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Abstract. We study the problems of the existence, uniqueness and continuous

dependence of Lipschitzian solutions ϕ of equations of the form

ϕ(x) =

∫
Ω

g(ω)ϕ
(
f(x, ω)

)
µ(dω) + F (x),

where µ is a measure on a σ-algebra of subsets of Ω.

1. Introduction

Fix a measure space (Ω,A, µ) and a separable metric space (X, ρ).

Motivated by the appearance of the equation

ϕ(x) =

∫
A1

ϕ
(
f(x, ω)

)
µ(dω) + c−

∫
A2

ϕ
(
f(x, ω)

)
µ(dω)

with disjoint A1, A2 ∈ A in the theory of perpetuities and of refinement equations,

see section 3.4 of the survey paper [3], we consider problems of the existence,

uniqueness and continuous dependence of Lipschitzian solutions ϕ to the equation

ϕ(x) =

∫
Ω

g(ω)ϕ
(
f(x, ω)

)
µ(dω) + F (x). (1)
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Concerning the given functions f, g and F , we assume the following hypotheses

in which B stands for the σ-algebra of all Borel subsets of X and K ∈ {R,C}.
(H1) Function f maps X×Ω into X and for every x ∈ X the function f(x, ·)

is A-measurable, i.e.,{
ω ∈ Ω : f(x, ω) ∈ B

}
∈ A for all x ∈ X and B ∈ B.

(H2) Function g : Ω→ K is integrable,∫
Ω

|g(ω)|ρ
(
f(x, ω), x

)
µ(dω) <∞ for every x ∈ X,

and ∫
Ω

|g(ω)|ρ
(
f(x, ω), f(z, ω)

)
µ(dω) ≤ λρ(x, z) for all x, z ∈ X (2)

with a λ ∈ [0, 1).

(H3) Function F maps X into a separable Banach space Y over K and

‖F (x)− F (z)‖ ≤ Lρ(x, z) for all x, z ∈ X (3)

with an L ∈ [0,+∞).

As emphasized in [4, section 0.3] iteration is the fundamental technique for

solving functional equations in a single variable, and iterates usually appear in the

formulae for solutions. However, as it seems, Lipschitzian solutions are examined

rather by the fixed-point method (cf. [4, section 7.2D]). We iterate the operator

which transforms a Lipschitzian F : X → Y into
∫

Ω
g(ω)F

(
f(x, ω)

)
µ(dω); cf.

formulas (6) and (8) below. The special case where g(ω) = −1 for every ω ∈ Ω and

µ(Ω) = 1 was examined in [2] on a base of iteration of random-valued functions.

Integrating vector functions we use the Bochner integral.

2. Existence and uniqueness

Putting

γ =

∫
Ω

g(ω)µ(dω), (4)

we start with two simple lemmas.

Lemma 2.1. Assume (H1) and let g : Ω → K be integrable with γ 6= 1. If (2)

holds with a λ ∈ [0, 1), then, for any F mapping X into a normed space Y over K,

equation (1) has at most one Lipschitzian solution ϕ : X → Y .
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Proof. Fix a function F mapping X into a normed space Y over K, let

ϕ1, ϕ2 : X → Y be Lipschitzian solutions of (1), and put ϕ = ϕ1 − ϕ2. Then ϕ

is a Lipschitzian solution of (1) with F = 0, and denoting by Lϕ the smallest

Lipschitz constant for ϕ, by (2) for all x, z ∈ X, we have

‖ϕ(x)− ϕ(z)‖ ≤
∫

Ω

|g(ω)|
∥∥ϕ(f(x, ω)

)
− ϕ

(
f(z, ω)

)∥∥µ(dω) ≤ Lϕλρ(x, z),

whence Lϕ = 0 and ϕ is a constant function. Since γ defined by (4) is different

from 1, the only constant solution of (1) with F = 0 is the zero function. �

Lemma 2.2. Under the assumptions (H1)–(H3), for every x ∈ X the function

ω 7→ g(ω)F
(
f(x, ω)

)
, ω ∈ Ω,

is Bochner integrable, and∥∥∥∫
Ω

g(ω)F
(
f(x, ω)

)
µ(dω)−

∫
Ω

g(ω)F
(
f(z, ω)

)
µ(dω)

∥∥∥ ≤ Lλρ(x, z) (5)

for all x, z ∈ X.

Proof. The function considered is A-measurable, for every ω ∈ Ω we have∥∥g(ω)F
(
f(x, ω)

)∥∥ ≤ L|g(ω)|ρ
(
f(x, ω), x

)
+ L|g(ω)|‖F (x)‖,

and (5) holds for all x, z ∈ X. �

Assuming (H1)–(H3) and applying Lemma 2.2, we define

F0(x) = F (x), Fn(x) =

∫
Ω

g(ω)Fn−1

(
f(x, ω)

)
µ(dω) (6)

for all x ∈ X and n ∈ N, and we see that

‖Fn(x)− Fn(z)‖ ≤ Lλnρ(x, z) for all x, z ∈ X and n ∈ N. (7)

Our main result reads.

Theorem 2.3. Assume (H1)–(H3). If γ 6= 1, then equation (1) has exactly one

Lipschitzian solution ϕ : X → Y ; it is given by the formula

ϕ(x) =
1

1− γ

( ∞∑
n=1

(
Fn(x)− γFn−1(x)

)
+ F (x)

)
for every x ∈ X, (8)

‖ϕ(x)− ϕ(z)‖ ≤ L(1 + |γ|)
|1− γ|(1− λ)

ρ(x, z) for all x, z ∈ X, (9)

and

‖ϕ(x)‖ ≤ 1

|1− γ|

(
L

1− λ

∫
Ω

|g(ω)|ρ
(
f(x, ω), x

)
µ(dω) + ‖F (x)‖

)
(10)

for every x ∈ X.
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Proof. For the proof of the existence, observe first that by (4), (6) and (7)

for all x ∈ X and n ∈ N we have

‖Fn(x)− γFn−1(x)‖=
∥∥∥∫

Ω

g(ω)Fn−1

(
f(x, ω)

)
µ(dω)−

∫
Ω

g(ω)Fn−1(x)µ(dω)
∥∥∥

≤ Lλn−1

∫
Ω

|g(ω)|ρ
(
f(x, ω), x

)
µ(dω). (11)

Consequently, (8) defines a function ϕ : X → Y . Routine calculations, (8), (7),

(2) and (11) show that this function satisfies (9) and (10).

It remains to prove that ϕ solves (1). To this end, define M : X → [0,∞) by

M(x) = L

∫
Ω

|g(ω)|ρ
(
f(x, ω), x

)
µ(dω) (12)

and fix x0 ∈ X. An obvious application of (12), (H2), (10) and (3) gives

M(x) ≤ c1ρ(x, x0) + c2, ‖ϕ(x)‖ ≤ c1ρ(x, x0) + c2 for every x ∈ X (13)

with some constants c1, c2 ∈ [0,∞).

Fix x ∈ X. According to Lemma 2.2, the function

ω 7−→ g(ω)ϕ
(
f(x, ω)

)
, ω ∈ Ω,

is Bochner integrable. Moreover, by (11)–(13),∥∥∥g(ω)
(
Fn
(
f(x, ω)

)
− γFn−1

(
f(x, ω)

))∥∥∥
≤ λn−1|g(ω)|M

(
f(x, ω)

)
≤ λn−1|g(ω)|

(
c1ρ(f(x, ω), x0) + c2

)
≤ λn−1|g(ω)|

(
c1ρ(f(x, ω), x) + c1ρ(x, x0) + c2

)
for all n ∈ N and ω ∈ Ω. Hence, making use of (H2), the dominated convergence

theorem and (6), we see that∫
Ω

∞∑
n=1

g(ω)
(
Fn
(
f(x, ω)

)
− γFn−1

(
f(x, ω)

))
µ(dω)

=

∞∑
n=1

∫
Ω

g(ω)
(
Fn
(
f(x, ω)

)
− γFn−1

(
f(x, ω)

))
µ(dω)

=

∞∑
n=1

(
Fn+1(x)− γFn(x)

)
. (14)
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Applying now (8), (14) and (6), we get∫
Ω

g(ω)ϕ
(
f(x, ω)

)
µ(dω)

=
1

1−γ

∫
Ω

[ ∞∑
n=1

g(ω)
(
Fn
(
f(x, ω)

)
− γFn−1

(
f(x, ω)

))
+g(ω)F

(
f(x, ω)

)]
µ(dω)

=
1

1−γ

[ ∞∑
n=1

(
Fn+1(x)− γFn(x)

)
+ F1(x)

]

=
1

1−γ

[ ∞∑
n=1

(
Fn(x)− γFn−1(x)

)
+ γF (x)

]
= ϕ(x)−F (x).

The proof is complete. �

3. Examples

Example 3.1. Given λ ∈ (0, 1) and an integrable ξ : Ω→ R, consider the equation

ϕ(x) = λ2

∫
Ω

ϕ

(
1

λ
x+ ξ(ω)

)
µ(dω)

with µ(Ω) = 1. According to Lemma 2.1, the zero function is its only Lipschitzian

solution ϕ : R→ R. Note, however, that if∫
Ω

ξ(ω)µ(dω) = 0 and

∫
Ω

ξ(ω)2µ(dω) <∞,

then this equation solves also the function ϕ : R→ R given by

ϕ(x) = x2 +
λ2

1− λ2

∫
Ω

ξ(ω)2µ(dω).

Example 3.2. Given λ ∈ (0, 1), consider the equation

ϕ(x) = 2ϕ
(
λ
√
x+ 1− λ

)
+ log

x

(λ
√
x+ 1− λ)2

.

According to Lemma 2.1 (in this case f(x, ω) = λ
√
x + 1 − λ, g(ω) = 2 and

F (x) = log x
(λ
√
x+1−λ)2

for all x ∈ [1,∞) and ω ∈ Ω, µ(Ω) = 1), the logarithmic

function restricted to [1,∞) is the only Lipschitzian solution ϕ : [1,∞) → R to

this equation, and it is unbounded in spite of the fact that F is bounded.
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Example 3.3. To see that assumptions (H1)–(H3) do not guarantee the exis-

tence of a continuous solution ϕ : X → Y to equation (1), given α ∈ (−1, 1),

a bounded and A-measurable ξ : Ω→ R, and a Lipschitzian F : R→ [0,∞) such

that F−1({0}) is a singleton, consider the equation

ϕ(x) =

∫
Ω

ϕ
(
αx+ ξ(ω)

)
µ(dω) + F (x) (15)

with µ(Ω) = 1. Assume a continuous ϕ : R→ R solves it. We shall see that then

ξ is a.e. constant. To this end, fix an M ∈ (0,∞) such that |ξ(ω)| ≤M for every

ω ∈ Ω, and a real number a ≥ M
1−|α| such that F−1({0}) ⊂ [−a, a]. Then

|αx+ ξ(ω)| ≤ a for all x ∈ [−a, a] and ω ∈ Ω,

and so ϕ|[−a,a] is a continuous, hence also bounded, solution of (15). According

to [1, Corollary 4.1(ii) and Example 4.1], it is possible only if ξ is a.e. constant.

4. Continuous dependence

Given a normed space (Y, ‖ · ‖), consider now the linear space Lip(X,Y ) of

all Lipschitzian functions mapping X into Y , and its linear subspace BL(X,Y )

of all Lipschitzian and bounded functions mapping X into Y . Fix x0 ∈ X and

define ‖ · ‖Lip : Lip(X,Y )→ [0,∞) by

‖u‖Lip = ‖u(x0)‖+ ‖u‖L,

where ‖u‖L stands for the smallest Lipschitz constant for u. Clearly, ‖ · ‖Lip is

a norm in Lip(X,Y ). It depends on the given point x0, but for different points

such norms are equivalent. It is well known that if (Y, ‖ · ‖) is Banach, then so is

(Lip(X,Y ), ‖ · ‖Lip). In the linear space BL(X,Y ) we consider the norm ‖ · ‖BL

given by

‖u‖BL = sup
{
‖u(x)‖ : x ∈ X

}
+ ‖u‖L.

It is also well known that if (Y, ‖ · ‖) is Banach, then so is (BL(X,Y ), ‖ · ‖BL).

Assume (H1) and (H2), γ 6= 1, and let Y be a separable Banach space over K.

According to Theorem 2.3, for every F ∈ Lip(X,Y ) the formula

ϕF (x) =
1

1− γ

( ∞∑
n=1

(
Fn(x)− γFn−1(x)

)
+ F (x)

)
for every x ∈ X (16)
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defines the only Lipschitzian solution ϕF of equation (1),

‖ϕF ‖L ≤
1 + |γ|

|1− γ|(1− λ)
‖F‖L (17)

and

‖ϕF (x)‖ ≤ 1

|1− γ|

(
‖F‖L
1− λ

∫
Ω

|g(ω)|ρ
(
f(x, ω), x

)
µ(dω) + ‖F (x)‖

)
(18)

for every x ∈ X. Putting

c0 =
1

1− λ

(∫
Ω

|g(ω)|ρ
(
f(x0, ω), x0

)
µ(dω) + 1 + |γ|

)
, c = max{1, c0}, (19)

and applying (17) and (18), we see that if F ∈ Lip(X,Y ), then

‖ϕF ‖Lip = ‖ϕF (x0)‖+ ‖ϕF ‖L ≤
1

|1− γ|
(
c0‖F‖L + ‖F (x0)‖

)
≤ c

|1− γ|
‖F‖Lip.

Moreover, if d0 defined by

d0 = sup

{∫
Ω

|g(ω)|ρ
(
f(x, ω), x

)
µ(dω) : x ∈ X

}
(20)

is finite, then putting

d = max

{
1,
d0 + 1 + |γ|

1− λ

}
(21)

and applying (18) and (17), again we see also that if F ∈ BL(X,Y ), then ϕF ∈
BL(X,Y ) as well, and

‖ϕF ‖BL ≤
1

|1− γ|

(
d0 + 1 + |γ|

1− λ
‖F‖L + sup

{
‖F (x)‖ :x ∈ X

})
≤ d

|1− γ|
‖F‖BL.

Theorem 4.1. Assume (H1), (H2), and let γ defined by (4) be different from 1.

If Y is a separable Banach space over K, then:

(i) for any F ∈ Lip(X,Y ), the function ϕF : X → Y defined by (16) and (6)

is the only Lipschitzian solution of (1), the operator

F 7→ ϕF , F ∈ Lip(X,Y ), (22)
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is a linear homeomorphism of (Lip(X,Y ), ‖ · ‖Lip) onto itself, and

‖ϕF ‖Lip ≤
c

|1− γ|
‖F‖Lip for every F ∈ Lip(X,Y ),

with c given by (19);

(ii) if, additionally, d0 defined by (20) is finite, then the restriction of the

operator (22) to BL(X,Y ) is a linear homeomorphism of (BL(X,Y ), ‖ · ‖BL) onto

itself, and

‖ϕF ‖BL ≤
d

|1− γ|
‖F‖BL for every F ∈ BL(X,Y ),

with d given by (21).

Proof. By the above considerations and the Banach inverse mapping the-

orem, it remains to show that operator (22) is one-to-one, maps Lip(X,Y ) onto

Lip(X,Y ), and BL(X,Y ) onto BL(X,Y ).

The first property follows from the fact that for any F ∈ Lip(X,Y ) the

function ϕF is a solution of (1): if ϕF = 0, then F = 0. To get the next two,

observe that if ψ ∈ Lip(X,Y ), then, by Lemma 2.2, the function F : X → Y given

by

F (x) = ψ(x)−
∫

Ω

g(ω)ψ(f(x, ω))µ(dω)

belongs to Lip(X,Y ), if ψ is also bounded, then so is F , and, since both ψ and

ϕF solve (1), ψ = ϕF by Lemma 2.1. �
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