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An elementary proof for the time-monotonicity
of the solutions of linear parabolic equations

By T. PFEIL (Budapest)

In Banach spaces, Polác̆ik [12] has recently investigated the mono-
tonicity properties with respect to the time variable of solutions of semi-
linear parabolic problems of form

{
u′ + Au = f(u)

u(0) = u0,

where A is a sectorial operator, f is smooth enough and the domain of the
fractional power Aα is strongly ordered for some α. Later Mierczyński
[8] generalized Poláčik’s result for C1 strongly monotone semiflows. They
proved that under certain conditions the set of points near the equilib-
rium point having not eventually strongly monotone trajectories lie on a
manifold of co-dimension one.

Both the above mentioned papers include the case of the present paper
as certain linear parabolic equations are treated here using the technique
of [11] to obtain a new elementary proof.

Let n ∈ N+, Ω ⊂ Rn be a bounded domain, ∂Ω belonging to the
Hölder class C2+α for some positive α, and L the following symmetric
second order linear differential operator

Lu :=
n∑

i,j=1

∂i(aij∂ju) + du,

where aij ∈ C1+α(Ω̄), aij = aji, i, j = 1, . . . , n; d ∈ Cα(Ω̄), d ≤ 0 and
suppose that L is uniformly elliptic in Ω, i.e. there exists a positive number
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κ such that for every ζ ∈ Rn

κ|ζ|2 ≤
n∑

i,j=1

aijζiζj .

Let Q := (0,+∞)× Ω, Γ := [0,+∞)× ∂Ω and Ω0 := {0} × Ω.
It is well-known [7] that there exists a sequence of solutions of the

classical eigenvalue problem

(1)





Lw + λw = 0 in Ω
w = 0 on ∂Ω .

w ∈ C2+α(Ω̄)

Denote the sequence of eigenvalues by λk, k ∈ N+ (let them form a
monotone nondecreasing sequence) and the corresponding eigenfunctions
normed in L2(Ω) by wk.

Let ϕ ∈ L2(Ω) be a given function. We examine the generalized
solution of the initial-boundary value problem

(2)





∂0u− Lu = 0 in Q

u |Γ= 0
u |Ω0= ϕ̃

u ∈ H0,1(Q)

where ϕ̃(0, x) := ϕ(x) for x ∈ Ω. For the definition of H0,1(Q) see e.g.
[14]. Let

ξk :=
∫

Ω

ϕwk, k ∈ N+.

We recall that there exists a unique weak solution of (2),

u(t, x) =
∞∑

k=1

ξke−λktwk(x), (t, x) ∈ Q

(convergence is understood in the norm of H0,1(Q)) and it is smooth in
Q̄ \ Ω̄0 (see e.g. [14]). If ϕ ∈ C2+α(Ω̄) then u ∈ C1+α/2,2+α(Q̄) [3].

Results of Narasimhan [10] and Friedman [3] claim a solution of
the classical initial-boundary value problem corresponding to (2) with ϕ ∈
C(Ω) tends to zero uniformly in Ω as t tends to infinity.

Under weaker conditions on the coefficients of L and ∂Ω we have
proved [11] for any ϕ ∈ L2(Ω) and fixed x ∈ Ω the monotonicity of the
function t 7→ u(t, x) for t large enough. Moreover, we have shown that for
any compact subset K of Ω there exists a positive number T such that for
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every x ∈ K the function t 7→ u(t, x) is monotone in [T, +∞) provided the
first Fourier coefficient of ϕ is not equal to zero.

Now under the given stronger conditions which ensure the existence
of eigenfunctions in the classical sense we prove the same result instead of
a compact subset for the whole Ω.

Due to the theorem of Krein and Rutman ([2], [6]) the principal
eigenvalue λ1 of L is simple and the corresponding eigenfunction w1 does
not vanish in Ω, thus it can be chosen a positive function in Ω.

Theorem 1. Let u be the (unique) weak solution of the initial-boundary
value problem (2) with the conditions given previously. Suppose that the
first Fourier coefficient ξ1 of ϕ is not equal to zero. Then there exists a
positive number T such that for every x ∈ Ω the function t 7→ u(t, x),
t > T is strictly decreasing if ξ1 > 0, and strictly increasing if ξ1 < 0.

Proof. Theorem 3 in [11] gives the following estimate for the maxi-
mum of the absolute value of wk:

(3) max
Ω̄
|wk| ≤ M∗λs∗

k , k ∈ N+,

where M∗ and s∗ are appropriate positive constants independent of k.
Therefore we have

∂0u(t, x) =(4)

= −e−λ1tw1(x)

(
ξ1λ1 + e−(λ2−λ1)t

∞∑

k=2

ξkλke−(λk−λ2)t · wk(x)
w1(x)

)
,

where (t, x) ∈ Q.

First, we examine term

(5)
wk(x)
w1(x)

.

Under our assumptions the outward normal derivative of w1 does not
vanish on ∂Ω (see e.g. [4] or [13]), thus there exists a positive ε such that

(6) ∂νw1 ≤ −ε on ∂Ω.

For every y ∈ ∂Ω let us take an open, convex neighbourhood Uy ⊂ Rn

such that in a system of coordinates chosen appropriately Uy ∩ ∂Ω is the
graph of a function belonging to the C2+α class. We can take Uy such
that ∂νw1 ≤ −ε/2 is valid in Uy ∩ Ω since w1 ∈ C1(Ω̄). In addition we
may assume for every x ∈ Uy ∩ Ω the existence of a point βx ∈ ∂Ω such
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that the direction βx − x coincides with the outward normal direction at
βx (e.g. let min{|β−x| : β ∈ ∂Ω} be attained at βx). From the open cover

∂Ω ⊂
⋃

y∈∂Ω

Uy

we can select a finite cover {Uy1 , . . . , UyN
}. Let K be the following compact

set:

K := Ω \
N⋃

i=1

Uyi
.

With δ := min{w1(x) : x ∈ K} we have

(7)
∣∣∣∣
wk(x)
w1(x)

∣∣∣∣ ≤
M∗

δ
λs∗

k for x ∈ K.

Now we will examine term (5) near the boundary. Due to the homo-
geneous Dirichlet boundary condition we can write

∣∣∣∣
wk(x)
w1(x)

∣∣∣∣ =
∣∣∣∣
wk(x)− wk(βx)
w1(x)− w1(βx)

∣∣∣∣ =
∣∣∣∣
∂νwk(ηx)
∂νw1(ηx)

∣∣∣∣ for x ∈ Ω ∩
(

N⋃

i=1

Uyi

)
,

where βx ∈ ∂Ω, the direction βx−x coincides with the outward normal di-
rection ν, and ηx is an appropriate point in the segment (βx, x). Therefore,
by using (6) we have

(8)
∣∣∣∣
wk(x)
w1(x)

∣∣∣∣ ≤
2
ε
max

Ω̄
| grad wk| ≤ 2

ε
‖wk‖C1(Ω̄) in Ω ∩

(
N⋃

i=1

Uyi

)
.

Ladyženskaja and Ural’ceva [7] proved boundedness in C1(Ω̄)-
norm for the solution of the generalized elliptic boundary value problem
under certain conditions. By using their proof we have obtained a bound in
C1(Ω̄)-norm for the solution wk of the eigenvalue problem (1) depending
on the eigenvalue λk. In the Appendix we have shown the existence of
positive numbers N∗ and r∗ such that

(9) ‖wk‖C1(Ω̄) ≤ N∗λr∗
k , k ∈ N+.

(For the details see Theorem 2.)
By using estimates (7), (8) and (9) we obtain

∣∣∣∣
wk(x)
w1(x)

∣∣∣∣ ≤ Cλσ
k , k ∈ N+, x ∈ Ω
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where C := max
{

2N∗
ε , M∗

δ

}
and σ := max{r∗, s∗}.

Finally we examine the series in (4) as it was done in [11].

(10)

∣∣∣∣∣
∞∑

k=2

ξkλke−(λk−λ2)t · wk(x)
w1(x)

∣∣∣∣∣ ≤ C

∞∑

k=2

|ξk| |λk|σ+1e−(λk−λ2)t

for (t, x) ∈ Q. The series on the right-hand side of (10) admits a finite
sum for every t ∈ R+ due to the following estimate for the eigenvalues λk:

(11) C1k
2/n ≤ λk ≤ C2k

2/n, k ∈ N+

(C1 and C2 are appropriate positive constants, see e.g. [9], [14]). Moreover,
it is easy to see that both series in (10) have an upper bound independent
of t (see [11]), thus the function

t 7→ e−(λ2−λ1)t
∞∑

k=2

ξkλke−(λk−λ2)t · wk(x)
w1(x)

tends to zero uniformly in Ω as t → +∞. For this reason there exists a
positive number T such that

sign{∂0u(t, x)} = sign{−ξ1λ1} for (t, x) ∈ (T,+∞)× Ω.

Theorem 1 is proved.

Appendix

Here we prove formula (9), i.e. we give an upper bound for the C1(Ω̄)-
norm of the eigenfunctions wk of (1) depending on the eigenvalue λk. The
proof was obtained by complementing the proof of Theorem 15.1 in [7].

Theorem 2. There exist positive numbers N∗, r∗ ∈ R+ such that for
the eigenfunctions wk of (1) normed in L2(Ω)

(12) ‖wk‖C1(Ω̄) ≤ N∗λr∗
k , k ∈ N+

holds (or, equivalently ‖wk‖C1(Ω̄) ≤ Nkr for some N, r ∈ R+).

Proof. Let p > n. According to Ladyženskaja and Ural’ceva
there exists a positive constant K1 such that

(13) ‖v‖W 2,p(Ω) ≤ K1

(‖Lv‖Lp(Ω) + ‖v‖Lp(Ω)

)

for arbitrary v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) (see [7], formula (11.8) in part III).

Applying this a priori estimate to wk we obtain

(14) ‖wk‖W 2,p(Ω) ≤ K1(λk + 1)‖wk‖Lp(Ω) ≤ K2λk‖wk‖Lp(Ω), k ∈ N+



76 T. Pfeil

for an appropriate positive number K2.
According to the Sobolev imbedding theorem (see e.g. [1]) W 2,p(Ω) ⊂

C1(Ω̄) for p > n, and there exists a positive number K3 such that for every
k ∈ N+

(15) ‖wk‖C1(Ω̄) ≤ K3‖wk‖W 2,p(Ω).

From (14) and (15) we obtain the following inequality with some positive
constant K4:

‖wk‖C1(Ω̄) ≤ K4λk‖wk‖Lp(Ω), k ∈ N+.

The Lp(Ω)-norm of wk can trivially be estimated by using the maxi-
mum norm of wk:

‖wk‖Lp(Ω) ≤ mes(Ω)1/pmax
Ω̄
|wk|, k ∈ N+.

Finally we use (3), i.e. the estimate for the maximum norm of wk to
get

‖wk‖Lp(Ω) ≤ K5λ
s∗
k , k ∈ N+

with appropriate positive constants K5 and s∗, which leads to

‖wk‖C1(Ω̄) ≤ K4K5λ
s∗+1
k , k ∈ N+.

Applying estimate (11) we find a bound depending on k for some N ,
r ∈ R+:

‖wk‖C1(Ω̄) ≤ Nkr, k ∈ N+.

Theorem 2 is proved.

Remark 1. Supposing some more smoothness on ∂Ω, results of Koshe-
lev [5] could have been used instead of (13). As a special case, his pa-
per gives conditions for the existence in W 2,p(Ω) of the solution of (1),
and gives a bound for the W 2,p(Ω)-norm of the solution depending on its
Lp(Ω)-norm.
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MÚZEUM KRT. 6–8.
H–1088
HUNGARY

(Received January 12, 1994)


