Publ. Math. Debrecen 46 / 1-2 (1995), 71–77

An elementary proof for the time-monotonicity of the solutions of linear parabolic equations

By T. PFEIL (Budapest)

In Banach spaces, POLÁČIK [12] has recently investigated the monotonicity properties with respect to the time variable of solutions of semilinear parabolic problems of form

$$\begin{cases} u' + Au = f(u) \\ u(0) = u_0, \end{cases}$$

where A is a sectorial operator, f is smooth enough and the domain of the fractional power A^{α} is strongly ordered for some α . Later MIERCZYŃSKI [8] generalized Poláčik's result for C^1 strongly monotone semiflows. They proved that under certain conditions the set of points near the equilibrium point having not eventually strongly monotone trajectories lie on a manifold of co-dimension one.

Both the above mentioned papers include the case of the present paper as certain linear parabolic equations are treated here using the technique of [11] to obtain a new elementary proof.

Let $n \in \mathbb{N}^+$, $\Omega \subset \mathbb{R}^n$ be a bounded domain, $\partial\Omega$ belonging to the Hölder class $C^{2+\alpha}$ for some positive α , and L the following symmetric second order linear differential operator

$$Lu := \sum_{i,j=1}^{n} \partial_i (a_{ij}\partial_j u) + du,$$

where $a_{ij} \in C^{1+\alpha}(\overline{\Omega})$, $a_{ij} = a_{ji}$, $i, j = 1, \ldots, n$; $d \in C^{\alpha}(\overline{\Omega})$, $d \leq 0$ and suppose that L is uniformly elliptic in Ω , i.e. there exists a positive number

This work was supported by the Hungarian National Foundation for Scientific Research under grant No. T 4385.

AMS Subject Classification: 35K20

 κ such that for every $\zeta \in \mathbb{R}^n$

$$\kappa |\zeta|^2 \le \sum_{i,j=1}^n a_{ij} \zeta_i \zeta_j.$$

Let $Q := (0, +\infty) \times \Omega$, $\Gamma := [0, +\infty) \times \partial \Omega$ and $\Omega_0 := \{0\} \times \Omega$.

It is well-known [7] that there exists a sequence of solutions of the classical eigenvalue problem

(1)
$$\begin{cases} Lw + \lambda w = 0 & \text{in } \Omega \\ w = 0 \text{ on } \partial \Omega \\ w \in C^{2+\alpha}(\bar{\Omega}) \end{cases}$$

Denote the sequence of eigenvalues by λ_k , $k \in \mathbb{N}^+$ (let them form a monotone nondecreasing sequence) and the corresponding eigenfunctions normed in $L^2(\Omega)$ by w_k .

Let $\varphi \in L^2(\Omega)$ be a given function. We examine the generalized solution of the initial-boundary value problem

(2)
$$\begin{cases} \partial_0 u - Lu = 0 & \text{in } Q \\ u \mid_{\Gamma} = 0 \\ u \mid_{\Omega_0} = \tilde{\varphi} \\ u \in H^{0,1}(Q) \end{cases}$$

where $\tilde{\varphi}(0,x) := \varphi(x)$ for $x \in \Omega$. For the definition of $H^{0,1}(Q)$ see e.g. [14]. Let

$$\xi_k := \int_{\Omega} \varphi w_k, \quad k \in \mathbb{N}^+.$$

We recall that there exists a unique weak solution of (2),

$$u(t,x) = \sum_{k=1}^{\infty} \xi_k e^{-\lambda_k t} w_k(x), \quad (t,x) \in Q$$

(convergence is understood in the norm of $H^{0,1}(Q)$) and it is smooth in $\overline{Q} \setminus \overline{\Omega}_0$ (see e.g. [14]). If $\varphi \in C^{2+\alpha}(\overline{\Omega})$ then $u \in C^{1+\alpha/2,2+\alpha}(\overline{Q})$ [3].

Results of NARASIMHAN [10] and FRIEDMAN [3] claim a solution of the classical initial-boundary value problem corresponding to (2) with $\varphi \in C(\Omega)$ tends to zero uniformly in Ω as t tends to infinity.

Under weaker conditions on the coefficients of L and $\partial\Omega$ we have proved [11] for any $\varphi \in L^2(\Omega)$ and fixed $x \in \Omega$ the monotonicity of the function $t \mapsto u(t,x)$ for t large enough. Moreover, we have shown that for any compact subset K of Ω there exists a positive number T such that for

72

every $x \in K$ the function $t \mapsto u(t, x)$ is monotone in $[T, +\infty)$ provided the first Fourier coefficient of φ is not equal to zero.

Now under the given stronger conditions which ensure the existence of eigenfunctions in the classical sense we prove the same result instead of a compact subset for the whole Ω .

Due to the theorem of KREIN and RUTMAN ([2], [6]) the principal eigenvalue λ_1 of L is simple and the corresponding eigenfunction w_1 does not vanish in Ω , thus it can be chosen a positive function in Ω .

Theorem 1. Let u be the (unique) weak solution of the initial-boundary value problem (2) with the conditions given previously. Suppose that the first Fourier coefficient ξ_1 of φ is not equal to zero. Then there exists a positive number T such that for every $x \in \Omega$ the function $t \mapsto u(t, x)$, t > T is strictly decreasing if $\xi_1 > 0$, and strictly increasing if $\xi_1 < 0$.

PROOF. Theorem 3 in [11] gives the following estimate for the maximum of the absolute value of w_k :

(3)
$$\max_{\bar{\Omega}} |w_k| \le M^* \lambda_k^{s^*}, \quad k \in \mathbb{N}^+,$$

where M^* and s^* are appropriate positive constants independent of k.

Therefore we have

(4)

$$\partial_0 u(t,x) =$$

$$= -e^{-\lambda_1 t} w_1(x) \left(\xi_1 \lambda_1 + e^{-(\lambda_2 - \lambda_1)t} \sum_{k=2}^{\infty} \xi_k \lambda_k e^{-(\lambda_k - \lambda_2)t} \cdot \frac{w_k(x)}{w_1(x)} \right)$$

$$\text{ where } (t,x) \in Q.$$

First, we examine term

(5)
$$\frac{w_k(x)}{w_1(x)}$$

Under our assumptions the outward normal derivative of w_1 does not vanish on $\partial \Omega$ (see e.g. [4] or [13]), thus there exists a positive ε such that

(6)
$$\partial_{\nu} w_1 \leq -\varepsilon \text{ on } \partial\Omega$$

For every $y \in \partial \Omega$ let us take an open, convex neighbourhood $U_y \subset \mathbb{R}^n$ such that in a system of coordinates chosen appropriately $U_y \cap \partial \Omega$ is the graph of a function belonging to the $C^{2+\alpha}$ class. We can take U_y such that $\partial_{\nu} w_1 \leq -\varepsilon/2$ is valid in $U_y \cap \Omega$ since $w_1 \in C^1(\overline{\Omega})$. In addition we may assume for every $x \in U_y \cap \Omega$ the existence of a point $\beta_x \in \partial \Omega$ such T. Pfeil

that the direction $\beta_x - x$ coincides with the outward normal direction at β_x (e.g. let $\min\{|\beta - x| : \beta \in \partial\Omega\}$ be attained at β_x). From the open cover

$$\partial\Omega\subset\bigcup_{y\in\partial\Omega}U_y$$

we can select a finite cover $\{U_{y_1}, \ldots, U_{y_N}\}$. Let K be the following compact set:

$$K := \Omega \setminus \bigcup_{i=1}^N U_{y_i}.$$

With $\delta := \min\{w_1(x) : x \in K\}$ we have

(7)
$$\left|\frac{w_k(x)}{w_1(x)}\right| \le \frac{M^*}{\delta} \lambda_k^{s^*} \quad \text{for } x \in K.$$

Now we will examine term (5) near the boundary. Due to the homogeneous Dirichlet boundary condition we can write

$$\left|\frac{w_k(x)}{w_1(x)}\right| = \left|\frac{w_k(x) - w_k(\beta_x)}{w_1(x) - w_1(\beta_x)}\right| = \left|\frac{\partial_\nu w_k(\eta_x)}{\partial_\nu w_1(\eta_x)}\right| \quad \text{for } x \in \Omega \cap \left(\bigcup_{i=1}^N U_{y_i}\right),$$

where $\beta_x \in \partial\Omega$, the direction $\beta_x - x$ coincides with the outward normal direction ν , and η_x is an appropriate point in the segment (β_x, x) . Therefore, by using (6) we have

(8)
$$\left|\frac{w_k(x)}{w_1(x)}\right| \leq \frac{2}{\varepsilon} \max_{\bar{\Omega}} |\operatorname{grad} w_k| \leq \frac{2}{\varepsilon} ||w_k||_{C^1(\bar{\Omega})} \quad \text{in } \Omega \cap \left(\bigcup_{i=1}^N U_{y_i}\right).$$

LADYŽENSKAJA and URAL'CEVA [7] proved boundedness in $C^1(\bar{\Omega})$ norm for the solution of the generalized elliptic boundary value problem under certain conditions. By using their proof we have obtained a bound in $C^1(\bar{\Omega})$ -norm for the solution w_k of the eigenvalue problem (1) depending on the eigenvalue λ_k . In the Appendix we have shown the existence of positive numbers N^* and r^* such that

(9)
$$\|w_k\|_{C^1(\bar{\Omega})} \le N^* \lambda_k^{r^*}, \quad k \in \mathbb{N}^+.$$

(For the details see Theorem 2.)

By using estimates (7), (8) and (9) we obtain

$$\left|\frac{w_k(x)}{w_1(x)}\right| \le C\lambda_k^{\sigma}, \quad k \in \mathbb{N}^+, \quad x \in \Omega$$

An elementary proof for the time-monotonicity ...

where $C := \max\left\{\frac{2N^*}{\varepsilon}, \frac{M^*}{\delta}\right\}$ and $\sigma := \max\{r^*, s^*\}$. Finally we examine the series in (4) as it was done in [11].

(10)
$$\left|\sum_{k=2}^{\infty} \xi_k \lambda_k e^{-(\lambda_k - \lambda_2)t} \cdot \frac{w_k(x)}{w_1(x)}\right| \le C \sum_{k=2}^{\infty} |\xi_k| \ |\lambda_k|^{\sigma+1} e^{-(\lambda_k - \lambda_2)t}$$

for $(t, x) \in Q$. The series on the right-hand side of (10) admits a finite sum for every $t \in \mathbb{R}^+$ due to the following estimate for the eigenvalues λ_k :

(11)
$$C_1 k^{2/n} \le \lambda_k \le C_2 k^{2/n}, \quad k \in \mathbb{N}^+$$

 $(C_1 \text{ and } C_2 \text{ are appropriate positive constants, see e.g. [9], [14]).$ Moreover, it is easy to see that both series in (10) have an upper bound independent of t (see [11]), thus the function

$$t \mapsto e^{-(\lambda_2 - \lambda_1)t} \sum_{k=2}^{\infty} \xi_k \lambda_k e^{-(\lambda_k - \lambda_2)t} \cdot \frac{w_k(x)}{w_1(x)}$$

tends to zero uniformly in Ω as $t \to +\infty$. For this reason there exists a positive number T such that

$$\operatorname{sign}\{\partial_0 u(t,x)\} = \operatorname{sign}\{-\xi_1\lambda_1\} \quad \text{ for } (t,x) \in (T,+\infty) \times \Omega$$

Theorem 1 is proved.

Appendix

Here we prove formula (9), i.e. we give an upper bound for the $C^1(\bar{\Omega})$ norm of the eigenfunctions w_k of (1) depending on the eigenvalue λ_k . The proof was obtained by complementing the proof of Theorem 15.1 in [7].

Theorem 2. There exist positive numbers $N^*, r^* \in \mathbb{R}^+$ such that for the eigenfunctions w_k of (1) normed in $L^2(\Omega)$

(12)
$$\|w_k\|_{C^1(\bar{\Omega})} \le N^* \lambda_k^{r^*}, \quad k \in \mathbb{N}^+$$

holds (or, equivalently $||w_k||_{C^1(\bar{\Omega})} \leq Nk^r$ for some $N, r \in \mathbb{R}^+$).

PROOF. Let p > n. According to LADYŽENSKAJA and URAL'CEVA there exists a positive constant K_1 such that

(13)
$$\|v\|_{W^{2,p}(\Omega)} \le K_1 \left(\|Lv\|_{L^p(\Omega)} + \|v\|_{L^p(\Omega)} \right)$$

for arbitrary $v \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$ (see [7], formula (11.8) in part III). Applying this a priori estimate to w_k we obtain

(14)
$$||w_k||_{W^{2,p}(\Omega)} \le K_1(\lambda_k+1)||w_k||_{L^p(\Omega)} \le K_2\lambda_k||w_k||_{L^p(\Omega)}, \quad k \in \mathbb{N}^+$$

T. Pfeil

for an appropriate positive number K_2 .

According to the Sobolev imbedding theorem (see e.g. [1]) $W^{2,p}(\Omega) \subset C^1(\overline{\Omega})$ for p > n, and there exists a positive number K_3 such that for every $k \in \mathbb{N}^+$

(15)
$$\|w_k\|_{C^1(\bar{\Omega})} \le K_3 \|w_k\|_{W^{2,p}(\Omega)}.$$

From (14) and (15) we obtain the following inequality with some positive constant K_4 :

$$\|w_k\|_{C^1(\bar{\Omega})} \le K_4 \lambda_k \|w_k\|_{L^p(\Omega)}, \quad k \in \mathbb{N}^+$$

The $L^p(\Omega)$ -norm of w_k can trivially be estimated by using the maximum norm of w_k :

$$||w_k||_{L^p(\Omega)} \le \operatorname{mes}(\Omega)^{1/p} \max_{\overline{\Omega}} |w_k|, \quad k \in \mathbb{N}^+.$$

Finally we use (3), i.e. the estimate for the maximum norm of w_k to get

$$\|w_k\|_{L^p(\Omega)} \le K_5 \lambda_k^{s^*}, \quad k \in \mathbb{N}^+$$

with appropriate positive constants K_5 and s^* , which leads to

 $||w_k||_{C^1(\bar{\Omega})} \le K_4 K_5 \lambda_k^{s^*+1}, \quad k \in \mathbb{N}^+.$

Applying estimate (11) we find a bound depending on k for some N, $r \in \mathbb{R}^+$:

$$||w_k||_{C^1(\bar{\Omega})} \le Nk^r, \quad k \in \mathbb{N}^+.$$

Theorem 2 is proved.

Remark 1. Supposing some more smoothness on $\partial\Omega$, results of KOSHE-LEV [5] could have been used instead of (13). As a special case, his paper gives conditions for the existence in $W^{2,p}(\Omega)$ of the solution of (1), and gives a bound for the $W^{2,p}(\Omega)$ -norm of the solution depending on its $L^{p}(\Omega)$ -norm.

Acknowledgement. The author is grateful to Prof. MIERCZYŃSKI for referring him to the results obtained in strongly ordered Banach spaces.

References

- R. A. ADAMS, Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.
- [2] M. CHICCO, Some properties of the first eigenvalue and the first eigenfunction of linear second order elliptic partial differential equations in divergence form, *Boll.* Un. Mat. Ital. 5 (1972), 245–254.

- [3] A. FRIEDMAN, Partial Differential Equations of Parabolic Type, Prentice Hall, N. J., 1964.
- [4] D. GILBARG and N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
- [5] A. I. KOSHELEV, On the boundedness in L^p of the derivatives of the solutions of elliptic differential equations, *Matem. sbornik* **38** (80) (1956), 359–372.
- [6] M. G. KREIN and M. A. RUTMAN, Linear operators leaving invariant a cone (in Russian), Uspekhi Mat. Nauk 3 (1948), 3–95; English translation in Amer. Math. Soc. Transl. 10 (1962), 199–325.
- [7] O. A. LADYŽENSKAJA and N. N. URAL'CEVA, Linear and Quasilinear Elliptic Equations, Nauka, Moscow, 1964; English translation by Academic Press, New York, London, 1968.
- [8] J. MIERCZYŃSKI, On monotone trajectories, Proc. Amer. Math. Soc. 113 (1991), 537–544.
- [9] V. P. MIKHAILOV, Partial Differential Equations, *Nauka*, *Moscow*, 1976, (in Russian).
- [10] R. NARASIMHAN, On the asymptotic stability of solutions of parabolic differential equations, J. Rat. Mech. Anal. 3 (1954), 303–319.
- [11] T. PFEIL, On the time-monotonicity of the solutions of linear second order homogeneous parabolic equations, Annales Univ. Sci. Budapest 36 (1993), 139–146.
- [12] P. POLÁČIK, Domains of attraction of equilibria and monotonicity properties of convergent trajectories in parabolic systems admitting strong comparison principle, *J. reine angew. Math.* **400** (1989), 32–56.
- [13] M. H. PROTTER and H. F. WEINBERGER, Maximum Principles in Differential Equations, Prentice Hall, N. J., 1967.
- [14] L. SIMON and E. A. BADERKO, Second Order Linear Partial Differential Equations, *Tankönyvkiadó*, *Budapest*, 1983, (in Hungarian).

T. PFEIL DEPT. OF APPLIED ANALYSIS EÖTVÖS LORÁND UNIVERSITY BUDAPEST MÚZEUM KRT. 6–8. H–1088 HUNGARY

(Received January 12, 1994)