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Abstract. Characterizations of pairs of stochastic processes that can be separated

by a convex or strongly convex stochastic process are presented. As consequences,

stability results of the Hyers–Ulam type are obtained.

1. Introduction

Separation theorems, that is theorems providing conditions under which two

given functions can be separated by a function from some special class, play

an important role in many fields of mathematics and have various applications.

In the literature one can find numerous results of this type (see, for instance [1],

[2], [3], [5], [9], [10], [12], [13], [14], [15], [16], [18] and the references therein).

In [1], the following theorem about separation by convex functions was obtained:

Theorem BMN. Let I ⊂ R be an interval and f, g : I → R. There exists

a convex function h : I → R such that f ≤ h ≤ g on I if and only if

f
(
λx+ (1− λ)y

)
6 λg(x) + (1− λ)g(y), (1)

for all x, y ∈ I and λ ∈ [0, 1].
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The “only if” part of this theorem is a straightforward calculation, but in

the proof of the “if” part the classical Carathéodory theorem play a crucial role.

The aim of the present note is to give some counterparts of the above theorem

for convex and strongly convex stochastic processes. As a consequence, we obtain

also Hyers–Ulam-type stability results for such classes of processes. Since in our

settings the Carathéodory theorem can not be used, the proof of our main result

is different from the proof of Theorem BMN.

Let (Ω,A, P ) be an arbitrary probability space and I ⊂ R be an interval.

A function C : Ω→ R is called a random variable if it isA-measurable. A function

X : I ×Ω→ R is called a stochastic process if for every t ∈ I the function X(t, ·)
is a random variable.

Let C : Ω → R be a positive random variable. Recall that a stochastic

process X : I × Ω → R is said to be strongly convex with modulus C(·) if the

inequality

X
(
λt1+(1−λ)t2, ·

)
6 λX(t1, ·)+(1−λ)X(t2, ·)−C(·)λ

(
1−λ

)(
t1−t2

)2
(a.e.) (2)

is satisfied for all t1, t2 ∈ I and λ ∈ [0, 1] (cf. [7]). By omitting the term C(·)λ(1−
λ)(t1 − t2)2 in the inequality (2), we get the definition of a convex stochastic

process introduced in 1980 in [11]. Many properties of convex and strongly convex

stochastic processes can be found in [7], [8], [11], [17].

At the end of this section, let us recall the definition of the essential infimum

of a collection of functions. We will use this notion as a basic tool in the proof

of our main theorem. Let (Ω,F , µ) be a measure space and S be a collection of

measurable functions f : Ω → R. On R the Borel σ-algebra is used. If S is a

countable set, then we may define the pointwise infimum of the functions from S,

which is measurable itself. If S is uncountable, then the pointwise infimum need

not be measurable. In this case, the essential infimum can be used. The essential

infimum of S, written as ess inf S, if it exists, is a measurable function f : Ω→ R
satisfying the following two axioms:

• f 6 g almost everywhere, for any g ∈ S,

• if h : Ω → R is measurable and h 6 g almost everywhere for every g ∈ S,

then h 6 f almost everywhere.

It can be shown that for a σ-finite measure µ, the essential infimum of S do exists,

whenever S is a family of measurable functions jointly bounded from below. For

more details, we refer the reader to [4].
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2. Separation by convex processes

Now we present the main result of this paper. It gives a condition under

which two given stochastic processes can be separated by a convex stochastic

process.

Theorem 1. Let X,Y : I × Ω → R be stochastic processes. There exists a

convex stochastic process Z : I × Ω→ R such that

X(t, ·) 6 Z(t, ·) 6 Y (t, ·) (a.e.)

for all t ∈ I, if and only if

X

(
n∑

i=1

λiti, ·

)
6

n∑
i=1

λiY (ti, ·) (a.e.) (3)

for all n ∈ N, t1, . . . , tn ∈ I and λ1, . . . , λn > 0 with λ1 + · · ·+ λn = 1.

Proof. The “only if” part follows by the Jensen inequality for convex sto-

chastic processes (see [7]):

X

(
n∑

i=1

λiti, ·

)
6 Z

(
n∑

i=1

λiti, ·

)
6

n∑
i=1

λiZ(ti, ·) 6
n∑

i=1

λiY (ti, ·) (a.e.).

To prove the “if” part, fix t ∈ I and define the process Z by

Z(t, ·) = ess inf

{
n∑

i=1

λiY (ti, ·) : n ∈ N, t1, . . . , tn ∈ I, λ1, . . . , λn ∈ [0, 1]

such that λ1 + · · ·+ λn = 1 and t = λ1t1 + · · ·+ λntn

}
.

By (3) and the definition of essential infimum, we have

X(t, ·) 6 Z(t, ·) (a.e.), t ∈ I.

By the definition of Z (taking n = 1, λ1 = 1 and t1 = t) we get also

Z(t, ·) 6 Y (t, ·) (a.e.), t ∈ I.

To prove that Z is convex, fix t1, t2∈ I and λ∈ [0, 1]. Take arbitrary u1, . . . , un∈ I,

α1, . . . , αn ∈ [0, 1] and v1, . . . , vm ∈ I, β1, . . . , βm ∈ I such that α1 + · · ·+αn = 1,

β1 + · · ·+ βm = 1 and t1 = α1u1 + · · ·+ αnun, t2 = β1v1 + · · ·+ βmvm. Since

n∑
i=1

λαi +

m∑
j=1

(
1− λ

)
βj = 1,
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the point λt1 + (1− λ)t2 is a convex combination of u1, . . . , un, v1, . . . , vm, and

λt1 + (1− λ)t2 = λ

n∑
i=1

αiui +
(
1− λ

) m∑
j=1

βjvj .

Therefore, by the definition of Z we have

Z
(
λt1 + (1− λ)t2, ·

)
6 λ

n∑
i=1

αiY (ui, ·) + (1− λ)

m∑
j=1

βjY (vj , ·) (a.e.). (4)

This inequality holds for every n ∈ N, u1, . . . , un ∈ I and α1, . . . , αn ∈ [0, 1]

such that α1 + · · · + αn = 1 and α1u1 + · · · + αnun = t1, as well as for all

m ∈ N, v1, . . . , vm ∈ I and β1, . . . , βm ∈ [0, 1] such that β1 + · · · + βm = 1 and

β1v1 + · · ·+ βmvm = t2. Therefore, taking the essential infimum in the first term

of the right hand side of (4) and next in the second term and using the second

axiom of the definition of essential infimum, we get

Z
(
λt1 + (1− λ)t2, ·

)
6 λZ(t1, ·) + (1− λ)Z(t2, ·) (a.e.).

This shows that Z is convex and finishes the proof. �

Remark 2. In Theorem BMN, to get the function h that separates f and

g, it was enough to assume inequality (1) only for convex combinations of two

points. In our Theorem 1 we assume that the corresponding inequality (3) holds

for arbitrarily long convex combination. It is caused by the fact that we can

not use the Carathéodory theorem in the proof. It is an open problem whether

Theorem 1 remains true if we assume (3) only for n = 2.

As an immediate consequence of the above theorem, we obtain the follow-

ing Hyers–Ulam-type stability results for convex stochastic processes. For the

classical Hyers–Ulam theorem, see [6].

Let ε be a positive constant. We say that a stochastic process X : I×Ω→ R
is ε- convex if

X

(
n∑

i=1

λiti, ·

)
6

n∑
i=1

λiX(ti, ·) + ε (a.e.) (5)

for all n ∈ N, t1, . . . , tn ∈ I and λ1, . . . , λn > 0 with λ1 + · · ·+ λn = 1.

Corollary 3. If a stochastic process X : I × Ω→ R is ε-convex, then there

exists a convex stochastic process Z such that

|X(t, ·)− Z(t, ·)| 6 ε

2
(a.e.) (6)

for all t ∈ I.
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Proof. Define Y (t, ·) = X(t, ·) + ε, t ∈ I. In view of (5), the processes

X and Y satisfy (3). Therefore, by Theorem 1, there exists a convex process

Z1 : I × Ω → R, such that X(t, ·) 6 Z1(t, ·) 6 X(t, ·) + ε (a.e.), for all t ∈ I.

Putting Z(t, ·) = Z1(t, ·)− ε
2 , we get (6). This completes the proof. �

3. Separation by strongly convex processes

The following theorem characterizes pairs of stochastic processes which can

be separated by a strongly convex stochastic process.

Theorem 4. Let X,Y : I × Ω → R be stochastic processes. There exists a

stochastic process Z : I × Ω→ R strongly convex with modulus C(·) such that

X(t, ·) 6 Z(t, ·) 6 Y (t, ·) (a.e.)

for all t ∈ I, if and only if

X

(
n∑

i=1

λiti, ·

)
6

n∑
i=1

λiY (ti, ·)− C(·)
n∑

i=1

λi(ti −m)2 (a.e.) (7)

for all n ∈ N, t1, . . . , tn ∈ I, λ1, . . . , λn > 0 with λ1 + · · · + λn = 1 and m =∑n
i=1 λiti.

Proof. To prove the “only if” part, assume that there exists a strongly

convex stochastic process Z with modulus C, such that X(t, ·) 6 Z(t, ·) 6
Y (t, ·) (a.e.), for every t ∈ I. The Jensen inequality for strongly convex sto-

chastic processes (see [7]) implies that

X

(
n∑

i=1

λiti, ·

)
6 Z

(
n∑

i=1

λiti, ·

)
6

n∑
i=1

λiZ(ti, ·)− C(·)
n∑

i=1

λi(ti −m)2

6
n∑

i=1

λiY (ti, ·)− C(·)
n∑

i=1

λi(ti −m)2 (a.e.).

To prove the “if” part, assume that X and Y satisfy (7). Consider the stochastic

processes X1 and Y1 defined by X1(t, ·) = X(t, ·)−C(·)t2 and Y1(t, ·) = Y (t, ·)−
C(·)t2, for all t ∈ I.

By (7) and the following equality

n∑
i=1

λi(ti −m)2 =

n∑
i=1

λit
2
i −m2
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we have

X1

(
n∑

i=1

λiti, ·

)
= X

(
n∑

i=1

λiti, ·

)
− C(·)

(
n∑

i=1

λiti

)2

6
n∑

i=1

λiY (ti, ·)− C(·)
n∑

i=1

λi(ti −m)2 − C(·)

(
n∑

i=1

λiti

)2

=

n∑
i=1

λiY (ti, ·)− C(·)

(
n∑

i=1

λit
2
i −m2

)
− C(·)m2

=
n∑

i=1

λi(Y (ti, ·)− C(·)t2i ) =

n∑
i=1

λiY1(ti, ·) (a.e.).

By Theorem 1, there exists a convex stochastic process Z1 : I ×Ω→ R such that

for all t ∈ I holds

X1(t, ·) 6 Z1(t, ·) 6 Y1(t, ·) (a.e.).

Take Z(t, ·) = Z1(t, ·) + C(·)t2. The process Z is strongly convex with modu-

lus C(·) (see [8, Lemma 2.1]). Moreover, the inequality

X(t, ·) 6 Z(t, ·) 6 Y (t, ·) (a.e.)

holds for every t ∈ I. �

At the end of this section we present Hyers–Ulam type stability result for

strongly convex stochastic processes. We say that a stochastic process X : I×Ω→
R is ε- strongly convex with modulus C(·) if

X

(
n∑

i=1

λiti, ·

)
6

n∑
i=1

λiX(ti, ·)− C(·)
n∑

i=1

λi(ti −m)2 + ε (a.e.) (8)

for all t1, ..., tn ∈ I, λ1, . . . , λn > 0, with λ1+· · ·+λn = 1 andm = λ1t1+· · ·+λntn.

Corollary 5. If a stochastic process X : I×Ω→ R is ε-strongly convex with

modulus C(·), then there exists a strongly convex stochastic process Z : I×Ω→ R
with modulus C(·) such that

|X(t, ·)− Z(t, ·)| 6 ε

2
(a.e.) (9)

for all t ∈ I.
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Proof. To prove Corollary 5, we define Y (t, ·) = X(t, ·) + ε for all t ∈ I.

By (8) we have

X

(
n∑

i=1

λiti, ·

)
6

n∑
i=1

λiX(ti, ·)− C(·)
n∑

i=1

λi(ti −m)2 + ε

=

n∑
i=1

λiX(ti, ·) + ε

n∑
i=1

λi − C(·)
n∑

i=1

λi(ti −m)2

=

n∑
i=1

λi(X(ti, ·) + ε)− C(·)
n∑

i=1

λi(ti −m)2

=
n∑

i=1

λiY (ti, ·)− C(·)
n∑

i=1

λi(ti −m)2 (a.e.).

We apply Theorem 4 to the processes X and Y . There exists a strongly

convex stochastic process Z1 such that X(t, ·) 6 Z1(t, ·) 6 Y (t, ·) (a.e.). Putting

Z(t, ·) = Z1(t, ·)− ε
2 , we get (9). �
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