ∩ K̃ = V ∩ K̃ = V and thus V ⊆ U. Hence V is the least variety K-related

to U. �

We are now ready for the following result.

Proposition 5.5. The intervals{
[V,V ∨B]

∣∣V ∈ Λ
}

(5.1)

constitute the complete set of B∨-classes of varieties in L(CS).

Proof. By Lemma 5.4, for all V ∈ Λ, we have V = VK . By [6, Theorem 5.1],

we have B∨ ⊆ K which implies that V = VB∨ . It follows that V = VB∨ for all

V ∈ Λ, which yields that the intervals (5.1) are B∨-classes.

Let V ∈ L(CS) \ Λ. Then V ∈ L(ReG) and

VB∨ ∨B = V ∨B = (V ∩ G) ∨B

which implies that VB∨ = V ∩ G ∈ L(G). Hence all varieties V = VB∨ ∈ L(CS)

are contained in Λ. Now letting V ∈ L(CS) be arbitrary, we obtain VB∨ ⊆ V ⊆
(VB∨)B

∨
, and V is contained in some interval in (5.1). Therefore the collec-

tion (5.1) covers all L(CS), proving the desired completeness. �

Corollary 5.6. The intervals{
[V,V ∨ RB]

∣∣V ∈ Λ
}

constitute the complete set of B∨
∣∣
L(CS)-classes.

Proof. In view of Proposition 5.5, it suffices to show that for any V ∈ Λ,

we have (V ∨ B) ∩ CS = V ∨ RB. By [12, Corollary 2.9], CS is neutral in L(CR),

which for any V ∈ Λ yields

(V ∨B) ∩ CS = (V ∩ CS) ∨ (B ∩ CS) = V ∨ RB. �
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We are now ready for the main result of this section.

Theorem 5.7. The mapping

λ : V −→ VB∨ =

{
V ∩ G if V ∈ L(ReG)

V if V ∈ L(CS) \ L(ReG)

is a homomorphism of L(CS) onto Λ which induces B∨ on L(CS).

Proof. We first justify the equality sign. Let V ∈ L(CS). By Corollary 5.6,

there exists U ∈ Λ such that V ∈ [U,U∨RB] which is a B∨-class. Hence U = VB∨

and U ∨ RB = VB∨ = V ∨B.

If V ∈ L(ReG), then U ∨ RB = V ∨ RB ⊆ O whence U ∈ L(G) so that

VB∨ = V∩B. If V /∈ L(ReG), then U∨RB * O, so U /∈ L(ReG) and U∨B = V∨B
yields U = V.

Let U,V ∈ L(CS). First the meets.

Case: U ∩ V /∈ L(ReG). Then U,V /∈ L(ReG) and

(U ∩ V)λ = U ∩ V = Uλ ∩ Vλ.

Case: U,V /∈ L(ReG) and U ∩ V ∈ L(ReG). Then

(U ∩ V)λ = U ∩ V ∩ G = Uλ ∧ Vλ.

Case: U /∈ L(ReG) and V ∈ L(ReG). Then

(U ∩ V)λ = U ∩ V ∩ G = Uλ ∧ Vλ.

Case: U,V ∈ L(ReG). Then U ∩ V ∈ L(ReG) and

(U ∩ V)λ = U ∩ V ∩ G = (U ∩ G) ∩ (V ∩ G) = Uλ ∧ Vλ.

Next the joins.

Case: U,V /∈ L(ReG). Then U ∨ V /∈ L(ReG) and

(U ∨ V)λ = U ∨ V = Uλ ∨ Vλ.

Case: U,V ∈ L(ReG). Then U ∨ V ∈ L(ReG). By [12, Corollary 2.9], G is neutral

in L(CR). Hence

(U ∨ V)λ = (U ∨ V) ∩ G = (U ∩ G) ∨ (V ∩ G) = Uλ ∨ Vλ.



On the variety of bands in completely regular semigroups 53

Case: U ∈ L(ReG) and V /∈ L(ReG). Then U ∨ V /∈ L(ReG) and thus (U ∨ V)λ =

U ∨ V. We have U = U′ ∨ U′′ for some U′ ∈ L(RB) and U′′ ∈ L(G). Again by

neutrality of G, we obtain

U ∩ G = (U′ ∨ U′′) ∩ G = (U′ ∩ G) ∨ (U′′ ∩ G) = U′′.

Since V ∈ Λ, we get

Uλ ∨ Vλ = (U ∩ G) ∨ V = U′′ ∨ V.

On the other hand, U ∨ V /∈ L(ReG) so that

(U ∨ V)λ = U ∨ V = U′ ∨ U′′ ∨ V = U′′ ∨ V

since U′ ⊆ V.

Therefore λ is a homomorphism. It clearly maps L(CS) onto Λ.

Note that Uλ = Vλ if and only if{
U ∩ G if U ∈ L(ReG)

U if V /∈ L(ReG)

}
=

{
V ∩ G if V ∈ L(ReG)

V if V /∈ L(ReG)

}
.

Assume that Uλ = Vλ.

Case: U,V ∈ L(ReG). Again we have U = U′ ∨ U′′ and V = V′ ∨ V′′ for some

U′,V′ ∈ L(RB) and U′′,V′′ ∈ L(G), so that

U ∨B = U′′ ∨B, V ∨B = V′′ ∨B

where U ∩ G = U′′ and V ∩ G = V′′, which implies that U′′ = V′′ whence U ∨B =

V ∨B, and finally UB∨V.

Case: U,V /∈ L(ReG). Then U = V and UB∨V.

Case: U ∈ L(ReG) and V /∈ L(ReG). Then Uλ = V ∩ G and Vλ = V, and hence

U ∩ G = V /∈ L(ReG) which is impossible.

Therefore UB∨V. Conversely, suppose that UB∨V, so that U ∨B = V ∨B.

Case: U ∈ L(ReG). Then U ∨B ∈ L(O) whence V ∨B ∈ L(O), so that V ∈ L(O)

and finally V ∈ L(ReG). It follows that

U ∈ L(ReG) ⇐⇒ V ∈ L(ReG),

and thus V ∈ L(ReG). Again we have U = U′ ∨ U′′ and V = V′ ∨ V′′ for some

U′,V′ ∈ L(RB) and U′′,V′′ ∈ L(G). Now U∨B = V∨B implies U′′ ∨B = V′′ ∨B.

Again we have that G is neutral in L(CR) which yields

(U′′ ∩ G) ∨ (B ∩ G) = (V′′ ∩ G) ∨ (B ∩ G)

and thus U′′ ∩ G = V′′ ∩ G so that U′′ = V′′, and finally Uλ = Vλ.
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Case: U /∈ L(ReG). Then V /∈ L(ReG) so that Uλ = U and Vλ = V. As above,

we have U ∨ B = V ∨ B. Using [9, Lemma I.2.2], we get UK ∨ BK = VK ∨ BK

whence UK = VK and thus U = V by Lemma 5.4. Then trivially Uλ = Vλ.

In all cases, we have Uλ = Vλ and thus λ induces B∨ on L(CS). �

Corollary 5.8. The lattice L(CS) is a subdirect product of the lattices L(RB)

and Λ.

Proof. This follows from Theorem 5.7 and Corollary 2.2(i). �

6. Coordinatization of L(CS)

The purpose of this section is constructing an isomorphic copy of L(CS) in

terms of triples, in a vaguely similar way to the Rees construction of completely

simple semigroups. We divide the argument into three steps. Step 1 contains a

heuristic explanation of the origin of the parameters in our construction, in the

spirit of the role of B in the structure of L(CR). Step 2 contains the construction,

and the main result. Step 3 consists of an alternative way of constructing the

parameters.

Step 1. The application of Theorem 3.1 to the case L = L(CR) and a = B

provides an isomorphism

ϕ : W −→ (WB∨ ,W
B∨) (W ∈ L(CR))

of L(CR) onto the lattice Γ adjusted to this particular case. Of interest here is

the restriction

ϕ
∣∣
L(CS) : W −→ (W ∩B,W ∨B) (W ∈ L(CS)).

Let ΓCS denote its image. Since the elements of ΓCS are pairs, we may consider its

projection into (B], which is evidently isomorphic to L(RB), and its projection

onto [B), which we denote by

Ψ = {V ∨B |V ∈ L(CS)}.

Clearly L(RB) can be coordinatized by the mapping

T → (0, 0), LZ→ (1, 0), RZ→ (0, 1), RB→ (1, 1) (6.1)

with the operation of minimum.

For the second projection, we have the following result.
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Lemma 6.1. The mapping

ψ : V ∨B −→
(
(V ∨B) ∩ CS

)
B∨

(V ∈ L(CS))

is an isomorphism of Ψ onto Λ.

Proof. That ψ maps Ψ into Λ is a direct consequence of Theorem 5.7. We

show next that ψ is injective. Hence let U,V ∈ L(CS) satisfy Uψ = Vψ.

By Theorem 5.7, we have two cases.

Case: (U ∨B) ∩ CS, (V ∨B) ∩ CS ∈ L(ReG). In this case

(
(U ∨B) ∩ CS

)
∩ G =

(
(V ∨B) ∩ CS

)
∩ G

whence (U ∨B) ∩ G = (V ∨B) ∩ G. Since G is neutral in L(CR), we have

(U ∩ G) ∨ (B ∩ G) = (V ∩ G) ∨ (B ∩ G)

so that U ∩ G = V ∩ G. In Λ, this yields U = V.

Case: (U ∨ B) ∩ CS, (V ∨ B) ∩ CS ∈ L(CS)\L(ReG), in which case (U ∨ B) ∩ CS =

(V ∨B) ∩ CS. Since CS is neutral in L(CR), we obtain

(U ∩ CS) ∨ (B ∩ CS) = (V ∩ CS) ∨ (B ∩ CS)

and thus U∨RB = V∨RB. Since U,V ∈ L(CS)\L(ReG), we must have RB ⊆ U∩V.

Therefore U = V.

Clearly ψ maps Ψ onto Λ, which implies that ψ is a bijection between

Ψ and Λ. Trivially ψ preserves inclusion. Conversely, assume that (U ∨ B)ψ ⊆
(V ∨B)ψ. Then we have either the first or the second case above. In either case,

it follows that U ∨B ⊆ V ∨B. Therefore ψ−1 also preserves inclusion. It follows

that ψ is an isomorphism of Ψ onto Λ. �

We have arrived at the two projections: (6.1) for the first and Lemma 6.1

for the second. Hence to each variety V ∈ L(CS), we may associate the pair (i, j)

where i, j ∈ {0, 1}, and the element (V∨B)ψ, which we write together as (i,W, j)

where W = (V ∨B)ψ ∈ Λ.

Finally, the meet and the join of two such triples follow the formulae (6.2)

below, since the operations are componentwise.
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Step 2.

Notation 6.2. Let

Π =
{

(i,U, j)
∣∣ i, j ∈ {0, 1}, U ∈ L(G)

}
∪
{

(1,V, 1)
∣∣V ∈ L(CS) \ L(ReG)

}
,

with meet and join

(i,W, j) ∧ (i′,W′, j′) =
(

min{i, i′},W ∧W′,min{j, j′}
)
,

(i,W, j) ∨ (i′,W′, j′) =
(

max{i, i′},W ∨W′,max{j, j′}
)
.

(6.2)

Define a mapping π on L(CS) by

U −→ (0,U, 0),

LZ ∨ U −→ (1,U, 0),

RZ ∨ U −→ (0,U, 1),

RB ∨ U −→ (1,U, 1),

V −→ (1,V, 1)

for all U ∈ L(G) and V ∈ L(CS) \ L(ReG).

Theorem 6.3. The mapping π is an isomorphism of L(CS) onto Π.

Proof. It follows from [9, Lemma III.5.13] that

[T,G], [LZ,LG], [RZ,RG], [RB,ReG], L(CS) \ L(ReG)

form a partition of L(CS). It is well known that each variety in [LZ,LG] is of the

form LZ ∨ U for some U ∈ L(G).

Let U,U′ ∈ L(G) and suppose that LZ∨U = LZ∨U′. By [12, Corollary 2.9],

G is a neutral element in L(CR). Hence

(LZ ∨ U) ∩ G = (LZ ∩ G) ∨ (U ∩ G) = U

and similarly (LZ∨U′)∩G = U′. The hypothesis implies that U = U′. Therefore U

is unique with this property. The same type of statement holds for the intervals

[RZ,RG] and [RB,ReG].

Therefore π is defined on all of L(CS) and is unambiguous. Next we establish

the tables for meet and join for the varieties in L(CS) in this representation. Let
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U,U′ ∈ L(G) and V,V′ ∈ L(CS)\L(ReG). Then by writing U† = U∩U′ for brevity,

we have

∩ U′ LZ ∨ U′ RZ ∨ U′ RB ∨ U′ V′

U U† U† U† U† U ∩ V′

LZ ∨ U LZ ∨ U† U† LZ ∨ U† LZ ∨ (U ∩ V′)

RZ ∨ U RZ ∨ U† RZ ∨ U† RZ ∨ (U ∩ V′)

RB ∨ U RB ∨ U† RB ∨ (U ∩ V′)

V V ∩ V′

where the duals of the blanks already appear in the table.

Next we justify possibly questionable entries in this table. The above refer-

ence guarantees that G is neutral in L(CR), which we will use freely.

Case: U ∩ (LZ ∨ U′) = X, say. Intersecting both sides by G, we get

(U ∩ G) ∩
(
(LZ ∩ G) ∨ (U′ ∩ G)

)
= X ∩ G.

Since evidently X ∈ L(G), we obtain U ∩ U′ = X, as in the table.

Cases: RZ ∨ U and RB ∨ U. These have essentially the same proof. Note that

U ∩ V′ = U ∩ (V′ ∩ G), is again a meet in L(G).

By the above reference, also LZ is neutral in L(CR). Hence

(LZ ∨ U) ∩ (LZ ∨ U′) = LZ ∨ (U ∩ U′).

Case: (LZ ∨ U) ∩ (RZ ∨ U′) = X, say. Then X is clearly contained in L(G). Now

intersecting both sides by G, we get(
(LZ ∩ G) ∨ (U ∩ G)

)
∩
(
(RZ ∩ G) ∨ (U′ ∩ G)

)
= X ∩ G

whence U ∩ U′ = X, as asserted.

The case (LZ ∨ U) ∩ (RB ∨ U′) requires a very similar argument. Ditto for

(LZ ∨ U) ∩ V′. The remaining cases are either duals of those treated or require a

very similar proof.

And now for the table of joins. Writing U‡ = U ∨ U′ for brevity, we have

∨ U′ LZ ∨ U′ RZ ∨ U′ RB ∨ U′ V′

U U‡ LZ ∨ U‡ RZ ∨ U‡ RB ∨ U‡ U ∨ V′

LZ ∨ U LZ ∨ U‡ RB ∨ U‡ RB ∨ U‡ U ∨ V′

RZ ∨ U RZ ∨ U‡ RB ∨ U‡ U ∨ V′

RB ∨ U RB ∨ U‡ U ∨ V′

V V ∨ V′
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In the light of the form of representing the varieties in L(CS), the table for joins

is easily shown to be correct.

We may conclude that π is a homomorphism and thus an isomorphism of

L(CS) onto Π. �

Step 3. There is another way for arriving at Π. First an outline. We know that

L(CS) ∼= [S,NBG] by the mutually inverse isomorphisms

U −→ U ∨ S, V −→ V ∩ CS;

see [9, Corollary IV.1.11]. Each ladder of varieties in [S,NBG] is of the form

qq qq q�� HH

��
��HHHH

VK

VTrK∗ VT`K∗

T ∗ T ∗
...

where VK ∈ L(G) or VK ∈ L(CS) \ L(ReG). Hence we must have

VTrK∗ ∈ {T ∗, L∗}, VT`K∗ ∈ {T ∗, R∗},

respectively. We may replace

L∗ −→ (1, 0), T ∗ −→ (0, 0), R∗ −→ (0, 1)

which takes the partially ordered set
q q qL∗

T∗
R∗

onto
q q q(1, 0)

(0, 0)

(0, 1)

.

Combining these two transformations, we see that every variety in L(CS) can

be given by three parameters

(i,U, j), U ∈ L(G); (1,V, 1), V ∈ L(CS) \ L(ReG)
(
i, j ∈ {0, 1}

)
which is evidently reminiscent of the lattice Λ studied in Section 5. It coordina-

tizes L(CS). This is the heuristic idea; the numerous details follow.

Notation 6.4.

(a) Let ϕ denote the mapping

V −→ V ∨ S
(
V ∈ L(CS)

)
.
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(b) Let `ad [S,NBG] denote the set of ladders of varieties in [S,NBG] with com-

ponentwise join.

(c) Let χ denote the mapping

V −→ `adV
(
V ∈ [S,NBG]

)
where `adV is the ladder of V.

(d) Let ψ denote the mapping given by

qq q�� HH
U

T ∗ T ∗ −→ (0,U, 0)
...

qq qq q�� HH

��
��HH
HH

U

L∗ T ∗

T ∗ T ∗
−→ (1,U, 0)

...

qq qq q�� HH

�
��
�H

HHH

U

T ∗ R∗

T ∗ T ∗
−→ (0,U, 1)

...

qq qq q�� HH

�
��
�H

HHH

U

L∗ R∗

T ∗ T ∗
−→ (1,U, 1)

...

qq qq q�� HH

�
��
�H

HHH

V

L∗ R∗

T ∗ T ∗
−→ (1,V, 1)

...

where U ∈ L(G) and V ∈ L(CS) \ L(ReG).

We are now ready for properties and relationship of these functions.
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Proposition 6.5.

(i) ϕ is an isomorphism of L(CS) onto [S,NBG].

(ii) χ is a ∨-isomorphism of [S,NBG] onto `ad [S,NBG].

(iii) ψ is a ∨-isomorphism of `ad [S,NBG] onto Π.

(iv) The following diagram is commutative:

[S,NBG] `ad [S,NBG]

L(CS) Π

χ

π

ϕ ψ

-

-

6

?

Proof. (i) This follows immediately from the fact that S is neutral in L(CR);

see [12, Corollary 2.9] and [9, Corollary IV.1.11].

(ii) This is the restriction of Polák’s theorem [10], [11] to [S,NBG].

(iii) It is straightforward to check that ψ transforms the join of ladders to

the join of triples, and that ψ is a bijection.

(iv) Indeed, for U ∈ L(G), we have

U
ϕ−→ U ∨ S

χ−→ `ad (U ∨ S)
ψ−→ (0,U, 0)

and the other cases are just as simple. �

The key function is ψ which transforms ladders into triples.

We can easily extend π to a mapping on L(NBG), and extend Π accordingly

adding one more parameter, again with the values in {0, 1} with min and max,

and to L(CS) assigning 0, and to [S,NBG] assigning 1. All this depends on [9,

Lemma IV.1.11].
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