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On the reduction of binary quadratic forms

By AYBERK ZEYTIN (İstanbul)

Abstract. We give an interpretation of the reduction algorithm of Gauss in terms

of çarks, which are certain types of infinite ribbon graphs (or infinite dessins). We then

describe an alternative reduction which is slightly faster than Gauss’. We also solve

the minimal value problem and describe an algorithmic solution to the representation

problem of indefinite binary quadratic forms.

1. Introduction

Binary quadratic forms are homogeneous degree two polynomials in two vari-

ables with integer coefficients. They are in a sense the first non-trivial case of

Diophantine equations. The history of the question of finding integer solutions of

such equations dates back to ancient Greece and it was Gauss who has treated

the case of binary quadratic forms in a complete and systematic manner [4].

The modular group, denoted by PSL2(Z), acts on the set of binary quadratic

forms by coordinate change. An orbit of this action is called the class of a form,

and the stabilizer of a form is called the automorphism group of the form. Two

forms are called equivalent if and only if they belong to the same orbit. The

discriminant of a form and the set of values of a form are left-invariant by this

action.

Gauss searched for a canonical representative of each class and defined re-

duced forms. Gauss has proved that if the form has negative discriminant, i.e. if
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the form is definite, then its class contains a unique reduced form. However, if

the form has positive discriminant, i.e. if it is indefinite, then there always exist

at least two reduced forms in its class. Gauss gave an algorithm whose input

is an arbitrary form and whose output is a reduced form which is equivalent to

the initial form1. Zagier also defined a reduction in [10, §2.13] which simplifies

proofs, however, Gauss’ algorithm is better suited for computational purposes.

In this work, we use a new tool called çark2 discovered by the author and col-

laborators in [9] and solve classical questions and give alternative algorithms con-

cerning binary quadratic forms. More precisely, the aim of the article is twofold.

After recalling basic definitions and facts concerning binary quadratic forms, we

give an interpretation of Gauss’ reduction algorithm and then describe another re-

duction algorithm which is slightly faster than that of Gauss’. We then move on to

the classical representation problem of binary quadratic forms which asks whether

there exist integer solutions to an equation of the form aX2 + bXY + cY 2 = N ;

where a, b, c are integers. If the form is definite, then there can only be at most

finitely many solutions. However, in the indefinite case starting with one solution

one may produce infinitely many solutions using elements of the automorphism

group. Here we prove that an answer to the solubility of such an equation can

be given after a finite number of steps and give an algorithm. Along the way we

also touch upon some facts concerning binary quadratic forms which are merely

observations in the language of çarks. We also solve the minimal problem which

asks the smallest element of the set whose elements are absolute values of the

numbers attained by an indefinite binary quadratic form.

Let us mention finally that our computations are done on PARI/gp [7]. We

would also like to add that the reduction algorithm given in this article, together

with further visualizations of çarks, is being developed and will be available on

the homepage of the author under the name “Sunburst” [6].

2. Notation and terminology

This section is devoted to introducing the notation. We also state some

results concerning binary quadratic forms.

2.1. Binary quadratic forms. A binary quadratic form is a homogeneous poly-

nomial f of two integer variables, X and Y , of degree 2:

1Lagrange also defined a reduction theory which was slower than that of Gauss’.
2pronounced ’chark ’
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f(X,Y ) = aX2 + bXY + cY 2 = (X Y )

(
a b/2

b/2 c

)
(X Y )t;

where a, b and c are integers. We write f = (a, b, c) for short. The matrix(
a b/2

b/2 c

)
is denoted by Mf . Forms f with negative discriminant, ∆(f) =

b2 − 4ac, are called positive (resp. negative) definite if a > 0 (resp. a < 0) and

forms with positive discriminant are called indefinite. A binary quadratic form,

f = (a, b, c), is said to be primitive if the greatest common divisor of a, b and c

is 1. Throughout we will always consider primitive indefinite binary quadratic

forms whose discriminant is not a perfect square3.

The action of the modular group PSL2(Z) on the set of all binary quadratic

forms is defined as:

W ·Mf 7→W tMf W

The orbit of a binary quadratic form f under PSL2(Z)-action will be referred to

as its class and denoted by [f ]. For a binary quadratic form f , the group Stab(f)

is called the automorphism group of f . The discriminant of f and the set of

values of f , i.e. the set {f(X,Y ) |X,Y ∈ Z}, are invariant under this action.

2.2. The correspondence between çarks and binary quadratic forms.

The modular group is isomorphic to the free product of a cyclic group of order 2

with a cyclic group of order 3: PSL2(Z) ∼= Z/2Z ∗ Z/3Z. Throughout, we fix

S =

(
0 −1

1 0

)
, L =

(
1 −1

1 0

)

to be the generators of the order 2 and 3 cyclic subgroups, respectively. We have

PSL2(Z) ∼=
〈
S,L|S2 = L3 = I

〉
.

To the modular group we associate the bipartite Farey tree, F , whose set of

vertices, V (F) is the disjoint union of V◦ and V•; where V◦(F) = {{W,WS} : W ∈
PSL2(Z)} and V•(F) = {{W,WL,WL2} : W ∈ PSL2(Z)}. We define the set of

edges as E(F) = {{W} : W ∈ PSL2(Z)}. There is an edge joining any two

vertices v and v′ of F if and only if their intersection is both non-empty and a

proper subset of v and v′. In particular, there are no loops. The three edges W ,

WL and WL2 emanating from the vertex {W,WL,WL2} are ordered as given,

see Figure 1 and 2.
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Figure 1. The bipartite Farey tree: local picture

Figure 2. The bipartite Farey tree: global picture

The modular group acts on F from left by translation and therefore for every

subgroup Γ of the modular group we may define the corresponding quotient graph

Γ\F called a modular graph4, see [8] for further treatment of modular graphs. In

the most general setting, given a set X with an action of a group G, for any

subgroup H of G one can construct the quotient H\X as the set of orbits of

H on X. For instance, the space X itself corresponds to the trivial subgroup.

And, indeed, in the language of topological spaces this is reduced to the classical

functor between subgroups of the fundamental group and topological covers of the

space X. This applies to the case at hand, producing the quotient graphs. More

precisely, the generator S acts like a rotation of degree 2 about the vertex {I, S}
(denoted by ◦) and L acts as a rotation of degree 3 about the vertex {I, L, L2}
(denoted by •). The classical base point considerations carry over to this setting

as well. Taking into account the fact that any element of finite order in PSL2(Z)

3This is no loss in generality as the reduction procedure is the same in these cases.
4The resulting graph is called a ‘dessin d’enfant’ if it has finitely many edges. Our terminology

unifies other essentially equivalent terms in the literature, such as Linienzug of Klein, lozenges,

triangulations, etc.
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is conjugate either to S or L or L2 we conclude that there are only two modular

graphs arising from such quotients, see Figure 3.

Figure 3. The modular graphs 〈S〉\F and 〈L〉\F , respectively

One can immediately deduce from the action of L and S the fact that the

LS acts as a translation on F , and the quotient of F by the subgroup generated

by LS is then an infinite planar graph with a unique cycle consisting of 2 edges,

see Figure 4. For the algebraic definition of this construction the reader may

consult [9].

Figure 4. The modular graph 〈LS〉\F

Definition 2.1. A çark is the quotient of F by a non-trivial subgroup gener-

ated by one element.

In fact, the set of edges in a çark is the orbits of the subgroup 〈W 〉 in the set of

edges of F , and the set of vertices of the çark can be identified with the orbits

of 〈W 〉 in the set of vertices of F . The shape of the quotient graph is determined

by the type of the element, and, for our purposes, we will only deal with those

subgroups that are generated by a hyperbolic element. In this case, a çark is an

infinite bipartite ribbon graph, denoted by Ç, which has a unique loop (called
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spine) and finitely many bipartite Farey tree components, called Farey branches,

attached to all degree 3 vertices that are on the spine, see Figure 5. An oriented

çark is a çark whose spine is oriented5. A çark is called base-pointed if an edge

is specified to be the base edge. Note that the surface constructed from Ç is an

annulus. Let us also note at this point that the spine of the çark is the quotient

of the river which appeared in [3].

Figure 5. Çark corresponding to the class [(−7, 8, 2)]

Successive Farey branches pointing in the same boundary component are called

a Farey bunch. We introduce the following notation: a Farey bunch of size n

(i.e. a bunch containing n Farey branches) pointing in the inner boundary circle

is denoted by a +n, and, similarly, a Farey bunch of size n pointing in the outer

boundary circle is denoted by a −n. For instance, çark appearing in Figure 5 will

be denoted by [−4,+1,−2,+1]. Remark that as we consider primitive forms, the

çarks that we encounter will not be periodic. For instance, we will not be dealing

with the çark [−4,+1,−2,+1,−4,+1,−2,+1]. Thus, we will always assume that

çarks are not periodic. Table 1 gives a list of first few çarks of binary quadratic

forms of Pell. For readers interested in computations, we refer to our software [6].

There is a one-to-one correspondence between çarks and classes of indefinite

binary quadratic forms. In addition, we have the following base-pointed version:

Theorem 2.2 ([9, Corollary 3.2]). There is a one-to-one correspondence

between oriented, base-pointed çarks and indefinite binary quadratic forms.

5In our drawings we will always assume that the spine of the çark is counterclockwise oriented.
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binary

quadratic

form

corresponding çark binary

quadratic

form

corresponding çark

(1, 0,−2) [−2, 2] (1, 0,−20) [−2, 8]

(1, 0,−3) [−1, 2] (1, 0,−21) [−1, 1,−2, 1,−1, 8]

(1, 0,−5) [−4, 4] (1, 0,−22) [−1, 2,−4, 2,−1, 8]

(1, 0,−6) [−2, 4] (1, 0,−23) [−1, 3,−1, 8]

(1, 0,−7) [−1, 1,−1, 4] (1, 0,−24) [−1, 8]

(1, 0,−8) [−1, 4] (1, 0,−26) [−10, 10]

(1, 0,−10) [−6, 6] (1, 0,−27) [−5, 10]

(1, 0,−11) [−3, 6] (1, 0,−28) [−3, 2,−3, 10]

(1, 0,−12) [−2, 6] (1, 0,−29) [−2, 1,−1, 2,−1, 2,−1, 1,−2, 10]

(1, 0,−13) [−1, 1,−1, 1,−6, 1,−1, 1,−1, 6] (1, 0,−30) [−2, 10]

(1, 0,−14) [−1, 2,−1, 6] (1, 0,−31) [−1, 1,−3, 5,−3, 1,−1, 10]

(1, 0,−15) [−1, 6] (1, 0,−32) [−1, 1,−1, 10]

(1, 0,−17) [−8, 8] (1, 0,−33) [−1, 2,−1, 10]

(1, 0,−18) [−4, 8] (1, 0,−34) [−1, 4,−1, 10]

(1, 0,−19) [−2, 1,−3, 1,−2, 8] (1, 0,−35) [−1, 10]

Table 1. First few Pell çarks.

Indeed, given a base-pointed çark one makes a one-counterclockwise-oriented full

turn around the spine. On visiting a vertex of degree two, one writes an S and

on visiting a vertex of degree three one writes L if one proceeds left, and L2 if

one proceeds right afterwards. In the end, we obtain a word in S, L and L2, and

hence an element, say W =

(
a b

c d

)
in PSL2(Z). The binary quadratic form,

fÇ corresponding to Ç is the homogenization of the fixed point equation of W

without common divisors:

fÇ(X,Y ) =
c

δ
X2 +

d− a
δ

XY +
−b
δ
Y 2;

where δ = gcd(c, d−a, b). Remark that W is an automorphism of the correspond-

ing binary quadratic form.

Example 2.3. For the base-pointed çark in Figure 6, we record the word

W = SL2(SL2)(SL)2SL2(SL)3SL2S =

(
33 26

−14 −11

)
. In this case, fÇ =

(−7,−22,−13).

Remark 2.4. The correspondence stated in Theorem 2.2 carries over to the

language of subgroups. More precisely, there are one-to-one correspondences be-

tween
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Figure 6. Çark with a base edge corresponding to the form

(−7,−22,−13) in [(−7, 8, 2)]

• the conjugacy classes of subgroups of PSL2(Z) generated by a hyperbolic

element and çarks,

• the subgroups of PSL2(Z) generated by a hyperbolic element and base-

pointed çarks,

• the set of pairs consisting of a subgroups of PSL2(Z) generated by a hyper-

bolic element and a chosen generator and the set of oriented, base-pointed

çarks.

Moreover, the conjugation action of PSL2(Z) on itself amounts to translation of

the base edge in the language of çarks.

2.3. Reduced forms and reduced edges. Every class of a binary quadratic

form contains a finite set of distinguished forms that satisfy the following inequal-

ity: ∣∣∣√∆(f)− 2 |a|
∣∣∣ < b <

√
∆(f).

Binary quadratic forms satisfying this inequality are called reduced [4]. We define

an edge of a çark to be reduced if it is neighbour to a + Farey bunch, see Figure 7.

In [9], it is proven that the edges that represent reduced form in [f ] are exactly

the reduced edges.

If f is indefinite, the set of reduced forms in the class of f has at least two

elements. Similar to the Gauss’ proof of finiteness of reduced elements, one can

show that given an indefinite binary quadratic form f = (a, b, c), forms f ′ =

(a′, b′, c′) which are equivalent to f and satisfy a′c′ < 0 are finite. We call such

forms spinal or semi-reduced. In fact, the following is merely an observation:
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Figure 7. Bold edges correspond to reduced binary quadratic forms in

[(−7, 8, 2)]

Proposition 2.5. Given an indefinite binary quadratic form, there is a one-

to-one correspondence between

• the set of spinal forms in the class [f ] and the edges of the spine,

• the set of forms, f ′ = (a, b, c) in the class [f ] with a′, c′ > 0 and the edges on

the Farey components of the çark which are directed in the inner boundary

component (i.e. inner Farey component), and

• the set of forms, f ′ = (a, b, c) in the class [f ] with a′, c′ < 0 and the edges on

the Farey components of the çark which are directed in the outer boundary

component (i.e. outer Farey component).

And in particular, if f is an indefinite binary quadratic form, then [f ] contains

at least 2 and at most finitely many reduced forms.

2.4. Reduced edges and faces of a çark. A finite path on a çark is defined

as a sequence of edges of a çark, γ = (e1, e2, . . . , en), such that the intersection of

two consecutive edges is a vertex and such that there are neither repetitions nor

backtracks. The initial edge of γ is e1 and the final edge is en. The initial vertex

of γ is the vertex of e1 which is not equal to the vertex defined by the orbit of the

vertex {e1, e2}. Similarly, the final (or terminal) vertex of γ is the vertex of en
which is not equal to the vertex defined by the orbit of the vertex {en−1, en}. The

length of a finite path, `(γ) is defined to be the number of edges it contains. An

infinite and a bi-infinite path may also be defined accordingly [5].

A left (resp. right) turn path is a path on a çark in which every turn is a

left (resp. right) turn. In fact, if γ is a finite left-turn path, then there is a word,
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M ∈ PSL2(Z) such that

γ = (M,MS,MSL, · · · ,M(SL)n−1S)

or

γ = (M,MS,MSL, · · · ,M(SL)n−1S,M(SL)n)6.

Similarly, if γ is a finite right-turn path, then there is a word, M ∈ PSL2(Z) such

that

γ = (M,MS,MSL2, · · · ,M(SL2)n−1S)

or

γ = (M,MS,MSL2, · · · ,M(SL2)n−1S,M(SL2)n).

In a similar fashion, one can define infinite and bi-infinite left and right-turn

paths on a çark. Remark that every bi-infinite left-turn path is at the same time

a bi-infinite right-turn path and vice versa. To avoid ambiguity, we will consider

only bi-infinite left-turn paths.

Definition 2.6. A face of a çark, Ç, is defined to be a bi-infinite left-turn

path on Ç. A face which includes an edge on the spine will be referred to as a

spinal face and a face will be called reduced if it contains a reduced edge. Faces

which are not spinal will be called non-spinal. A face which is not reduced is

called non-reduced.

A few remarks are in order. If a face, ϕ, contains an edge on an inner (resp.

outer) Farey component, then either all or all but finitely edges of ϕ lie on an

inner (resp. outer) Farey component. Such faces are called inner (resp. outer)

faces. We also conclude that a reduced face contains exactly two reduced forms.

However, for any k ∈ Z≥2 there is a çark containing a face which has 2k many

spinal edges. Spinal but not reduced faces contain exactly two spinal edges.

If ϕ is a non-reduced face, then there is a unique vertex, νϕ = {W,WS},
of ϕ with the property that the two infinite paths following the same path as ϕ

and starting at νϕ are left-turn and right-turn paths. This vertex is called the

vertex of the face ϕ. The left-turn path starting at νϕ is denoted by ϕl and the

right-turn path is denoted by ϕr, see Figure 8.

Given a face ϕ of a çark Ç, we define the level of ϕ to be 0 if ϕ is a spinal

face, and to be the minimum of the set

{`(γ) : γ is any path from νϕ to a vertex on the spine}

6By abuse of notation, we identify orbits with their representatives.
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Figure 8. The face ϕ, its vertex {W,WL,WL2} and the paths ϕl and ϕr

if ϕ is an inner face and

{−`(γ) : γ is any path from νϕ to a vertex on the spine}

if ϕ is an outer face. Remark that the level of an edge is always an even integer.

The set of faces, F (Ç) of a çark can be written as a disjoint union:

F (Ç) =
⊔

n∈2Z

Fn(Ç);

where Fn(Ç) is defined to be the set of faces of Ç which are of level n.

3. Reduction theory of indefinite binary quadratic forms

3.1. Reduction algorithm of Gauss via çarks. Let us recall briefly the re-

duction algorithm of Gauss: let f = (a, b, c) be any binary quadratic form. Let

t(f) be the function defined by:

t(f) =

 sign(c)
⌊

b
2|c|

⌋
if |c| ≥

√
∆,

sign(c)
⌊√

∆+b
2|c|

⌋
if |c| <

√
∆.


The following algorithm, see [1, §6.4] or [2, §5.6], takes f as an input and

produces a reduced form fr equivalent to f in finitely many steps:
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0. Set fr = f .

1. If fr is reduced then return fr

2. Else assign Ufr · fr to fr and return to 1;

where Ufr =

(
0 −1

1 t(fr)

)
. Note that Ufr = S(LS)t(fr). If the form f is reduced,

then the set [f ] contains a unique reduced form. If f is indefinite, the number of

reduced forms is finite and always larger than 1.

Reduction algorithm of Gauss can be considered as an algorithm which pro-

duces a sequence of edges on the oriented çark with a base edge corresponding

to f whose initial edge is the base edge and whose terminal edge is one of the

reduced edges on the spine of Ç. We denote this sequence of edges by γf,Gauss.

Remark that γf,Gauss is not a path in our terminology as it has backtracks, see

Remark 3.4.

Lemma 3.1. Let Çf denote the çark corresponding to the class of an indef-

inite binary quadratic form f and let f ′ be a spinal but non-reduced form in [f ].

Then except for the terminal edge γf ′,Gauss does not contain any reduced edge.

Proof. Each step in the reduction algorithm can have only left turns or right

turns, but not both. Hence the word recorded in a single step will contain powers

of LS or powers of L2S only. But, for an edge to be reduced either one has an

LSL2S sequence or L2SLS sequence, which cannot be encoded in γf ′,Gauss. �

We conclude that once we obtain a spinal edge, then in at most one step the

reduction algorithm terminates.

3.2. Reduction algorithm using values. Let B = {e1 = (1, 0), e2 = (0, 1)}
be the standard oriented7 basis of Z2 as a Z module and let f = (a, b, c) be an

indefinite binary quadratic form of discriminant ∆ > 0. Before describing the

algorithm, let us note that it is simple to reduce an indefinite binary quadratic

form of the form (a, b, a). First observe that such a form cannot be reduced,

or even semi-reduced. Assume without loss of generality that ab < 0, if not,

we can always replace (a, b, a) by S · (a, b, a) = (a,−b, a). Given such a form,

both L · (a, b, a) and L2 · (a, b, a) are semi-reduced. Indeed, L · (a, b, a) = (2a +

b,−(2a+b), a) and L2 ·(a, b, a) = (a,−(2a+b), 2a+b). In both cases, the product

a(2a + b) = 2a2 + ab is negative as b2 − 4a2 > 0 ⇔ |b| > 2|a| ⇔ |ab| = −ab >
2a2 = 2|a|2. A direct consequence of this observation is the following:

7We use oriented bases to obtain an element of PSL2(Z). Similar constructions hold for

PGL2(Z), too.
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Proposition 3.2. Given an indefinite binary quadratic form f = (a, b, a),

the edge of the çark corresponding to f is always spinal, i.e. it is included in a

spinal face.

We can also deduce that the forms LS ·(a, b, a) and L2S ·(a, b, a) are also reduced.

More generally, one can show that the set of n’s for which the form (LS)n ·(a, b, a)

and (L2S)n · (a, b, a) is finite and depends on the class [(a, b, a)]. There are classes

of forms which does not contain any binary quadratic form of the form (a, b, a),

e.g. there is no such form of discriminant 40.

The next is an algorithm which terminates on arrival at a spinal edge, i.e. a

semi-reduced form, of the spine.

0. If ab > 0, then replace f with S · f = (c,−b, a).

1. If f(e1)f(e2) < 0, return fred = (e1|e2) · f .

2. Else if f(e1) = f(e2), then return ((e1|e2)L) · f .

3. Else if |f(e2)| > |f(e1)|, then let n be the first positive integer satisfying

either |f(e1)| > |f(e2 + n e1)| or f(e1)f(e2 + n e1) < 0 and replace e2 by

e2 + n e1, else if |f(e1)| > |f(e2)|, then let n be the first positive integer

satisfying either |f(e2)| > |f(e1 + n e2)| or f(e2)f(e1 + n e2) < 0 and replace

e1 by e1 + n e2 and go to step 1.

There always exists such an integer n as we have chosen a (together with c)

and b to have opposite signs. The procedure terminates, because at each step

values of the form at bases e1 and e2 decrease in absolute value. Let us also

remark that in order to find the integer n, one does not have to compute many

values of the form f . In fact, in case |f(e1)| > |f(e2)|, n is the first positive

integer satisfying the inequality |f(e2) n2 +b n+f(e1)| < |f(e2)|; where b satisfies

b2 − 4 f(e1) f(e2) = ∆. Similarly, if |f(e2)| > |f(e1)|, then n is chosen as the

smallest positive integer satisfying the inequality |f(e1) n2 +b n+f(e2)| < |f(e1)|.

Example 3.3. Consider the form f = (−3367, 3956,−1162). |f(1, 0)| =

3367 > 1162 = |f(0, 1)|. In the first reduction step we have n = 1 and e1 = (1, 0)

is replaced by (1, 1). In the second reduction step we have |f(1, 1)| = 573 <

1162 = |f(0, 1)|. In this case, |f(0, 1) + 1 (1, 1))| < |f(0, 1)|, i.e. n = 1 and e2 is

replaced by (1, 2). In the next two steps, we have n = 2 and in the end of these two

steps, e1 = (3, 5) and e2 = (7, 12). In the final reduction step, e1 becomes (10, 17),

reduction matrix is

(
10 7

17 12

)
, and the resulting form is M · f = (2, 8,−7), see

Figure 9.
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One of the outputs of this algorithm is the matrix M = (e1|e2) if it ends with (1.)

and M L if it ends with (2.) which is, as a path on the çark (or a word in S, L

and L2) a semi-reduction path, i.e. a path on the çark from a given non-spinal

form to a spinal form.

Figure 9. The form f = (−3367, 3956,−1162) ∈ [(−7, 8, 2)] is equiva-

lent to the spinal (in fact, reduced) form fo = (2, 8,−7) (bold edge on

the spine)

Remark 3.4. The (semi-)reduction path produced by our algorithm in Exam-

ple 3.3 is (L2, L2S, · · · , L2SLS(L2S2)(LS2)L2S). This sequence of edges is a path

because there are no cancellations in the final word. On the other hand, Gauss’ al-

gorithm produces (L2, L2S, · · · (L2S)2(L2S)3S(LS)3SLS), which has backtracks.

4. Representation problem of binary quadratic forms

Given an integer N and a binary quadratic form f = (a, b, c), the represen-

tation problem asks whether there are integers X and Y satisfying the equality

f(X,Y ) = N . For positive definite forms, the number of solution pairs, if any ex-

ists, is finite, see [1, §1.2.3]. In case of indefinite forms, the problem immediately

reduces to solving the problem in the case of primitive forms. Note also that in
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this case if there is one solution, then there are infinitely many because the group

of automorphisms of an indefinite binary quadratic form is infinite.

4.1. Labeled çarks. Let f be an indefinite binary quadratic form, let Çf be the

corresponding oriented, base-pointed çark. Starting once again with the oriented

basis B = {e1 = (1, 0), e2 = (0, 1)}, we may associate the value of f at these

oriented bases as labels of the two faces neighbour faces to this edge. However,

if f = (a, b, c) is contained in a face, call ϕ, then so is S · f = (c,−b, a). To avoid

this ambiguity, given an edge of Çf , from the set {f, S · f} we choose the one

in which the product of its first component with second component is negative

as a representative, i.e. we pick f if ab < 0, otherwise we pick S · f , and call

this the labeling representative, denoted by flabel = (alabel, blabel, clabel). Remark

that if this pair is not on the spine then the labeling representative is the one

closer to the spine among the two. We now assume that every edge not on the

spine is oriented towards the spine of the çark. Given an edge, f ′, on Çf , we

label the face on the left of f by f(1, 0) = alabel and the face on the right of f

by f(0, 1) = clabel. Note that via the method described, all faces of the çark,

Çf , receive a unique label and further inner faces receive positive labels whereas

outer faces receive negative labels.

Proposition 4.1. There is a one-to-one correspondence between the set of

values attained by a form f and the set of labels of the faces of the corresponding

çark, Çf .

Proof. Recall that an integer N is attained by a binary quadratic form

if and only if there is form, fN , in the class of the form in consideration with

fN = (N, b, c). But each such N appears as a label in the labeled çark ÇfN ,

hence the result follows. �

4.2. Solving the minimum problem. Let us start this part with the following:

Theorem 4.2. Given an indefinite binary quadratic form f let Çf be the

corresponding çark. Then the minimum of the absolute value of labels occurs at

spinal faces of Ç.

To prove, let us discuss a phenomenon that we call arithmetic progression on

the labels of a çark: let f = (a, b, c) be a binary quadratic form which corresponds

to an edge of Çf not on the spine. Without loss of generality, we suppose f =

flabel. From f we may compute the labels of the remaining faces in the following

manner: we label the two faces containing the edges {f, S · f} as described in

the previous section and we associate −b to the two edges {f, S · f}. Now there
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Figure 10. Arithmetic progression on the labels of a çark

are exactly two faces having distinct levels, say |n1| < |n2| which have non-empty

intersection with the two labeled faces. The label of the face having level n2 is

equal to a− b+ c and the label of the face of level n1 is a+ b+ c, see Figure 10.

In particular, taking into account the fact that the edges on the spine correspond

to forms g = (a′, b′, c′) with a′c′ < 0, we conclude that as one moves away from

the spine, the absolute value of the labels increase.

Remark also that if we label the pair of edges represented by {f, S · f}
with b, then we also see that the labels of the edges also decrease as we move

in the direction of the spine. As a result of the inequality satisfied by reduced

forms, we conclude that labels of reduced edges are local minimum, that is for

a reduced edge er, there is a positive integer n so that all edges whose distance

to er is smaller than n has larger label than the label of er.

Let us state two immediate consequences of Theorem 4.2:

Corollary 4.3. Fix an even integer n. Then the minimum label among the

set Fn(Ç) occurs at one of the faces which has non-empty intersection with a

reduced face.

In particular, setting n = 0 we obtain the solution to the minimum problem,

which asks the smallest element of the set {|f(X,Y )| : (X,Y ) ∈ Z2}:

Corollary 4.4. The minimum of a form f occurs at one of the reduced faces.

More precisely, the smallest possible value of a form is the same as the smallest

possible value of the set {|f ′(0, 1)|f ′ ∈ [f ] and f ′ is reduced} t {|f(1, 0)|f ′ ∈
[f ] and f ′ is reduced}.

In fact, more can be said about the minimal problem. For this let us give

the following:
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Definition 4.5. Given a primitive indefinite binary quadratic form f , a pair

of non-spinal forms {fo, S ·fo} of Çf is called a minimal edge if the product of the

labels of two faces which contains the pair {fo, S · fo} is smallest among all such

products. The corresponding labeling representative is called a minimal form.

If the two faces neighbour to a minimal edge are inner (resp. outer), then the

corresponding pair/form is called an inner (resp. outer) minimal edge/form.

We note that inner and outer minimal edges may not be unique. For instance,

any form whose çark has precisely two inner (resp. outer) faces possesses two

minimal inner (resp. outer) minimal forms. The çark corresponding to the form

(2, 8,−7) has two outer minimal forms: one being the form SL · (3, 6,−7) and the

other being SL2 · (−7, 6, 3). Both neighbouring faces are labeled −7 and −10.

Figure 11. Outer minimal edges of the çark (2, 8,−7)

By definition of a minimal edge, at least one of the faces containing a minimal

edge is reduced. More precisely, an inner minimal form must be contained in a

reduced face whose label is smallest aming all reduced inner faces, and, similarly,

an outer minimal form has to be contained in a face whose label is largest among

all the outer reduced faces; as a result of Theorem 4.2 and the arithmetic pro-

gression on faces. Therefore, if fo is an outer minimal edge, then either LS · fo or

L2S · fo (or both) is reduced. Analogously, if fo is an inner minimal form, then

either L · fo or L2 · fo (or both) is reduced. A minimal edge is contained in two

faces. Among these, the face whose label’s absolute value is smaller is called a

minimal face. And from Corollary 4.3 we conclude that the smallest value has to

intersect with a minimal face.

Corollary 4.6. The minimum of a form is either equal to |((LS)·fo) (1, 0)| or∣∣((L2S
)
·fo
)

(1, 0)
∣∣; where fo is an outer minimal edge, or equal to ((L)·fo) (0, 1)

or
((
L2
)
·fo
)

(1, 0); where fo is an inner minimal edge.
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Remark 4.7. The Markoff number of an indefinite binary quadratic form is

defined as

µ(f) =

√
∆

m(f)
;

where m(f) is the smallest element of the set of absolute value of values of the

form f = (a, b, c). As a result of the algorithm, given above solving the mini-

mum problem, we also obtain a solution to determining the Markoff value of an

indefinite binary quadratic form.

4.3. Solving the representation problem. A minimal face has to be reduced.

Thus, of the two infinite paths, ϕl and ϕr of a minimal face ϕ, exactly one of

them contains the minimal form fo = (ao, bo, co), say ϕl. Then by arithmetic

progression, we see that the smallest of the set of absolute values of level n faces

is the label on the non-reduced level n face containing the edge (SL)|n| · fo.

Analogously, if fo is contained in ϕr, then such a face must contain the edge

(SL2)|n| · fo. Let us summarize:

Theorem 4.8. Given a binary quadratic form f = (a, b, c) let fo denote

a corresponding (inner/outer) minimal form. Then the smallest value of the

absolute value of labels of level n faces, denoted mn, is:

• ao − |n2 |bo + (n
2 )2co, if fo is contained in ϕl

• (n
2 )2ao − |n2 |bo + co, if fo is contained in ϕr

Now, given an equation

aX2 + bXY + cY 2 = N (1)

with f = (a, b, c) being primitive indefinite binary quadratic form, in order to

find a solution in Z × Z, to the equation, we first find an inner minimal form if

N > 0, and outer if N < 0. For this, one must find all reduced forms in the class

[f ], or, equivalently, labels of all reduced faces. Then, by Theorem 4.1 and by

Theorem 4.8 we conclude that it is enough to find n with N ≤ mn. Then there is

an integral solution to Equation 1 if and only if there is a face labeled N in the

labels of faces in the set

•
n⊔
0

Fn(Çf ), if N > 0

•
0⊔
n

Fn(Çf ), if N < 0

Example 4.9. Consider the equation −3367X2 + 3956XY − 1162Y 2 = −27

and set f = (−3367, 3956,−1162). Recall that the çark corresponding to f is
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given by [−4,+1,−2,+1]. In particular, there are four reduced forms in [f ]:

(−7, 8, 2), (3, 6,−7), (−7, 6, 3) and (2, 8,−7), in counterclockwise order. From

this we immediately conclude that the minimal value attained by f is equal to 2.

The forms (−10, 20,−7) and (−7, 20,−10) are the two minimal forms in [f ]. So

the minimal value of a level −4 face is −78. Now, labels of level −2 faces are

−42, −58, −58, −42, −37, −37 and level 0 faces with negative label are −7, −13,

−15, −13, −7, −10 in counterclockwise order. Therefore, given equation has no

solution in integers. The equation −3367X2 + 3956XY − 1162Y 2 = −7 on the

other hand can be solved with solution (7, 12), as also seen in Figure 9. Using the

automorphism of f , namely W =

(
−3945 2324

−6734 3967

)
, we obtain that any element

of the set {Wn(7 12)t |n ∈ Z} is a solution.
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de Théorie des Nombres de Bordeaux (to appear).

[10] D. B. Zagier, Zetafunktionen und quadratische Körper. Eine Einführung in die höhere
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