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Marcinkiewicz-like means of two dimensional
Vilenkin–Fourier series
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Dedicated to Professor Zsolt Páles on the occasion of his sixtieth birthday

Abstract. Let a be a lacunary sequence of natural numbers. In this paper, among

others, we investigate means of two variable Vilenkin–Fourier series of the following kind:

tα,an f = 1
an

∑an−1
k=0 Sα1(n,k),α2(n,k)f , and prove the a.e. convergence tα,an f → f for each

integrable function f . This immediately implies for the triangle means of the two variable

integrable function f the a.e. relation t4,an f = 1
an

∑an−1
k=0 Sk,an−kf → f (n → ∞).

1. Introduction

In 1939, for the two-dimensional quadratical trigonometric Fourier parti-

al sums Sj,jf Marcinkiewicz [9] proved that for all f ∈ L logL([0, 2π]2) the

a.e. relation
1

n

n∑
j=1

Sj,jf → f (1)

holds as n→∞. Zhizhiashvili [13] improved this result for f ∈ L([0, 2π]2). Dy-

achenko [3] proved this result for dimensions greater than 2. In 2001, Weisz [12]

proved this result with respect to the Walsh–Paley system. Goginava [6] proved
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the corresponding result for the d-dimensional Walsh–Paley system. The author

of this paper investigated [4] the (bounded) Vilenkin situation, proving also the

a.e. convergence of the Marcinkiewicz means of integrable functions.

The aim of this paper is to generalize the notion of Marcinkiewicz means

with respect to two-dimensional Vilenkin systems, prove (1) for these general

means and also to verify this result for another “slightly different” special one

with lacunary indices n. An example for this Marcinkiewicz-like means is the

triangular means of two dimensional Fourier series.

First, we give a brief introduction to the theory of Vilenkin systems. These

orthonormal systems were introduced by N. Ja. Vilenkin in 1947 (see e.g. [11]

and [1]) as follows.

Let m = (mk, k ∈ N) (N = {0, 1, . . . },P = N \ {0}) be a sequence of integers,

each of them not less than 2. Let Zmk
denote the discrete cyclic group of order mk.

That is, Zmk
can be represented by the set {0, 1, ...,mk − 1}, with the group

operation mod mk addition. Since the group is discrete, every subset is open.

The normalized Haar measure on Zmk
, µk is defined by µk({j}) := 1/mk (j ∈

{0, 1, ...,mk − 1}). Let

Gm :=
∞
×
k=0

Zmk
.

Then every x ∈ Gm can be represented by a sequence x = (xi, i ∈ N), where

xi ∈ Zmi (i ∈ N). The group operation on Gm (denoted by +) is the coordinate-

wise addition (the inverse operation is denoted by −), the measure (denoted by µ),

which is the normalized Haar measure, and the topology are the product measure

and topology. Consequently, Gm is a compact Abelian group. If supn∈Nmn <∞,

then we call Gm a bounded Vilenkin group. If the generating sequence m is not

bounded, then Gm is said to be an unbounded Vilenkin group. In this paper

we discuss bounded Vilenkin groups, only. That is, m∗ = supnmn < ∞. Let

M0 := 1,Mn+1 := mnMn (n ∈ N) be the so-called generalized powers.

The Vilenkin group is metrizable in the following way:

d(x, y) :=

∞∑
i=0

|xi − yi|
Mi+1

(x, y ∈ Gm).

The topology induced by this metric, the product topology, and the topology

given by intervals defined below, are the same. A base for the neighbourhoods

of Gm can be given by the intervals:

I0(x) := Gm, In(x) := {y = (yi, i ∈ N) ∈ Gm : yi = xi for i < n}
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for x ∈ Gm, n ∈ P. Let 0 = (0, i ∈ N) ∈ Gm denote the nullelement of Gm and

en = (0, . . . , 0, 1, 0, . . . ) ∈ Gm, where the n-th coordinate of en is 1 (n ∈ N).

Furthermore, let Lp(Gm) (1 ≤ p ≤ ∞) denote the usual Lebesgue spaces

(‖.‖p the corresponding norms) on Gm, An the σ-algebra generated by the sets

In(x) (x ∈ Gm), and En the conditional expectation operator with respect to

An (n ∈ N).

Let p either be a real not less than 1 or plus infinity. We say that operator T

is of type (Lp, Lp) if there exists an absolute constant C > 0 for which ‖Tf‖p ≤
C‖f‖p for all f ∈ Lp. T is said to be of weak type (L1, L1) if there exists an

absolute constant C > 0 for which µ(Tf > λ) ≤ C‖f‖1/λ for all λ > 0 and

f ∈ L1(Gm). It is known that the operator which maps a function f to the

maximal function f∗ := sup |Enf | is of weak type (L1, L1), and of type (Lp, Lp)

for all 1 < p ≤ ∞ (see e.g. [2]).

Each natural number n can be uniquely expressed as

n =

∞∑
i=0

niMi (ni ∈ {0, 1, ...,mi − 1}, i ∈ N),

where only a finite number of ni’s differ from zero. Later, we also use the notations

nj :=
∑∞
i=j niMi and |n| := max {j ∈ N : nj 6= 0} for positive integers. That is,

M|n| ≤ n < M|n|+1 ≤ m∗M|n|. The generalized Rademacher functions are defined

as

rn(x) := exp

(
2πı

xn
mn

)
(x ∈ Gm, n ∈ N, ı :=

√
−1).

It is known that

mn−1∑
i=0

rin(x) =

{
0, if xn 6= 0,

mn, if xn = 0
(x ∈ Gm, n ∈ N).

The n-th Vilenkin function is

ψn :=

∞∏
j=0

r
nj

j (n ∈ N).

The system ψ := (ψn : n ∈ N) is called a Vilenkin system. Each ψn is a character

of Gm, and all the characters of Gm are of this form. Define the m-adic addition

as

k ⊕ n :=

∞∑
j=0

(kj + nj( modmj))Mj (k, n ∈ N).
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Then, ψk⊕n = ψkψn, ψn(x+ y) = ψn(x)ψn(y), ψn(−x) = ψ̄n(x), |ψn| = 1(k, n ∈
N, x, y ∈ Gm).

Define the Fourier coefficients, the partial sums of the Fourier series and the

Dirichlet kernels with respect to the Vilenkin system ψ as follows

f̂(n) :=

∫
Gm

fψ̄ndµ, Snf :=

n−1∑
k=0

f̂(k)ψk,

Dn(y, x) = Dn(y − x) :=

n−1∑
k=0

ψk(y)ψ̄k(x), (n ∈ N, y, x ∈ Gm, f ∈ L1(Gm)).

It is well-known that

Snf(y) =

∫
Gm

f(x)Dn(y − x)dµ(x) = f ∗Dn(y) (n ∈ N, y ∈ Gm, f ∈ L1(Gm)).

It is also well-known [1] that

DMn
(x) =

{
Mn, if x ∈ In := In(0),

0, if x /∈ In,

Dn(x) = ψn(x)

∞∑
j=0

DMj
(x)

mj−1∑
p=mj−nj

rpj (x),

SMnf(x) = Mn

∫
In(x)

fdµ = Enf(x) (f ∈ L1(Gm), n ∈ N). (2)

Next, we introduce some notation with respect to the theory of two-dimensional

Vilenkin systems. Let m̃ be a sequence like m. The relation between the sequence

(m̃n) and (M̃n) is the same as between sequence (mn) and (Mn). The group

Gm × Gm̃ is called a two-dimensional Vilenkin group. The normalized Haar

measure is denoted by µ, just as in the one-dimensional case. It will not cause

any misunderstanding. In this paper we also suppose that m = m̃, and that the

generating sequence m is a bounded one.

The two-dimensional Fourier coefficients, the rectangular partial sums of the

Fourier series, the Dirichlet kernels, the Marcinkiewicz means, and the Marcin-

kiewicz kernels with respect to the two-dimensional Vilenkin system are defined

as follows:

f̂(n1, n2) :=

∫
Gm×Gm

f(x1, x2)ψ̄n1
(x1)ψ̄n2

(x2)dµ(x1, x2),
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Sn1,n2f(y1, y2) :=

n1−1∑
k1=0

n2−1∑
k2=0

f̂(k1, k2)ψk1(y1)ψk2(y2),

Dn1,n2(y, x) = Dn1(y1 − x1)Dn2(y2 − x2)

:=

n1−1∑
k1=0

n2−1∑
k2=0

ψk1(y1)ψk2(y2)ψ̄k1(x1)ψ̄k2(x2),

tnf :=
1

n

n−1∑
j=0

Sj,jf,

Kn(y, x) = Kn(y − x) :=
1

n

n−1∑
j=0

Dj,j(y − x),

(y = (y1, y2), x = (x1, x2) ∈ Gm ×Gm).

It is also well-known that

tnf(y) =

∫
Gm×Gm

f(x)Kn(y − x)dµ(x) = f ∗Kn(y).

For the two-dimensional trigonometric Fourier partial sums Sj,jf Marcin-

kiewicz [9] proved that for all f ∈ L logL([0, 2π]2) the a.e. relation tnf →
f as n → ∞. Zhizhiashvili [13] improved this result for f ∈ L([0, 2π]2).

In 2000, Weisz [12] verified the result of Zhizhiashvili for the Walsh–Paley system.

In 2003, Goginava [6] proved this result with respect to the d-dimensional Walsh–

Paley system. In 2004, Gát [4] proved the a.e. convergence of Marcinkiewicz

means of integrable functions on two dimensional bounded Vilenkin groups.

2. The result

After then, we turn our attention to the generalization of Marcinkiewicz

means. Let α = (α1, α2) : N2 → N2 be a function. Define the following

Marcinkiewicz-like kernels and means:

Kα
n (x) :=

1

n

n−1∑
k=0

Dα1(|n|,k)(x
1)Dα2(|n|,k)(x

2),

tαnf := f ∗Kα
n , (f ∈ L1(G2

m), n ∈ P).

The main aim of this paper is to give a class of functions α for which we have the

a.e. convergence relation tαnf → f for each integrable two-variable function f . The
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following properties will play a prominent role in the a.e. convergence properties

of generalized Vilenkin–Marcinkiewicz means.

# {l ∈ N : αj(|n|, l) = αj(|n|, k), l < n} ≤ C (k < n, j = 1, 2), (3)

max {αj(|n|, k) : k < n} ≤ Cn (k, n ∈ P, j = 1, 2). (4)

More precisely, we prove:

Theorem 2.1. Let α satisfy (3) and (4). Then we have tαnf → f for each

f ∈ L1(G2
m).

We give a corollary of Theorem 2.1.

Corollary 2.2. Let (an) be a lacunary sequence of natural numbers, i.e.

an+1 ≥ anq for some q > 1 (n ∈ N) and α satisfy conditions (3) and αj(n, k) ≤
Can (k < an, j = 1, 2) (modified version of condition (4)). Then for every

integrable function f ∈ L1(G2
m) we have

1

an

an−1∑
k=0

Sα1(n,k),α2(n,k)f(x)→ f(x)

for a.e. x ∈ G2
m.

For the Walsh–Paley case (that is, mn = 2 for all n ∈ N) Theorem 2.1 and

Corollary 2.2 are proved also by the author of this paper [5].

Proof. The proof of this corollary runs as follows. First suppose that q ≥
m∗ = supnmn. Let bn = |an|+1. In this situation bn+1 = |an+1|+1 ≥ |qan|+1 ≥
|m∗an|+ 1 ≥ |an|+ 2 = bn + 1. Moreover, let

α̃j(bn, k) =

{
αj(n, k), if 0 ≤ k < an,

k, if an ≤ k < Mbn

(j = 1, 2).

Then, α̃ satisfies conditions (3) (trivially) and (4) since α̃j(bn, k) = αj(n, k) ≤
Can ≤ CMbn (k < an) and by Theorem 2.8 (see in this paper below) it fol-

lows that for the maximal operator tα̃∗ f := sup |tα̃nf | we have mes
{
tα̃∗ f ≥ λ

}
≤

C‖f‖1/λ for all f ∈ L1(G2
m) and λ > 0. Since

1

an

an−1∑
k=0

Sα1(n,k),α2(n,k)f =
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=
Mbn

an

1

Mbn

Mbn−1∑
k=0

Sα̃1(bn,k),α̃2(bn,k)f −
Mbn

an

1

Mbn

Mbn−1∑
k=an

Sk,kf,

and consequently, |tαanf | ≤ m
∗|tα̃Mbn

f |+m∗|tMbn
f |+m∗|tanf |, then tα∗ f ≤ Ctα̃∗ f+

Ct∗f . The ordinary maximal Marcinkiewicz operator is of weak type (L1, L1) and

of type (Lp, Lp) (1 < p ≤ ∞) (see e.g. [4]), and thus so does tα∗ . This, by the

standard density argument, completes the proof of this corollary for the case of

q ≥ m∗ = supnmn. If this is not the case, then let γ be the smallest natural

number for which qγ ≥ m∗ and divide the sequence a = (an) to γ subsequences:

aj = (ajn) = (anγ+j), j = 0, . . . , γ − 1, n ∈ N. Since for each subsequence aj

we have ajn+1 ≥ qγajn ≥ m∗ajn and consequently 1

ajn

∑ajn−1
k=0 Sα1(n,k),α2(n,k)f(x)→

f(x) a.e. for j = 0, . . . , γ, then the proof of this corollary is complete for every

q > 1. �

The triangular partial sums of the 2-dimensional Fourier series are defined

as

S4k f(x1, x2) :=

k−1∑
i=0

k−i−1∑
j=0

f̂(i, j)ψi(x
1)ψj(x

2).

Denote the triangular kernel

D4k (x1, x2) :=

k−1∑
i=0

k−i−1∑
j=0

ψ̄i(x
1)ψj(x

2).

The Fejér means of the triangular partial sums of the two-dimensional integrable

function f (see e.g. [7]) are

t4n f =
1

n

n−1∑
k=0

S4k f.

For the trigonometric system Herriot [8] proved the a.e. (and norm) convergence

t4n f → f (f ∈ L1). His method cannot be adopted for the Walsh and Vilenkin

systems, since for the time being there is no kernel formula available for these

systems. The first result in this a.e. convergence issue of triangular means is due

to Goginava and Weisz [7]. They proved for the Walsh–Paley system and each

integrable function the a.e. convergence relation t42nf → f . That is, we have the

subsequence (t42n) of the whole sequence of the triangular mean operators. This

result for every lacunary sequence (an) (instead of (2n)) follows from a result of

Gát [5]. For bounded Vilenkin systems Corollary 2.2 gives this a.e. relation for
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lacunary triangular means with α1(n, k) = k, α2(n, k) = an − k. To demonstrate

this, see also some calculations with respect to the triangle kernels.

K4n (x1, x2) =
1

n

n−1∑
k=0

D4k (x1, x2) =
1

n

n−1∑
k=1

k−1∑
i=0

k−i−1∑
j=0

ψi(x
1)ψj(x

2)

=
1

n

n−1∑
k=1

k−1∑
i=0

ψi(x
1)Dk−i(x

2) =
1

n

n−1∑
k=1

k∑
i=1

ψk−i(x
1)Di(x

2)

=
1

n

n−1∑
i=1

n−1∑
k=i

ψk−i(x
1)Di(x

2) =
1

n

n−1∑
i=1

Dn−i(x
1)Di(x

2).

That is, we proved the following corollary.

Corollary 2.3. Let (an) be a lacunary sequence of natural numbers, i.e.

an+1 ≥ anq for some q > 1. Then for every integrable function f ∈ L1(G2
m) we

have

t4anf(x) =
1

an

an−1∑
k=0

Sk,an−kf(x)→ f(x)

for a.e. x ∈ G2
m.

Now, we turn our attention to the proof of the convergence theorem. Our

first main aim is to prove that the operator tα∗ f := supn∈P |tαnf | is of weak type

(L1, L1). In order to have this, we need a sequence of lemmas. The first, which

(one might say) is the very base of the proof of Theorem 2.1, is the most difficult

one. However, the techniques of its proof will also be used in the proof of the

forthcoming lemmas.

Denote for k ∈ N Jk = Ik \Ik+1 and recall that ns :=
∑∞
k=s nkMk (n, s ∈ N);

n0 = n, n|n|+1 = 0.

Lemma 2.4. Let a ∈ N and

Ja,1 =

a−1⋃
t1=0

∞⋃
t2=t1

Jt1 × Jt2 ⊂ Gm ×Gm.

Then∫
Ja,1

sup
A≥a

sup
{n:|n|=A}

1

MA

A∑
s=t1

ns−1∑
j=0

∣∣∣∣∣
Ms−1∑
k=0

Dα1(A,ns+1+jMs+k)(x
1)

×Dα2(A,ns+1+jMs+k)(x
2)

∣∣∣∣∣dµ(x) ≤ C.
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Proof. First, for fixed t = (t1, t2), j, s, A we discuss the integral

∫
Jt1×Jt2

sup
|n|=A

∣∣∣∣∣
Ms−1∑
k=0

Dα1(A,ns+1+jMs+k)(x
1)Dα2(A,ns+1+jMs+k)(x

2)

∣∣∣∣∣ dµ(x).

Check the function
∑Ms−1
k=0 Dα1(A,ns+1+jMsk)(x

1)Dα2(A,ns+1+jMs+k)(x
2) on the

set Jt1 × Jt2 . Since we have x2 ∈ Jt2 , then by (2) we have |Dl(x
2)| ≤ CMt2 for

each l ∈ N, and consequently, |Dα2(A,ns+1+jMs+k)(x
2)| ≤ CMt2 . On the other

hand, again by (2) for x1 ∈ Jt1 we have

Dα1(A,ns+1+jMs+k)(x
1)

= ψ[α1(A,ns+1+jMs+k)]t
1 (x1)

×

(
t1−1∑
j=0

[α1(A,ns+1+jMs + k)]jMj+

mt1−1∑
i=mt1−[α1(A,ns+1+jMs+k)]t1

rit1(x1)Mt1

)
=: ψ[α1(A,ns+1+jMs+k)]t

1 (x1)β1(A,ns+1 + jMs + k, t1, x1t1).

The function β1(A,ns+1 + jMs + k, t1, x1t1) is At1+1 measurable, it depends only

on x1t1 (and not on other coordinates of x1), and its absolute value is bounded

by CMt1 . If it does not cause misunderstanding, we simply abbreviate it by β1(j).

That is,

β1(j) = β1(A,ns+1 + jMs + k, t1, x1t1).

Apply the Cauchy–Bunyakovsky–Schwarz inequality:

∫
Jt2

[∫
Jt1

sup
|n|=A

∣∣∣∣∣
Ms−1∑
k=0

Dα1(A,ns+1+jMs+k)(x
1)Dα2(A,ns+1+jMs+k)(x

2)

∣∣∣∣∣dµ(x1)

]
dµ(x2)

≤
∫
Jt2

1

M
1/2
t1

[∫
Jt1

sup
|n|=A

∣∣∣∣∣
Ms−1∑
k=0

Dα1(A,ns+1+jMs+k)(x
1)

×Dα2(A,ns+1+jMs+k)(x
2)

∣∣∣∣∣
2

dµ(x1)

]1/2
dµ(x2)

=

∫
Jt2

1

M
1/2
t1

[∫
Jt1

sup
|n|=A

Ms−1∑
k,l=0

ψ[α1(A,ns+1+jMs+k)]t
1

× (x1)ψ[α1(A,ns+1+jMs+l)]t
1 (x1)

× β1(A,ns+1 + jMs + k, t1, x1t1)β1(A,ns+1 + jMs + l, t1, x1t1)
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×Dα2(A,ns+1+jMs+k)(x
2)Dα2(A,ns+1+jMs+l)(x

2)dµ(x1)

]1/2
dµ(x2)

=: B1.

Since ns+1 depends only on ns+1, . . . , nA−1, nA (recall that nA 6= 0), then

the supremum operator sup{n:|n|=A} above also depends only on ns+1, . . . , nA.

Thus, by

Jt1 = ∪mt1−1
i=1 It1+1(iet1)

we have for B1:

B1 ≤
∫
Jt2

1

M
1/2
t1

[
mA−1−1∑
nA=1

mA−1−1∑
nA−1=0

· · ·
ms+1−1∑
ns+1=0

∫
Jt1

Ms−1∑
k,l=0

ψ[α1(A,ns+1+jMs+k)]t
1 (x1)ψ[α1(A,ns+1+jMs+l)]t

1 (x1)

× β1(A,ns+1 + jMs + k, t1, x1t1)β1(A,ns+1 + jMs + l, t1, x1t1)

×Dα2(A,ns+1+k)(x
2)Dα2(A,ns+1+l)(x

2)dµ(x1)

]1/2
dµ(x2)

=

∫
Jt2

1

M
1/2
t1

[mt1−1∑
i=1

mA−1−1∑
nA=1

mA−1∑
nA−1=0

· · ·
ms+1−1∑
ns+1=0

Ms−1∑
k,l=0

β1(A,ns+1 + jMs + k, t1, i)β1(A,ns+1 + jMs + l, t1, i)

×Dα2(A,ns+1+k)(x
2)Dα2(A,ns+1+l)(x

2)

×
∫
It1+1(iet1 )

ψ[α1(A,ns+1+jMs+k)]t
1 (x1)

× ψ[α1(A,ns+1+jMs+l)]t
1 (x1)dµ(x1)

]1/2
dµ(x2) =: B2.

That is, we estimate B1 by B2 defined above at the end of the previous line.

Discuss the integral∫
It1+1(iet1 )

ψ[α1(A,ns+1+jMs+k)]t
1 (x1)ψ[α1(A,ns+1+jMs+l)]t

1 (x1)dµ(x1).

If it differs from zero, then the t1 + 1-th, t1 + 2-th,. . . coordinates of α1(A,ns+1 +

jMs + k) and α1(A,ns+1 + jMs + l) should be equal. Since (3) we have that for

every k there exists only a bounded number of l’s for which α1(A,ns+1 + jMs +
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k) = α1(A,ns+1 + jMs + l). These facts give that for every k there exists – at

most – CMt1 number of l’s for which this integral is not zero.

Consequently (emphasize that C can depend on m∗),

B2 ≤ C
∫
Jt2

M
−1
2

t1

mA−1−1∑
nA=1

mA−1−1∑
nA−1=0

· · ·
ms+1−1∑
ns+1=0

M2
t1M

2
t2MsMt1M

−1
t1

 1
2

dµ

≤ C
√
MAMt1 .

This means∫
Jt1×Jt2

sup
|n|=A

∣∣∣∣∣
Ms−1∑
k=0

Dα1(A,ns+1+jMs+k)(x
1)Dα2(A,ns+1+jMs+k)(x

2)

∣∣∣∣∣ dµ(x)

≤ C
√
MAMt1 .

This inequality immediately gives (a ∨ b = max(a, b))

a−1∑
t1=0

∞∑
t2=t1

∫
Jt1×Jt2

sup
A≥a∨(t2−C)

sup
|n|=A

1

MA

×
A∑

s=t1

ns−1∑
j=0

∣∣∣∣∣
Ms−1∑
k=0

Dα1(A,ns+1+jMs+k)(x
1)Dα2(A,ns+1+jMsk)(x

2)

∣∣∣∣∣ dµ(x)

≤ C
a−1∑
t1=0

∞∑
t2=t1

∞∑
A=a∨(t2−C)

A∑
s=t1

√
Mt1/MA

≤ C
a−1∑
t1=0

∞∑
t2=t1

∞∑
A=a∨(t2−C)

(A− t1 + 1)
√
Mt1/MA

≤ C
a−1∑
t1=0

∞∑
t2=t1

((a ∨ t2)− t1)
√
Mt1/M(a∨t2)

≤ C
a−1∑
t1=0

a∑
t2=t1

(a− t1)
√
Mt1/Ma + C

a−1∑
t1=0

∞∑
t2=a+1

(t2 − t1)
√
Mt1/Mt2 ≤ C.

This inequality shows that if we want to complete the proof of this lemma, then

we have to discuss also the case supt2−C>A≥a. This follows that t2 should be at

least a+ C. That is, we have to prove that the following integral is bounded.
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a−1∑
t1=0

∞∑
t2=a+C

∫
Jt1×Jt2

sup
t2−C>A≥a

sup
|n|=A

1

MA

A∑
s=t1

ns−1∑
j=0

∣∣∣∣∣
Ms−1∑
k=0

Dα1(A,ns+1+jMs+k)(x
1)Dα2(A,ns+1+jMs+k)(x

2)

∣∣∣∣∣dµ(x) =: B3.

The method we are going to use in order to discuss B3 is the same as we

used for the investigation of B1. The only difference is that in the situation of B1

we used the estimation |Dα2(A,ns+1+jMs+k)(x
2)| ≤ CMt2 , and in the case of B3

we use – by the help of (4) and the formula of the Dirichlet kernel Dn (2) – the

estimation |Dα2(A,ns+1+jMs+k)(x
2)| ≤ CMA. The other steps of this process are

the same. Remark that since j ≤ ns < ms ≤ m∗, then “we do not have to take

too much attention to” j, as constant C can depend on m∗. That is,

B3 ≤ C
a−1∑
t1=0

∞∑
t2=a+C

∫
Jt2

t2−C∑
A=a

1

MA

A∑
s=t1

M
−1/2
t1

×

mA−1−1∑
nA=1

mA−1−1∑
nA−1=0

· · ·
ms+1−1∑
ns+1=0

M2
t1M

2
AMsMt1M

−1
t1

1/2

dµ(x2)

= C

a−1∑
t1=0

∞∑
t2=a+C

t2−C∑
A=a

A∑
s=t1

M−1t2 M−1A M
−1/2
t1

√
MA

Ms
M2
t1M

2
AMs

= C

a−1∑
t1=0

∞∑
t2=a+C

t2−C∑
A=a

A∑
s=t1

√
MAMt1

Mt2

≤ C
a−1∑
t1=0

∞∑
t2=a+C

t2−C∑
A=a

(A− t1 + 1)M
1/2
A M

1/2
t1 M−1t2

≤ C
a−1∑
t1=0

∞∑
t2=a+C

(t2 − t1 + 1)M
1/2
t1 M

−1/2
t2 ≤ C.

This completes the proof of Lemma 2.4. Remark the fact that the generating

sequence m is bounded, that is, m∗ <∞ is “heavily used”. �

In the sequel we step further, and with the application of Lemma 2.4 we

prove the main tool with respect to this investigation issue of the maximal

Marcinkiewicz-like kernel, in order to prove that the maximal operator tα∗ is quasi-

local (for the definition of quasi-locality, see e.g. [10, page 262]), and consequently,

it is of weak type (L1, L1).
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Lemma 2.5. ∫
G2

m\(Ia×Ia)
sup

n≥a−C
|Kα

n (x)|dµ(x) ≤ C.

Proof. For t1 ≤ a − 1, t2 ≥ t1 and x ∈ Jt1 × Jt2 by (2) and (4) it is clear

that (A = |n|)

|Dα1(A,ns+1+jMs+k)(x
1)Dα2(A,ns+1+jMs+k)(x

2)| ≤Mt1M(t2∧A).

This gives

a−1∑
t1=0

∞∑
t2=t1

∫
Jt1×Jt2

sup
A≥a−C

sup
|n|=A

1

MA

t1∑
s=0

ns−1∑
j=0

∣∣∣∣∣
Ms−1∑
k=0

Dα1(A,ns+1+jMs+k)(x
1)

×Dα2(A,ns+1+jMs+k)(x
2)

∣∣∣∣∣dµ(x)

≤ C
a−1∑
t1=0

∞∑
t2=t1

∫
Jt1×Jt2

sup
A≥a−C

1

MA

t1∑
s=0

MsMt1M(t2∧A)dµ(x)

≤ C
a−1∑
t1=0

a−C∑
t2=t1

1

Mt1Mt2
sup

A≥a−C
M2
t1Mt2M

−1
A + C

a−1∑
t1=0

∞∑
t2=a−C

1

Mt1Mt2
M2
t1

≤ C
a−1∑
t1=0

a−C∑
t2=t1

Mt1

Ma
+ C

a−1∑
t1=0

∞∑
t2=a−C

Mt1

Mt2
≤ C.

This by equality

Kα
n (x) =

1

n

A∑
s=0

ns−1∑
j=0

Ms−1∑
k=0

Dα1(A,ns+1+jMs+k)(x
1)Dα2(A,ns+1+jMs+k)(x

2)

and by Lemma 2.4 immediately gives

a−1∑
t1=0

∞∑
t2=t1

∫
Jt1×Jt2

sup
n≥a−C

|Kα
n (x)|dµ(x) ≤ C.

Similarly, we can also have

a−1∑
t2=0

∞∑
t1=t2

∫
Jt1×Jt2

sup
n≥a−C

|Kα
n (x)|dµ(x) ≤ C.
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If we prove the almost everywhere relation

G2
m \ (Ia × Ia) ⊂

(
a−1⋃
t1=0

∞⋃
t2=t1

Jt1 × Jt2
)⋃(

a−1⋃
t2=0

∞⋃
t1=t2

Jt1 × Jt2
)

=: Ja,1
⋃
Ja,2,

then the proof of Lemma 2.5 would be complete. This is quite easy, and therefore

it is left to the reader. �

Corollary 2.6. Let n ∈ P. Then

‖Kα
n‖1 ≤ C.

Proof. By Lemma 2.5 we have∫
G2

m\(I|n|×I|n|)
|Kα

n |dµ ≤ C.

Besides, (4) and (2) gives

|Kα
n (x)| ≤ 1

n

n−1∑
k=0

|Dα1(|n|,k)(x
1)||Dα2(|n|,k)(x

2)| ≤ C 1

n

n−1∑
k=0

M|n| ·M|n| ≤ CM2
|n|.

Hence, ∫
I|n|×I|n|

|Kα
n |dµ ≤ C

and this completes the proof of Corollary 2.6. �

Now, we can prove that the maximal operator tα∗ is quasi-local (for the defi-

nition of quasi-locality, see e.g. [10, page 262]) and then a bit later the fact that

it is of weak type (L1, L1). In other words:

Lemma 2.7. Let f ∈ L1(G2
m), supp f ⊂ Ia(u1)×Ia(u2),

∫
fdµ = 0 for some

u ∈ G2
m and a ∈ N. Then∫

G2
m\(Ia(u1)×Ia(u2))

tα∗ f(x)dµ(x) ≤ C‖f‖1.

Proof. From the shift invariancy of the Haar measure we can suppose that

u1 = u2 = 0. If |n| ≤ a − C for some fixed constant C > 0 depending on

α1, α2 (and m∗), then we have by (4) that α1(|n|, k), α2(|n|, k) < Ma for every

k < n. Consequently, the kernel Kα
n (x1, x2) (which is a linear combination of
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two-dimensional Vilenkin functions ψj,k with j, k < Ma) is Aa,a = Aa × Aa

measurable. This implies

tαnf(y) =

∫
Ia×Ia

f(x)Kα
n (y − x)dµ(x) = Kα

n (y)

∫
Ia×Ia

f(x)dµ(x) = 0.

That is, |n| ≥ a− C can be supposed. By the theorem of Fubini and Lemma 2.5

we get∫
G2

m\I2a
tα∗ fdµ

=

∫
G2

m\I2a
sup

|n|≥a−C
|tαnf |dµ =

∫
G2

m\I2a
sup

|n|≥a−C
|
∫
I2a

f(x)Kα
n (y − x)dµ(x)|dµ(y)

≤
∫
I2a

|f(x)|
∫
G2

m\I2a
sup

|n|≥a−C
|Kα

n (z)dµ(z)|dµ(x) ≤ C
∫
I2a

|f(x)|dµ(x) = C‖f‖1.

This completes the proof of Lemma 2.7. �

Theorem 2.8. The operator tα∗ is of weak type (L1, L1) and it is also of

type (Lp, Lp) for all 1 < p ≤ ∞.

Proof. Now, we know that operator tα∗ is of type (L∞, L∞), which is given

by Corollary 2.6, and it is quasi-local (Lemma 2.7). Consequently, to prove that

operator tα∗ is of weak type (L1, L1) is nothing else but to follow the standard

argument (see e.g. [10]). Finally, the interpolation lemma of Marcinkiewicz (see

e.g. [10]) gives that it is also of type (Lp, Lp) for all 1 < p ≤ ∞. �

Proof of Theorem 2.1. Next, we turn our attention to the proof of the

theorem of convergence, that is, to Theorem 2.1. This is also a trivial consequence

of the fact that the maximal operator tα∗ is of weak type (L1, L1) and the fact

that Theorem 2.1 holds for each two-dimensional Vilenkin polynomial (which is

also easy to see). �
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