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On the exponential Diophantine equation (an − 1)(bn − 1) = x2

By KATSUMASA ISHII (Tokyo)

Abstract. Let a and b be two distinct fixed positive integers such that min(a, b)>1.

We give a necessary and sufficient condition for Diophantine equation (an−1)(bn−1)=x2

with a ≡ 5 (mod 6) and b ≡ 0 (mod 3) to have positive integer solutions.

Let N+ be the set of all positive integers. Let a and b be two distinct fixed

positive integers such that min(a, b) > 1 and consider the exponential Diophantine

equation

(an − 1)(bn − 1) = x2, x, n ∈ N+. (1)

There are many results concerned with (1) (for example, see [2], [3], [4], [5]

and [6]). Szalay [6] considered the case where (a, b) = (2, 3), (2, 5) and (2, 2k),

and Hajdu and Szalay [3] considered the case where (a, b) = (2, 6) and (a, ak).

Le [5] treated the more general case, that is where a = 2 and b ≡ 0 (mod 3), and

showed that in this case (1) has no solution.

Recently Lan and Szalay [4] showed that (1) has no solution if a ≡ 2

(mod 6) and b ≡ 0 (mod 3). In this note we consider the case where a ≡ 5

(mod 6) and b ≡ 0 (mod 3).

Let d be a positive integer which is not a square. Then the Pell equation

u2 − dv2 = 1, u, v ∈ N+

has infinitely many solutions (u, v). If (u1, v1) denotes the smallest non-trivial

positive solution, then every positive solution (uk, vk) can be generated by

uk + vk
√
d = (u1 + v1

√
d)k.

Our main result is the following.
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Theorem. Suppose that a ≡ 5 (mod 6) and b ≡ 0 (mod 3). Then the

equation (an − 1)(bn − 1) = x2 has positive integer solution (x, n) if and only if

(a, b) = (ur, us) with non-square d ≡ 2 (mod 3) satisfying u1 ≡ 0 (mod 3), r ≡ 2

(mod 4) and s is odd. In this case a solution is (x, n) = (dvrvs, 2).

In order to prove this, we need some lemmata. The first lemma is concerned

with the sequence uk, and is due to Lan and Szalay [4].

Lemma 1. Let d be a positive integer which is not a square.

(1) If k is even, then each prime factor p of uk satisfies p ≡ ±1 (mod 8).

(2) If k is odd, then u1|uk.

(3) If q ∈ {2, 3, 5}, then q|uk implies q|u1.

Proof. See Lemma 1 in [4]. �

Furthermore, we need two results on Diophantine equations.

Lemma 2. Let p be an odd prime with p > 3. Then the equation

Xp + 1 = 2Y 2, X, Y ∈ N+

has only the solution (X,Y ) = (1, 1).

Proof. By Theorem 1 in [1] the equation

xp + yp = 2z2

has no solution in nonzero pairwise coprime integers with x > y except (x, y, z) =

(3,−1,±11) when p = 5. Therefore, the lemma follows. �

Lemma 3. The equation

X3 + 1 = 2Y 2, X, Y ∈ N+

has only the solutions (X,Y ) = (1, 1) and (23, 78).

Proof. This is one of the results of [7]. �

Proof of the Theorem. Put d = gcd(an − 1, bn − 1). Then

an − 1 = dy2, bn − 1 = dz2

for some y and z. Since b ≡ 0 (mod 3) we have z 6≡ 0 (mod 3), which yields that

z2 ≡ 1 (mod 3). Therefore, d ≡ bn − 1 ≡ 2 (mod 3).
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Furthermore, if y 6≡ 0 (mod 3), then y2 ≡ 1 (mod 3) and hence an = dy2 +

1 ≡ 0 (mod 3), which contradicts that a ≡ 2 (mod 3). Therefore, we have y ≡ 0

(mod 3) and hence 2n ≡ an = dy2 + 1 ≡ 1 (mod 3). This implies that n is even.

Now put n = 2m. Then u2 − dv2 = 1 has two solutions (am, y) and (bm, z)

and hence (am, y) = (ur, vr) and (bm, z) = (us, vs) for some r and s. If s is even,

then each prime factor p of b satisfies p ≡ ±1 (mod 8) by Lemma 1(1), which

is impossible since b ≡ 0 (mod 3). Therefore, s must be odd. This implies that

u1 ≡ 0 (mod 3) by Lemma 1(3). Furthermore, if r is odd, then we have a ≡ 0

(mod 3) by Lemma 1(2) and u1 ≡ 0 (mod 3), a contradiction. Therefore, r is

even. Put r = 2t. Then ur + vr
√
d = (ut + vt

√
d)2 and hence am = u2

t + dv2t .

Since u2
t − dv2t = 1 we have am + 1 = 2u2

t .

Now notice that m is odd by Result 2 of [2]. By Lemma 2, m must be

1 or a power of 3. Suppose that m = 3e and a0 = a3
e−1

. By Lemma 3, we have

a0 = 23 and ut = 78 (and hence e must be 1, that is, a = 23). Furthermore, since

782 − dv2t = 1 we have dv2t = 6083 = 7 · 11 · 79, which yields that d = 6083 and

vt = 1. Therefore, gcd(236−1, b6−1) = 6083, which implies that b must be even.

Then b6 − 1 6≡ 6083z2 (mod 8), a contradiction. Therefore, we have m = 1.

Now suppose that r ≡ 0 (mod 4). Then t is even and hence ut 6≡ 0 (mod 3)

by Lemma 1(1). Then ur = u2
t + dv2t = 2u2

t − 1 6≡ 5 (mod 6), which contradicts

that a ≡ 5 (mod 6).

Conversely, suppose that (a, b) = (ur, us) with d ≡ 2 (mod 3), u1 ≡ 0

(mod 3), r ≡ 2 (mod 4) and s is odd. Then (an − 1)(bn − 1) = x2 has solu-

tion (x, n) = (dvrvs, 2). Note that b ≡ ut ≡ 0 (mod 3) by Lemma 1(2) and hence

a = 2u2
t − 1 ≡ 5 (mod 6). This completes the proof. �

Remark. Actually there exists d ≡ 2 (mod 3) with u1 ≡ 0 (mod 3). For

example, u1 = 6 for d = 35. Therefore, there exist infinitely many pairs (a, b)

such that (1) has the solution. In the case of d = 35 the first few pairs (a, b) are

(u2, u3) = (71, 846), (u2, u5) = (71, 120126), (u6, u5) = (1431431, 120126) and so

on.
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