Publ. Math. Debrecen 89/1-2 (2016), 253–256 DOI: 10.5486/PMD.2016.7578

On the exponential Diophantine equation $(a^n - 1)(b^n - 1) = x^2$

By KATSUMASA ISHII (Tokyo)

Abstract. Let *a* and *b* be two distinct fixed positive integers such that $\min(a, b) > 1$. We give a necessary and sufficient condition for Diophantine equation $(a^n-1)(b^n-1) = x^2$ with $a \equiv 5 \pmod{6}$ and $b \equiv 0 \pmod{3}$ to have positive integer solutions.

Let \mathbb{N}^+ be the set of all positive integers. Let a and b be two distinct fixed positive integers such that $\min(a, b) > 1$ and consider the exponential Diophantine equation

$$(a^n - 1)(b^n - 1) = x^2, \quad x, n \in \mathbb{N}^+.$$
 (1)

There are many results concerned with (1) (for example, see [2], [3], [4], [5] and [6]). SZALAY [6] considered the case where (a, b) = (2, 3), (2, 5) and $(2, 2^k)$, and HAJDU and SZALAY [3] considered the case where (a, b) = (2, 6) and (a, a^k) . LE [5] treated the more general case, that is where a = 2 and $b \equiv 0 \pmod{3}$, and showed that in this case (1) has no solution.

Recently LAN and SZALAY [4] showed that (1) has no solution if $a \equiv 2 \pmod{6}$ and $b \equiv 0 \pmod{3}$. In this note we consider the case where $a \equiv 5 \pmod{6}$ and $b \equiv 0 \pmod{3}$.

Let d be a positive integer which is not a square. Then the Pell equation

$$u^2 - dv^2 = 1, \quad u, v \in \mathbb{N}^+$$

has infinitely many solutions (u, v). If (u_1, v_1) denotes the smallest non-trivial positive solution, then every positive solution (u_k, v_k) can be generated by

$$u_k + v_k \sqrt{d} = (u_1 + v_1 \sqrt{d})^k.$$

Our main result is the following.

Mathematics Subject Classification: Primary: 11D41, 11D61.

Key words and phrases: exponential Diophantine equation, Pell equation.

Katsumasa Ishii

Theorem. Suppose that $a \equiv 5 \pmod{6}$ and $b \equiv 0 \pmod{3}$. Then the equation $(a^n - 1)(b^n - 1) = x^2$ has positive integer solution (x, n) if and only if $(a, b) = (u_r, u_s)$ with non-square $d \equiv 2 \pmod{3}$ satisfying $u_1 \equiv 0 \pmod{3}$, $r \equiv 2 \pmod{4}$ and s is odd. In this case a solution is $(x, n) = (dv_r v_s, 2)$.

In order to prove this, we need some lemmata. The first lemma is concerned with the sequence u_k , and is due to LAN and SZALAY [4].

Lemma 1. Let *d* be a positive integer which is not a square.

- (1) If k is even, then each prime factor p of u_k satisfies $p \equiv \pm 1 \pmod{8}$.
- (2) If k is odd, then $u_1|u_k$.
- (3) If $q \in \{2, 3, 5\}$, then $q|u_k$ implies $q|u_1$.

PROOF. See Lemma 1 in [4].

Furthermore, we need two results on Diophantine equations.

Lemma 2. Let p be an odd prime with p > 3. Then the equation

$$X^p + 1 = 2Y^2, \quad X, Y \in \mathbb{N}^+$$

has only the solution (X, Y) = (1, 1).

PROOF. By Theorem 1 in [1] the equation

$$x^p + y^p = 2z^2$$

has no solution in nonzero pairwise coprime integers with x > y except $(x, y, z) = (3, -1, \pm 11)$ when p = 5. Therefore, the lemma follows.

Lemma 3. The equation

$$X^3 + 1 = 2Y^2, \quad X, Y \in \mathbb{N}^+$$

has only the solutions (X, Y) = (1, 1) and (23, 78).

PROOF. This is one of the results of [7].

Proof of the Theorem. Put $d = \gcd(a^n - 1, b^n - 1)$. Then

$$a^n - 1 = dy^2, \quad b^n - 1 = dz^2$$

for some y and z. Since $b \equiv 0 \pmod{3}$ we have $z \not\equiv 0 \pmod{3}$, which yields that $z^2 \equiv 1 \pmod{3}$. Therefore, $d \equiv b^n - 1 \equiv 2 \pmod{3}$.

254

On the exponential Diophantine equation $(a^n - 1)(b^n - 1) = x^2$ 255

Furthermore, if $y \not\equiv 0 \pmod{3}$, then $y^2 \equiv 1 \pmod{3}$ and hence $a^n = dy^2 + 1 \equiv 0 \pmod{3}$, which contradicts that $a \equiv 2 \pmod{3}$. Therefore, we have $y \equiv 0 \pmod{3}$ and hence $2^n \equiv a^n = dy^2 + 1 \equiv 1 \pmod{3}$. This implies that n is even.

Now put n = 2m. Then $u^2 - dv^2 = 1$ has two solutions (a^m, y) and (b^m, z) and hence $(a^m, y) = (u_r, v_r)$ and $(b^m, z) = (u_s, v_s)$ for some r and s. If s is even, then each prime factor p of b satisfies $p \equiv \pm 1 \pmod{8}$ by Lemma 1(1), which is impossible since $b \equiv 0 \pmod{3}$. Therefore, s must be odd. This implies that $u_1 \equiv 0 \pmod{3}$ by Lemma 1(3). Furthermore, if r is odd, then we have $a \equiv 0 \pmod{3}$ by Lemma 1(2) and $u_1 \equiv 0 \pmod{3}$, a contradiction. Therefore, r is even. Put r = 2t. Then $u_r + v_r\sqrt{d} = (u_t + v_t\sqrt{d})^2$ and hence $a^m = u_t^2 + dv_t^2$. Since $u_t^2 - dv_t^2 = 1$ we have $a^m + 1 = 2u_t^2$.

Now notice that m is odd by Result 2 of [2]. By Lemma 2, m must be 1 or a power of 3. Suppose that $m = 3^e$ and $a_0 = a^{3^{e-1}}$. By Lemma 3, we have $a_0 = 23$ and $u_t = 78$ (and hence e must be 1, that is, a = 23). Furthermore, since $78^2 - dv_t^2 = 1$ we have $dv_t^2 = 6083 = 7 \cdot 11 \cdot 79$, which yields that d = 6083 and $v_t = 1$. Therefore, $gcd(23^6 - 1, b^6 - 1) = 6083$, which implies that b must be even. Then $b^6 - 1 \not\equiv 6083z^2 \pmod{8}$, a contradiction. Therefore, we have m = 1.

Now suppose that $r \equiv 0 \pmod{4}$. Then t is even and hence $u_t \not\equiv 0 \pmod{3}$ by Lemma 1(1). Then $u_r = u_t^2 + dv_t^2 = 2u_t^2 - 1 \not\equiv 5 \pmod{6}$, which contradicts that $a \equiv 5 \pmod{6}$.

Conversely, suppose that $(a, b) = (u_r, u_s)$ with $d \equiv 2 \pmod{3}$, $u_1 \equiv 0 \pmod{3}$, $r \equiv 2 \pmod{4}$ and s is odd. Then $(a^n - 1)(b^n - 1) = x^2$ has solution $(x, n) = (dv_r v_s, 2)$. Note that $b \equiv u_t \equiv 0 \pmod{3}$ by Lemma 1(2) and hence $a = 2u_t^2 - 1 \equiv 5 \pmod{6}$. This completes the proof.

Remark. Actually there exists $d \equiv 2 \pmod{3}$ with $u_1 \equiv 0 \pmod{3}$. For example, $u_1 = 6$ for d = 35. Therefore, there exist infinitely many pairs (a, b) such that (1) has the solution. In the case of d = 35 the first few pairs (a, b) are $(u_2, u_3) = (71, 846), (u_2, u_5) = (71, 120126), (u_6, u_5) = (1431431, 120126)$ and so on.

References

- M. A. BENNETT and C. M. SKINNER, Ternary Diophantine equation via Galois representations and modular forms, *Canad. J. Math.* 56 (2004), 23–54.
- [2] J. H. E. COHN, The Diophantine equation $(a^n 1)(b^n 1) = x^2$, Period. Math. Hungar. **44** (2002), 169–175.
- [3] L. HAJDU and L. SZALAY, On the Diophantine equations $(2^n 1)(6^n 1) = x^2$ and $(a^n 1)(b^{kn} 1) = x^2$, *Period. Math. Hungar.* **40** (2000), 141–145.

K. Ishii : On the exponential Diophantine equation...

- [4] L. LAN and L. SZALAY, On the exponential diophantine equation $(a^n 1)(b^n 1) = x^2$, Publ. Math. Debrecen 77 (2010), 465–470.
- [5] M. H. LE, A note on the exponential diophantine equation $(2^n 1)(b^n 1) = x^2$, Publ. Math. Debrecen **74** (2009), 401–403.
- [6] L. SZALAY, On the diophantine equation $(2^n 1)(3^n 1) = x^2$, Publ. Math. Debrecen 57 (2000), 1–9.
- [7] W. ROBERT and VAN DER WAALL, On the diophantine equation $x^2 + x + 1 = 3y^2$, $x^3 1 = 2y^2$ and $x^3 + 1 = 2y^2$, Simon Stevin 46 (1972), 39–51.

KATSUMASA ISHII 6-3-201, MIYASAKA 2-CHOME SETAGAYA-KU TOKYO, 156-0051 JAPAN

E-mail: 9652okok@jcom.zaq.ne.jp

(Received August 19, 2015; revised January 22, 2016)

256