An elementary proof for the time-monotonicity of the solutions of linear parabolic equations

By T. PFEIL (Budapest)

In Banach spaces, Polác̆IK [12] has recently investigated the monotonicity properties with respect to the time variable of solutions of semilinear parabolic problems of form

$$
\left\{\begin{array}{l}
u^{\prime}+A u=f(u) \\
u(0)=u_{0},
\end{array}\right.
$$

where A is a sectorial operator, f is smooth enough and the domain of the fractional power A^{α} is strongly ordered for some α. Later Mierczyński [8] generalized Poláčik's result for C^{1} strongly monotone semiflows. They proved that under certain conditions the set of points near the equilibrium point having not eventually strongly monotone trajectories lie on a manifold of co-dimension one.

Both the above mentioned papers include the case of the present paper as certain linear parabolic equations are treated here using the technique of [11] to obtain a new elementary proof.

Let $n \in \mathbb{N}^{+}, \Omega \subset \mathbb{R}^{n}$ be a bounded domain, $\partial \Omega$ belonging to the Hölder class $C^{2+\alpha}$ for some positive α, and L the following symmetric second order linear differential operator

$$
L u:=\sum_{i, j=1}^{n} \partial_{i}\left(a_{i j} \partial_{j} u\right)+d u
$$

where $a_{i j} \in C^{1+\alpha}(\bar{\Omega}), a_{i j}=a_{j i}, i, j=1, \ldots, n ; d \in C^{\alpha}(\bar{\Omega}), d \leq 0$ and suppose that L is uniformly elliptic in Ω, i.e. there exists a positive number

[^0]AMS Subject Classification: 35K20
κ such that for every $\zeta \in \mathbb{R}^{n}$

$$
\kappa|\zeta|^{2} \leq \sum_{i, j=1}^{n} a_{i j} \zeta_{i} \zeta_{j}
$$

Let $Q:=(0,+\infty) \times \Omega, \Gamma:=[0,+\infty) \times \partial \Omega$ and $\Omega_{0}:=\{0\} \times \Omega$.
It is well-known [7] that there exists a sequence of solutions of the classical eigenvalue problem

$$
\left\{\begin{array}{l}
L w+\lambda w=0 \quad \text { in } \Omega \tag{1}\\
w=0 \text { on } \partial \Omega \\
w \in C^{2+\alpha}(\bar{\Omega})
\end{array} .\right.
$$

Denote the sequence of eigenvalues by $\lambda_{k}, k \in \mathbb{N}^{+}$(let them form a monotone nondecreasing sequence) and the corresponding eigenfunctions normed in $L^{2}(\Omega)$ by w_{k}.

Let $\varphi \in L^{2}(\Omega)$ be a given function. We examine the generalized solution of the initial-boundary value problem

$$
\left\{\begin{array}{l}
\partial_{0} u-L u=0 \quad \text { in } Q \tag{2}\\
\left.u\right|_{\Gamma}=0 \\
\left.u\right|_{\Omega_{0}}=\tilde{\varphi} \\
u \in H^{0,1}(Q)
\end{array}\right.
$$

where $\tilde{\varphi}(0, x):=\varphi(x)$ for $x \in \Omega$. For the definition of $H^{0,1}(Q)$ see e.g. [14]. Let

$$
\xi_{k}:=\int_{\Omega} \varphi w_{k}, \quad k \in \mathbb{N}^{+}
$$

We recall that there exists a unique weak solution of (2),

$$
u(t, x)=\sum_{k=1}^{\infty} \xi_{k} e^{-\lambda_{k} t} w_{k}(x), \quad(t, x) \in Q
$$

(convergence is understood in the norm of $H^{0,1}(Q)$) and it is smooth in $\bar{Q} \backslash \bar{\Omega}_{0}$ (see e.g. [14]). If $\varphi \in C^{2+\alpha}(\bar{\Omega})$ then $u \in C^{1+\alpha / 2,2+\alpha}(\bar{Q})$ [3].

Results of Narasimhan [10] and Friedman [3] claim a solution of the classical initial-boundary value problem corresponding to (2) with $\varphi \in$ $C(\Omega)$ tends to zero uniformly in Ω as t tends to infinity.

Under weaker conditions on the coefficients of L and $\partial \Omega$ we have proved [11] for any $\varphi \in L^{2}(\Omega)$ and fixed $x \in \Omega$ the monotonicity of the function $t \mapsto u(t, x)$ for t large enough. Moreover, we have shown that for any compact subset K of Ω there exists a positive number T such that for
every $x \in K$ the function $t \mapsto u(t, x)$ is monotone in $[T,+\infty)$ provided the first Fourier coefficient of φ is not equal to zero.

Now under the given stronger conditions which ensure the existence of eigenfunctions in the classical sense we prove the same result instead of a compact subset for the whole Ω.

Due to the theorem of Krein and Rutman ([2], [6]) the principal eigenvalue λ_{1} of L is simple and the corresponding eigenfunction w_{1} does not vanish in Ω, thus it can be chosen a positive function in Ω.

Theorem 1. Let u be the (unique) weak solution of the initial-boundary value problem (2) with the conditions given previously. Suppose that the first Fourier coefficient ξ_{1} of φ is not equal to zero. Then there exists a positive number T such that for every $x \in \Omega$ the function $t \mapsto u(t, x)$, $t>T$ is strictly decreasing if $\xi_{1}>0$, and strictly increasing if $\xi_{1}<0$.

Proof. Theorem 3 in [11] gives the following estimate for the maximum of the absolute value of w_{k} :

$$
\begin{equation*}
\max _{\bar{\Omega}}\left|w_{k}\right| \leq M^{*} \lambda_{k}^{s^{*}}, \quad k \in \mathbb{N}^{+} \tag{3}
\end{equation*}
$$

where M^{*} and s^{*} are appropriate positive constants independent of k.
Therefore we have

$$
\begin{gather*}
\partial_{0} u(t, x)= \tag{4}\\
=-e^{-\lambda_{1} t} w_{1}(x)\left(\xi_{1} \lambda_{1}+e^{-\left(\lambda_{2}-\lambda_{1}\right) t} \sum_{k=2}^{\infty} \xi_{k} \lambda_{k} e^{-\left(\lambda_{k}-\lambda_{2}\right) t} \cdot \frac{w_{k}(x)}{w_{1}(x)}\right), \\
\text { where }(t, x) \in Q
\end{gather*}
$$

First, we examine term

$$
\begin{equation*}
\frac{w_{k}(x)}{w_{1}(x)} . \tag{5}
\end{equation*}
$$

Under our assumptions the outward normal derivative of w_{1} does not vanish on $\partial \Omega$ (see e.g. [4] or [13]), thus there exists a positive ε such that

$$
\begin{equation*}
\partial_{\nu} w_{1} \leq-\varepsilon \text { on } \partial \Omega . \tag{6}
\end{equation*}
$$

For every $y \in \partial \Omega$ let us take an open, convex neighbourhood $U_{y} \subset \mathbb{R}^{n}$ such that in a system of coordinates chosen appropriately $U_{y} \cap \partial \Omega$ is the graph of a function belonging to the $C^{2+\alpha}$ class. We can take U_{y} such that $\partial_{\nu} w_{1} \leq-\varepsilon / 2$ is valid in $U_{y} \cap \Omega$ since $w_{1} \in C^{1}(\bar{\Omega})$. In addition we may assume for every $x \in U_{y} \cap \Omega$ the existence of a point $\beta_{x} \in \partial \Omega$ such
that the direction $\beta_{x}-x$ coincides with the outward normal direction at β_{x} (e.g. let $\min \{|\beta-x|: \beta \in \partial \Omega\}$ be attained at β_{x}). From the open cover

$$
\partial \Omega \subset \bigcup_{y \in \partial \Omega} U_{y}
$$

we can select a finite cover $\left\{U_{y_{1}}, \ldots, U_{y_{N}}\right\}$. Let K be the following compact set:

$$
K:=\Omega \backslash \bigcup_{i=1}^{N} U_{y_{i}}
$$

With $\delta:=\min \left\{w_{1}(x): x \in K\right\}$ we have

$$
\begin{equation*}
\left|\frac{w_{k}(x)}{w_{1}(x)}\right| \leq \frac{M^{*}}{\delta} \lambda_{k}^{s^{*}} \quad \text { for } x \in K \tag{7}
\end{equation*}
$$

Now we will examine term (5) near the boundary. Due to the homogeneous Dirichlet boundary condition we can write

$$
\left|\frac{w_{k}(x)}{w_{1}(x)}\right|=\left|\frac{w_{k}(x)-w_{k}\left(\beta_{x}\right)}{w_{1}(x)-w_{1}\left(\beta_{x}\right)}\right|=\left|\frac{\partial_{\nu} w_{k}\left(\eta_{x}\right)}{\partial_{\nu} w_{1}\left(\eta_{x}\right)}\right| \quad \text { for } x \in \Omega \cap\left(\bigcup_{i=1}^{N} U_{y_{i}}\right),
$$

where $\beta_{x} \in \partial \Omega$, the direction $\beta_{x}-x$ coincides with the outward normal direction ν, and η_{x} is an appropriate point in the segment $\left(\beta_{x}, x\right)$. Therefore, by using (6) we have

$$
\begin{equation*}
\left|\frac{w_{k}(x)}{w_{1}(x)}\right| \leq \frac{2}{\varepsilon} \max _{\bar{\Omega}}\left|\operatorname{grad} w_{k}\right| \leq \frac{2}{\varepsilon}\left\|w_{k}\right\|_{C^{1}(\bar{\Omega})} \quad \text { in } \Omega \cap\left(\bigcup_{i=1}^{N} U_{y_{i}}\right) \tag{8}
\end{equation*}
$$

LadyžEnskaja and UraL' Ceva [7] proved boundedness in $C^{1}(\bar{\Omega})$ norm for the solution of the generalized elliptic boundary value problem under certain conditions. By using their proof we have obtained a bound in $C^{1}(\bar{\Omega})$-norm for the solution w_{k} of the eigenvalue problem (1) depending on the eigenvalue λ_{k}. In the Appendix we have shown the existence of positive numbers N^{*} and r^{*} such that

$$
\begin{equation*}
\left\|w_{k}\right\|_{C^{1}(\bar{\Omega})} \leq N^{*} \lambda_{k}^{r^{*}}, \quad k \in \mathbb{N}^{+} \tag{9}
\end{equation*}
$$

(For the details see Theorem 2.)
By using estimates (7), (8) and (9) we obtain

$$
\left|\frac{w_{k}(x)}{w_{1}(x)}\right| \leq C \lambda_{k}^{\sigma}, \quad k \in \mathbb{N}^{+}, \quad x \in \Omega
$$

where $C:=\max \left\{\frac{2 N^{*}}{\varepsilon}, \frac{M^{*}}{\delta}\right\}$ and $\sigma:=\max \left\{r^{*}, s^{*}\right\}$.
Finally we examine the series in (4) as it was done in [11].

$$
\begin{equation*}
\left|\sum_{k=2}^{\infty} \xi_{k} \lambda_{k} e^{-\left(\lambda_{k}-\lambda_{2}\right) t} \cdot \frac{w_{k}(x)}{w_{1}(x)}\right| \leq C \sum_{k=2}^{\infty}\left|\xi_{k}\right|\left|\lambda_{k}\right|^{\sigma+1} e^{-\left(\lambda_{k}-\lambda_{2}\right) t} \tag{10}
\end{equation*}
$$

for $(t, x) \in Q$. The series on the right-hand side of (10) admits a finite sum for every $t \in \mathbb{R}^{+}$due to the following estimate for the eigenvalues λ_{k} :

$$
\begin{equation*}
C_{1} k^{2 / n} \leq \lambda_{k} \leq C_{2} k^{2 / n}, \quad k \in \mathbb{N}^{+} \tag{11}
\end{equation*}
$$

(C_{1} and C_{2} are appropriate positive constants, see e.g. [9], [14]). Moreover, it is easy to see that both series in (10) have an upper bound independent of t (see [11]), thus the function

$$
t \mapsto e^{-\left(\lambda_{2}-\lambda_{1}\right) t} \sum_{k=2}^{\infty} \xi_{k} \lambda_{k} e^{-\left(\lambda_{k}-\lambda_{2}\right) t} \cdot \frac{w_{k}(x)}{w_{1}(x)}
$$

tends to zero uniformly in Ω as $t \rightarrow+\infty$. For this reason there exists a positive number T such that

$$
\operatorname{sign}\left\{\partial_{0} u(t, x)\right\}=\operatorname{sign}\left\{-\xi_{1} \lambda_{1}\right\} \quad \text { for }(t, x) \in(T,+\infty) \times \Omega
$$

Theorem 1 is proved.

Appendix

Here we prove formula (9), i.e. we give an upper bound for the $C^{1}(\bar{\Omega})-$ norm of the eigenfunctions w_{k} of (1) depending on the eigenvalue λ_{k}. The proof was obtained by complementing the proof of Theorem 15.1 in [7].

Theorem 2. There exist positive numbers $N^{*}, r^{*} \in \mathbb{R}^{+}$such that for the eigenfunctions w_{k} of (1) normed in $L^{2}(\Omega)$

$$
\begin{equation*}
\left\|w_{k}\right\|_{C^{1}(\bar{\Omega})} \leq N^{*} \lambda_{k}^{r^{*}}, \quad k \in \mathbb{N}^{+} \tag{12}
\end{equation*}
$$

holds (or, equivalently $\left\|w_{k}\right\|_{C^{1}(\bar{\Omega})} \leq N k^{r}$ for some $N, r \in \mathbb{R}^{+}$).
Proof. Let $p>n$. According to Ladyženskaja and Ural'ceva there exists a positive constant K_{1} such that

$$
\begin{equation*}
\|v\|_{W^{2, p}(\Omega)} \leq K_{1}\left(\|L v\|_{L^{p}(\Omega)}+\|v\|_{L^{p}(\Omega)}\right) \tag{13}
\end{equation*}
$$

for arbitrary $v \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ (see [7], formula (11.8) in part III). Applying this a priori estimate to w_{k} we obtain

$$
\begin{equation*}
\left\|w_{k}\right\|_{W^{2, p}(\Omega)} \leq K_{1}\left(\lambda_{k}+1\right)\left\|w_{k}\right\|_{L^{p}(\Omega)} \leq K_{2} \lambda_{k}\left\|w_{k}\right\|_{L^{p}(\Omega)}, \quad k \in \mathbb{N}^{+} \tag{14}
\end{equation*}
$$

for an appropriate positive number K_{2}.
According to the Sobolev imbedding theorem (see e.g. [1]) $W^{2, p}(\Omega) \subset$ $C^{1}(\bar{\Omega})$ for $p>n$, and there exists a positive number K_{3} such that for every $k \in \mathbb{N}^{+}$

$$
\begin{equation*}
\left\|w_{k}\right\|_{C^{1}(\bar{\Omega})} \leq K_{3}\left\|w_{k}\right\|_{W^{2, p}(\Omega)} \tag{15}
\end{equation*}
$$

From (14) and (15) we obtain the following inequality with some positive constant K_{4} :

$$
\left\|w_{k}\right\|_{C^{1}(\bar{\Omega})} \leq K_{4} \lambda_{k}\left\|w_{k}\right\|_{L^{p}(\Omega)}, \quad k \in \mathbb{N}^{+}
$$

The $L^{p}(\Omega)$-norm of w_{k} can trivially be estimated by using the maximum norm of w_{k} :

$$
\left\|w_{k}\right\|_{L^{p}(\Omega)} \leq \operatorname{mes}(\Omega)^{1 / p} \max _{\bar{\Omega}}\left|w_{k}\right|, \quad k \in \mathbb{N}^{+}
$$

Finally we use (3), i.e. the estimate for the maximum norm of w_{k} to get

$$
\left\|w_{k}\right\|_{L^{p}(\Omega)} \leq K_{5} \lambda_{k}^{s^{*}}, \quad k \in \mathbb{N}^{+}
$$

with appropriate positive constants K_{5} and s^{*}, which leads to

$$
\left\|w_{k}\right\|_{C^{1}(\bar{\Omega})} \leq K_{4} K_{5} \lambda_{k}^{s^{*}+1}, \quad k \in \mathbb{N}^{+} .
$$

Applying estimate (11) we find a bound depending on k for some N, $r \in \mathbb{R}^{+}$:

$$
\left\|w_{k}\right\|_{C^{1}(\bar{\Omega})} \leq N k^{r}, \quad k \in \mathbb{N}^{+}
$$

Theorem 2 is proved.
Remark 1. Supposing some more smoothness on $\partial \Omega$, results of KosheLEV [5] could have been used instead of (13). As a special case, his paper gives conditions for the existence in $W^{2, p}(\Omega)$ of the solution of (1), and gives a bound for the $W^{2, p}(\Omega)$-norm of the solution depending on its $L^{p}(\Omega)$-norm.

Acknowledgement. The author is grateful to Prof. Mierczyński for referring him to the results obtained in strongly ordered Banach spaces.

References

[1] R. A. Adams, Sobolev Spaces, Academic Press, New York, San Francisco, London, 1975.
[2] M. Chicco, Some properties of the first eigenvalue and the first eigenfunction of linear second order elliptic partial differential equations in divergence form, Boll. Un. Mat. Ital. 5 (1972), 245-254.
[3] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice Hall, N. J., 1964.
[4] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, New York, 1977.
[5] A. I. Koshelev, On the boundedness in L^{p} of the derivatives of the solutions of elliptic differential equations, Matem. sbornik 38 (80) (1956), 359-372.
[6] M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone (in Russian), Uspekhi Mat. Nauk 3 (1948), 3-95; English translation in Amer. Math. Soc. Transl. 10 (1962), 199-325.
[7] O. A. Ladyz̆enskaja and N. N. Ural'ceva, Linear and Quasilinear Elliptic Equations, Nauka, Moscow, 1964; English translation by Academic Press, New York, London, 1968.
[8] J. Mierczyński, On monotone trajectories, Proc. Amer. Math. Soc. 113 (1991), 537-544.
[9] V. P. Mikhailov, Partial Differential Equations, Nauka, Moscow, 1976, (in Russian).
[10] R. Narasimhan, On the asymptotic stability of solutions of parabolic differential equations, J. Rat. Mech. Anal. 3 (1954), 303-319.
[11] T. Pfeil, On the time-monotonicity of the solutions of linear second order homogeneous parabolic equations, Annales Univ. Sci. Budapest 36 (1993), 139-146.
[12] P. Polác̆Ik, Domains of attraction of equilibria and monotonicity properties of convergent trajectories in parabolic systems admitting strong comparison principle, J. reine angew. Math. 400 (1989), 32-56.
[13] M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, N. J., 1967.
[14] L. Simon and E. A. Baderko, Second Order Linear Partial Differential Equations, Tankönyvkiadó, Budapest, 1983, (in Hungarian).
T. PFEIL

DEPT. OF APPLIED ANALYSIS
EÖTVÖS LORÁND UNIVERSITY
BUDAPEST
MÚZEUM KRT. 6-8.
H-1088
HUNGARY
(Received January 12, 1994)

[^0]: This work was supported by the Hungarian National Foundation for Scientific Research under grant No. T 4385.

