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Vanishing generalized Orlicz–Morrey spaces
and fractional maximal operator

By FATIH DERINGOZ (Kirsehir), VAGIF S. GULIYEV (Kirsehir)

and STEFAN SAMKO (Faro)

Abstract. We find sufficient conditions for the non-triviality of the generalized

Orlicz–Morrey spaces MΦ,ϕ(Rn), and prove the boundedness of the fractional maximal

operator and its commutators with BMO-coefficients in vanishing generalized Orlicz–

Morrey spaces VMΦ,ϕ(Rn) including weak versions of these spaces. The main advance

in comparison with the existing results is that we manage to obtain conditions for the

boundedness not in integral terms but in less restrictive terms of supremal operators

involving the Young functions Φ(u),Ψ(u) and the function ϕ(x, r) defining the space.

No kind of monotonicity condition on ϕ(x, r) in r is imposed.

1. Introduction

1.1. Some background. As is well-known, Morrey spaces are widely used to

investigate the local behavior of solutions to second-order elliptic partial differ-

ential equations (PDE). Recall that the classical Morrey spaces Mp,λ(Rn) are

defined by

Mp,λ(Rn) =

{
f ∈ Lploc(Rn) : ‖f‖Mp,λ := sup

x∈Rn, r>0
r−

λ
p ‖f‖Lp(B(x,r)) <∞

}
,
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where 0 ≤ λ ≤ n, 1 ≤ p <∞.

Here and everywhere in the sequel, B(x, r) is the ball in Rn of radius r

centered at x, and |B(x, r)| is its Lebesgue measure.

By WMp,λ(Rn) we denote the weak Morrey space defined as the set of

functions f in the local weak space WLploc(Rn), for which

‖f‖WMp,λ = sup
x∈Rn, r>0

r−
λ
p ‖f‖WLp(B(x,r)) <∞.

The spaces Mp,ϕ defined by the norm

‖f‖Mp,ϕ := sup
x∈Rn, r>0

1

ϕ(x, r)
‖f‖Lp(B(x,r)) (1.1)

with a function ϕ positive on Rn×(0,∞) are known as generalized Morrey spaces.

Orlicz space was first introduced by Orlicz in [34], [35] as a generalization of

Lebesgue spaces Lp. Since then, this space has been one of important functional

frames in the mathematical analysis, and especially in real and harmonic analysis.

Orlicz space is also an appropriate substitute for L1 space when L1 space does

not work. For example, the Hardy–Littlewood maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy (1.2)

is bounded on Lp for 1 < p <∞, but not on L1, yet using Orlicz spaces, we can

investigate the boundedness of the maximal operator near p = 1, see [23], [24]

and [6] for more precise statements.

1.2. On vanishing generalized Orlicz–Morrey spaces and the goal of the

paper. A natural step in the theory of functions spaces was to study generalized

Orlicz–Morrey spaces

MΦ,ϕ(Rn),

where the “Morrey-type measuring” of regularity of functions is realized with re-

spect to the Orlicz norm over balls instead of the Lebesgue one. Such spaces were

studied in [30] first, see also [9], [10], [20], [21], [31], [32], [42]. The most general

spaces of such a type, Musielak–Orlicz–Morrey spaces, unifying the classical and

variable exponent approaches, were an object of study in [29], where potential

operators in such spaces were considered.

The generalized Orlicz–Morrey spaces we work with are precisely defined in

Section 2.5. The weakest restrictions on the functions Φ and ϕ, defining the
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space MΦ,ϕ(Rn), for the boundedness of the maximal and singular operators,

were provided in [10], up to the authors’ knowledge, together with estimates in

weak generalized Orlicz–Morrey spaces.

Our definition of generalized Orlicz–Morrey spaces introduced in [10] and

used here is different from that of the papers [30], [42], and other papers.

Morrey and Orlicz–Morrey spaces are not separable due to the L∞-norm with

respect to r and x. The closure of nice functions in the Morrey or Orlicz–Morrey

norm gives a subspace of the corresponding space. Such spaces corresponding

to the classical Morrey space Mp,λ, known under the name of vanishing Morrey

space, appeared in connection with PDE in [46], [47], and they were also used

in [38]. The vanishing generalized Morrey spaces were introduced and studied

in [40], see also a study of commutators of Hardy operators in such spaces in [37].

Vanishing generalized Orlicz–Morrey spaces, including their weak versions,

appeared in [14], where the boundedness of the so called Φ-admissible singular

operators and their commutators was studied. Then the boundedness of the

(Φ,Ψ)-admissible potential operators and their commutators on these spaces was

investigated by the same authors in [15].

The results obtained in [15] for the fractional maximal operator and its com-

mutators provide boundedness conditions in terms of some integral inequality.

The main goal of this paper is to find sufficient conditions for the non-

triviality of the generalized Orlicz–Morrey spaces, and to show that the bounded-

ness of the fractional maximal operator and its commutators in vanishing gener-

alized Orlicz–Morrey spaces may be obtained under weaker conditions, namely

in terms of the so-called supremal operators. More precisely, we find sufficient

conditions on general Young functions Φ, Ψ and functions ϕ1, ϕ2, which ensure

the boundedness of the operators under consideration from one vanishing Orlicz–

Morrey space VMΦ,ϕ1(Rn) to another VMΨ,ϕ2(Rn) including weak estimates.

1.3. Operators to consider. Let 0 < α < n. The fractional maximal opera-

tor Mα and the Riesz potential operator Iα are defined by

Mαf(x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|f(y)|dy, Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy.

If α = 0, then M ≡ M0 is the Hardy–Littlewood maximal operator defined

in (1.2).

It is known that the operator Mα is of weak type (p, np/(n−αp)) if 1 ≤ p ≤
n/α, and of strong type (p, np/(n− αp)) if 1 < p ≤ n/α. Also the operator Iα is

of weak type (p, np/(n−αp)) if 1 ≤ p < n/α, and of strong type (p, np/(n−αp))
if 1 < p < n/α.



128 Fatih Deringoz, Vagif S. Guliyev and Stefan Samko

The boundedness of Iα from Orlicz space LΦ(Rn) to the corresponding an-

other Orlicz space LΨ(Rn) was studied by [33] and [45] under some restrictions

involving the growths and certain monotonicity properties of Φ and Ψ. Moreover,

in [6], there were given necessary and sufficient conditions for the boundedness of

both the operators Mα and Iα from LΦ(Rn) to LΨ(Rn), and also from LΦ(Rn)

to the weak Orlicz space WLΨ(Rn).

For the boundedness of the operators Mα and Iα in Morrey spacesMp,λ(Rn),

see [36] and [1].

It is well-known that commutators of classical operators of harmonic analysis

play an important role in various topics of analysis and PDE, see, for instance,

[3], [4], [7] and [8].

The commutators generated by b ∈ L1
loc(Rn) and the operators Mα and Iα

are defined by

Mb,α(f)(x) = sup
t>0
|B(x, t)|−1+α

n

∫
B(x,t)

|b(x)− b(y)||f(y)|dy, (1.3)

[b, Iα]f(x) =

∫
Rn

b(x)− b(y)

|x− y|n−α
f(y)dy, (1.4)

respectively.

The fractional maximal and potential operators in Morrey-type spaces were

studied in various papers. In Orlicz–Morrey spaces they were recently studied

in [19], [20]. Commutators in Morrey spaces were studied in a less generality. We

refer, for instance, to [38] and [41] in the case of the classical Morrey spaces.

In the case of generalized Morrey spaces, we refer to [43] (where some mono-

tonicity assumptions were imposed on the function ϕ, but on the other hand,

an anisotropic case was admitted), and to [17], [18] (where no monotonicity as-

sumptions on ϕ were imposed, including an anisotropic case in [18]), where other

references may be also found.

By A . B we mean that A ≤ CB with some positive constant C independent

of appropriate quantities. If A . B and B . A, we write A ≈ B and say that

A and B are equivalent.

2. Preliminaries

2.1. On commutators in Lebesgue spaces. We recall that the space

BMO(Rn) = {b ∈ L1
loc(Rn) : ‖b‖∗ <∞} is defined by the seminorm

‖b‖∗ := sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|b(y)− bB(x,r)|dy,
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where bB(x,r) = 1
|B(x,r)|

∫
B(x,r)

b(y)dy, and refer, for instance, to [44] for details

on this space.

The following characterization of the Lp → Lq-boundedness of the commu-

tator [b, Iα] was given in [5] in terms of mean oscillation of b.

Theorem 2.1 ([5]). Let 0 < α < n, 1 < p < n
α and 1

q = 1
p −

α
n . Then [b, Iα]

is a bounded operator from Lp(Rn) to Lq(Rn) if and only if b ∈ BMO(Rn).

The statement of Theorem 2.1 remains valid for Mb,α and for the operator

|b, Iα|f(x) :=

∫
Rn

|b(x)− b(y)|
|x− y|n−α

f(y)dy.

Namely, the following theorem holds.

Theorem 2.2. Let 0 < α < n, 1 < p < n
α and 1

q = 1
p −

α
n . Then Mb,α and

|b, Iα| are bounded operators from Lp(Rn) to Lq(Rn) if and only if b ∈ BMO(Rn).

Proof. The sufficiency in the case of the operator |b, Iα| is known even in

a more general case, see [11, Remark 3].

For the operator Mb,α, it was formulated in [28, Theorem 3.5.2], however,

its proof contains the unjustified inequality (3.5.7), valid if on the right-hand side

one replaces b(x) − b(y) by |b(x) − b(y)| inside the integral. By this reason, for

completeness of the proof, we justify the main statement in Theorem 2.2 using

other means, following known ideas though.

The sufficiency for Mb,α in fact follows immediately from the known inequal-

ity

Mb,α(f)(x) .
∫
Rn

|b(x)− b(y)|
|x− y|n−α

|f(y)|dy, (2.1)

and the above reference [11, Remark 3].

As regards the necessity, in view of the above inequality, it suffices to prove

it for Mb,α. Suppose that Mb,α is bounded from Lp(Rn) to Lq(Rn). Choose any

ball B = B(x, r) in Rn,

1

|B|

∫
B

|b(y)− bB |dy

=
1

|B|

∫
B

∣∣∣ 1

|B|

∫
B

(b(y)− b(z))dz
∣∣∣dy ≤ 1

|B|2

∫
B

∫
B

|b(y)− b(z)|dydz

=
1

|B|1+α
n

∫
B

1

|B|1−αn

∫
B

|b(y)− b(z)|χ
B

(z)dzdy ≤ 1

|B|1+α
n

∫
B

Mb,α

(
χ
B

)
(y)dy

≤ 1

|B|1+α
n
|B|

1
q′

(∫
B

(
Mb,α

(
χ
B

)
(y)
)q
dy

) 1
q

≤ C

|B|1+α
n
|B|

1
q′ |B|

1
p = C.

Thus b ∈ BMO(Rn). �
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2.2. On Young functions. We start with recalling the definition of Young

functions.

Definition 2.3. A function Φ : [0,+∞)→ [0,∞] is called a Young function if

it is convex, left-continuous, lim
r→+0

Φ(r) = Φ(0) = 0 and limr→+∞ Φ(r) =∞.

From the convexity and Φ(0) = 0 it follows that any Young function is

increasing. If there exists s ∈ (0,+∞) such that Φ(s) = +∞, then Φ(r) = +∞
for r ≥ s. The set of Young functions such that

0 < Φ(r) < +∞ for 0 < r < +∞

will be denoted by Y. If Φ ∈ Y, then Φ is absolutely continuous on every closed

interval in [0,+∞) and bijective from [0,+∞) to itself.

For a Young function Φ and 0 ≤ s ≤ +∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s}.

If Φ ∈ Y, then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r < +∞. (2.2)

A Young function Φ is said to satisfy the ∆2-condition, denoted also as Φ ∈ ∆2,

if

Φ(2r) ≤ kΦ(r) for r > 0,

for some k > 1. If Φ ∈ ∆2, then Φ ∈ Y. A Young function Φ is said to satisfy the

∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1. The function Φ(r) = r satisfies the ∆2-condition but does not

satisfy the ∇2-condition. If 1 < p <∞, then Φ(r) = rp satisfies both conditions.

The function Φ(r) = er − r− 1 satisfies the ∇2-condition but does not satisfy the

∆2-condition. A Young function Φ is said to satisfy the ∆′-condition, denoted

also by Φ ∈ ∆′, if

Φ(rt) ≤ cΦ(r)Φ(t), r, t ≥ 0,

for some positive constant c. Note that each element of ∆′-class is also an element

of ∆2-class.
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For a Young function Φ, the complementary function Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} if r ∈ [0,∞)

+∞ if r = +∞.

The complementary function Φ̃ is also a Young function and
˜̃
Φ = Φ. If Φ(r) = r,

then Φ̃(r) = 0 for 0 ≤ r ≤ 1, and Φ̃(r) = +∞ for r > 1. If 1 < p < ∞,

1/p + 1/p′ = 1 and Φ(r) = rp/p, then Φ̃(r) = rp
′
/p′. If Φ(r) = er − r − 1, then

Φ̃(r) = (1+ r) log(1+ r)− r. Note that Φ ∈ ∇2 if and only if Φ̃ ∈ ∆2. It is known

that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0. (2.3)

Note that Young functions satisfy the properties Φ(αt) ≤ αΦ(t) for all 0 ≤
α ≤ 1 and 0 ≤ t <∞, and Φ(βt) ≥ βΦ(t) for all β > 1 and 0 ≤ t <∞.

Definition 2.4. Let Φ be a Young function. Let

aΦ := inf
t∈(0,∞)

tΦ′(t)

Φ(t)
, bΦ := sup

t∈(0,∞)

tΦ′(t)

Φ(t)
.

Remark 2.5. It is known that Φ ∈ ∆2 ∩∇2 if and only if 1 < aΦ ≤ bΦ <∞,
see [25].

2.3. On Orlicz spaces.

Definition 2.6 (Orlicz space). For a Young function Φ, the set

LΦ(Rn) =

{
f ∈ L1

loc(Rn) :

∫
Rn

Φ(k|f(x)|)dx < +∞ for some k > 0

}
is called Orlicz space. If Φ(r) = rp, 1 ≤ p < ∞, then LΦ(Rn) = Lp(Rn). If

Φ(r) = 0, (0 ≤ r ≤ 1) and Φ(r) = ∞, (r > 1), then LΦ(Rn) = L∞(Rn). The

space LΦ
loc(Rn) endowed with the natural topology is defined as the set of all

functions f such that fχ
B
∈ LΦ(Rn) for all balls B ⊂ Rn. We refer to the books

[25], [26], [39] for the theory of Orlicz spaces.

LΦ(Rn) is a Banach space with respect to the norm

‖f‖LΦ = inf

{
λ > 0 :

∫
Rn

Φ

(
|f(x)|
λ

)
dx ≤ 1

}
.

We note that ∫
Rn

Φ

(
|f(x)|
‖f‖LΦ

)
dx ≤ 1.

For a measurable function f and t > 0, let

m(f, t) = |{x ∈ Rn : |f(x)| > t}|.
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Definition 2.7. The weak Orlicz space is defined as WLΦ(Rn) := {f ∈
L1

loc(Rn) : ‖f‖WLΦ < +∞}, where

‖f‖WLΦ = inf

{
λ > 0 : sup

t>0
Φ(t)m

(
f

λ
, t

)
≤ 1

}
.

The following theorem is an analogue of Lebesgue differentiation theorem in

Orlicz spaces.

Theorem 2.8 ([22]). Suppose that Φ is a Young function and let f ∈ LΦ(Rn)

be nonnegative. Then

lim inf
r→0+

‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

≥ f(x) for almost every x ∈ Rn.

If we, moreover, assume that our Φ satisfies the ∆′ condition, then

lim
r→0+

‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

= f(x) for almost every x ∈ Rn.

For a Young function Φ and its complementary function Φ̃, the following

analogue of the Hölder inequality is known:

‖fg‖L1 ≤ 2‖f‖LΦ‖g‖LΦ̃ . (2.4)

The following lemma is valid.

Lemma 2.9 ([2], [27]). Let Φ be a Young function and B a set in Rn with

finite Lebesgue measure. Then

‖χ
B
‖WLΦ = ‖χ

B
‖LΦ =

1

Φ−1 (|B|−1)
.

2.4. On boundedness of the fractional maximal operator and its com-

mutators in Orlicz spaces. Necessary and sufficient conditions on (Φ,Ψ) for

the boundedness of Mα and Iα from LΦ(Rn) to LΨ(Rn) and LΦ(Rn) to WLΨ(Rn)

have been obtained in [6, Theorem 1 and 2]. To formulate the results from [6], we

recall that, for functions Φ and Ψ from [0,∞) into [0,∞], the function Ψ is said to

dominate Φ globally if there exists a positive constant c such that Φ(s) ≤ Ψ(cs)

for all s ≥ 0.

In the theorems below we also use the notation

Ψ̃P (s) =

∫ s

0

rP
′−1(B−1

P (rP
′
))P

′
dr, (2.5)
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where 1 < P ≤ ∞ and Ψ̃P (s) is the Young conjugate function to ΨP (s), and

ΦP (s) =

∫ s

0

rP
′−1(A−1

P (rP
′
))P

′
dr, (2.6)

where B−1
P (s) and A−1

P (s) are inverses to

BP (s) =

∫ s

0

Ψ(t)

t1+P ′
dt and AP (s) =

∫ s

0

Φ̃(t)

t1+P ′
dt,

respectively. These functions ΨP (s) and ΦP (s) are used below with P = n
α . In

the case P =∞, the function Ψ∞ is interpreted as s
∫ s

0
Ψ(t)
t2 dt, see [6].

Theorem 2.10 ([6]). Let Φ and Ψ be Young functions and 0 ≤ α < n. Then

(i) The fractional maximal operator Mα is bounded from LΦ(Rn) to WLΨ(Rn)

if and only if

Φ dominates globally the function Q, (2.7)

whose inverse is given by

Q−1(r) = rα/nΨ−1(r).

(ii) It is bounded from LΦ(Rn) to LΨ(Rn) if and only if∫ 1

0

Ψ(t)

t1+n/(n−α)
dt <∞ and Φ dominates globally the function Ψn/α. (2.8)

Theorem 2.11 ([6]). Let Φ and Ψ Young functions and 0 < α < n. Then

(i) The Riesz potential Iα is bounded from LΦ(Rn) to WLΨ(Rn) if and only if∫ 1

0

Φ̃(t)/t1+n/(n−α)dt <∞ and Φn/α dominates Ψ globally. (2.9)

(ii) The Riesz potential Iα is bounded from LΦ(Rn) to LΨ(Rn) if and only if∫ 1

0

Φ̃(t)/t1+n/(n−α)dt <∞,
∫ 1

0

Ψ(t)/t1+n/(n−α)dt <∞, (2.10)

and Φ dominates Ψn/α globally and Φn/α dominates Ψ globally. (2.11)
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Remark 2.12. Note that condition (2.9) implies the condition (2.7). For the

proof of this fact, see [20, Lemma 12].

The following lemma was proved in [19]. In the case of Lp-spaces it was

proved in [16].

Lemma 2.13. Let Φ and Ψ be Young functions and 0 ≤ α < n, f ∈ LΦ
loc(Rn)

and B = B(x, r). If Φ and Ψ satisfy the conditions (2.7), then

‖Mαf‖WLΨ(B) .
1

Ψ−1
(
r−n

) sup
t>2r

Ψ−1
(
t−n
)
‖f‖LΦ(B(x,t)). (2.12)

If Φ and Ψ satisfy the conditions (2.8), then

‖Mαf‖LΨ(B) .
1

Ψ−1
(
r−n

) sup
t>2r

Ψ−1
(
t−n
)
‖f‖LΦ(B(x,t)). (2.13)

The known boundedness statement for the commutator operator [b, Iα] in

Orlicz spaces runs as follows.

Theorem 2.14 ([13]). Let 0 < α < n and b ∈ BMO(Rn). Let Φ be a Young

function and Ψ defined by its inverse Ψ−1(t) := Φ−1(t)t−α/n. If Φ,Ψ ∈ ∆2 ∩∇2,

then [b, Iα] is bounded from LΦ(Rn) to LΨ(Rn).

Remark 2.15. Note that the operator |b, Iα| is bounded from LΦ(Rn) to

LΨ(Rn) under the conditions of Theorem 2.14. The proof of this fact is similar

to proof of Theorem 2.14.

In [12], it was proved that the commutator of the Hardy–Littlewood maximal

operator Mb with b ∈ BMO(Rn) is bounded in LΦ(Rn) for any Young function Φ

with Φ ∈ ∆2∩∇2. This result, together with the inequality (2.1) and Remark 2.15,

implies the following theorem.

Theorem 2.16. Let 0 ≤ α < n and b,Φ and Ψ the same as in Theorem 2.14.

If Φ,Ψ ∈ ∆2 ∩∇2, then Mb,α is bounded from LΦ(Rn) to LΨ(Rn).

2.5. Generalized Orlicz–Morrey spaces. Various versions of generalized

Orlicz–Morrey spaces were introduced in [10], [32] and [42]. We used the def-

inition of [10], which runs as follows.

Definition 2.17. Let ϕ(x, r) be a positive measurable function on Rn×(0,∞)

and Φ any Young function. We define the generalized Orlicz–Morrey space

MΦ,ϕ(Rn) as the space of functions f ∈ LΦ
loc(Rn) with finite norm

‖f‖MΦ,ϕ = sup
x∈Rn,r>0

‖f‖LΦ(B(x,r))

ϕ(x, r)
.
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Lemma 2.18. Let Φ be a Young function, and ϕ be a positive measurable

function on Rn × (0,∞).

(i) If

sup
t<r<∞

ϕ(x, r)−1 =∞ (2.14)

for all t > 0 and for all x ∈ Rn, then MΦ,ϕ(Rn) = Θ, where Θ is the set of

all functions equivalent to 0 on Rn.

(ii) If Φ ∈ ∆′ and

sup
0<r<t

1

ϕ(x, r) Φ−1(|B(x, r)|−1)
=∞ (2.15)

for all t > 0 and for almost all x ∈ Rn, then MΦ,ϕ(Rn) = Θ.

Proof. (i) Let (2.14) be satisfied and f be not equivalent to zero. Then

A = ‖f‖LΦ(B(x0,t0)) > 0 for some x0 ∈ Rn and t0 > 0. Hence

‖f‖MΦ,ϕ ≥ sup
t0<r<∞

ϕ(x0, r)
−1 ‖f‖LΦ(B(x0,r))

≥ A sup
t0<r<∞

ϕ(x0, r)
−1.

Therefore, ‖f‖MΦ,ϕ =∞.

(ii) Let f ∈MΦ,ϕ(Rn) and (2.15) be satisfied. Then by Theorem 2.8, for almost

all x ∈ Rn,

lim
r→0+

‖fχB(x,r)‖LΦ

‖χB(x,r)‖LΦ

= |f(x)|. (2.16)

We claim that f(x) = 0 for all those x. Indeed, fix x and assume |f(x)| > 0.

Then by Lemma 2.9 and (2.16) there exists t0 > 0 such that

Φ−1(|B(x, r)|−1) ‖f‖LΦ(B(x,r)) ≥
|f(x)|

2

for all 0 < r ≤ t0. Consequently,

‖f‖MΦ,ϕ≥ sup
0<r<t0

ϕ(x, r)−1 ‖f‖LΦ(B(x,r))≥
|f(x)|

2
sup

0<r<t0

1

ϕ(x, r) Φ−1(|B(x, r)|−1)

Hence ‖f‖MΦ,ϕ=∞, so f /∈MΦ,ϕ(Rn), and we have arrived at a contradiction. �

Remark 2.19. Let Φ be a Young function. We denote by ΩΦ the sets of all

positive measurable functions ϕ on Rn × (0,∞) such that for some t1, t2 > 0,
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sup
x∈Rn

‖ϕ(x, r)−1‖L∞(t1,∞) <∞,
and

sup
x∈Rn

∥∥∥∥ 1

ϕ(x, r) Φ−1(|B(x, r)|−1)

∥∥∥∥
L∞(0,t2)

<∞,

respectively. In what follows, keeping in mind Lemma 2.18, we always assume

that ϕ ∈ ΩΦ and Φ ∈ ∆′.

Also, we define the weak generalized Orlicz–Morrey space WMΦ,ϕ(Rn) as

the set of functions f ∈WLΦ
loc(Rn) for which

‖f‖WMΦ,ϕ = sup
x∈Rn,r>0

‖f‖WLΦ(B(x,r))

ϕ(x, r)
<∞.

According to these definitions, we recover the generalized Morrey spaceMp,ϕ

and the weak generalized Morrey space WMp,ϕ under the choice Φ(r) = rp, 1≤
p<∞:

Mp,ϕ =MΦ,ϕ
∣∣∣
Φ(r)=rp

, WMp,ϕ = WMΦ,ϕ
∣∣∣
Φ(r)=rp

.

The following theorem was proved in [19]. Our results for vanishing spaces

are based on this theorem.

Theorem 2.20. Let 0 ≤ α < n, ϕ1 ∈ ΩΦ, ϕ2 ∈ ΩΨ, Φ,Ψ ∈ ∆′, and the

following condition be satisfied:

sup
t>r

Ψ−1
(
t−n
)

ess inf
s>t

ϕ1(x, s) ≤ C ϕ2(x, r)Ψ−1
(
r−n

)
, (2.17)

where C does not depend on x and r. Then the operator Mα is bounded from

MΦ,ϕ1(Rn) to MΨ,ϕ2(Rn) under the conditions (2.8), and from MΦ,ϕ1(Rn) to

WMΨ,ϕ2(Rn) under the conditions (2.7).

3. Vanishing generalized Orlicz–Morrey spaces

The vanishing generalized Orlicz–Morrey spaces were introduced in [9], see

also [14], [15]. We used the definition of [9], which runs as follows.

Definition 3.1. The vanishing generalized Orlicz–Morrey space VMΦ,ϕ(Rn)

and its weak version VWMΦ,ϕ(Rn) are defined as the spaces of functions f ∈
MΦ,ϕ(Rn) and f ∈WMΦ,ϕ(Rn) such that

lim
r→0

sup
x∈Rn

‖f‖LΦ(B(x,r))

ϕ(x, r)
= 0 and lim

r→0
sup
x∈Rn

‖f‖WLΦ(B(x,r))

ϕ(x, r)
= 0,

respectively.
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Remark 3.2. Let Φ be a Young function. We denote by ΩVΦ the sets of all

positive measurable functions ϕ on Rn × (0,∞) such that

inf
x∈Rn

inf
r>δ

ϕ(x, r) > 0 for some δ > 0, (3.1)

and
lim
r→0

1

Φ−1(r−n) infx∈Rn ϕ(x, r)
= 0. (3.2)

Taking into account Lemma 2.18 for the non-triviality of the space VMΦ,ϕ(Rn),

we always assume that ϕ ∈ ΩVΦ and Φ ∈ ∆′.

The spaces VMΦ,ϕ(Rn) and VWMΦ,ϕ(Rn) are closed subspaces of the Ba-

nach spaces MΦ,ϕ(Rn) and WMΦ,ϕ(Rn), respectively, which may be shown by

standard means.

We will also use the notation

AΦ,ϕ(f ;x, r) :=
‖f‖LΦ(B(x,r))

ϕ(x, r)
and AWΦ,ϕ(f ;x, r) :=

‖f‖WLΦ(B(x,r))

ϕ(x, r)

for brevity, so that

VMΦ,ϕ(Rn) =

{
f ∈MΦ,ϕ(Rn) : lim

r→0
sup
x∈Rn

AΦ,ϕ(f ;x, r) = 0

}
,

and similarly for VWMΦ,ϕ(Rn).

4. Boundedness of the fractional maximal operator

in the spaces V MΦ,ϕ(Rn)

In this section, we give sufficient conditions for the boundedness of the

fractional maximal operator Mα in vanishing generalized Orlicz–Morrey spaces

VMΦ,ϕ(Rn).

Theorem 4.1. Let 0 ≤ α < n, Φ,Ψ be Young functions, ϕ1 ∈ ΩVΦ , ϕ2 ∈ ΩVΨ
and Φ,Ψ ∈ ∆′. If

mδ := sup
t>δ

sup
x∈Rn

ϕ1(x, t)Ψ−1
(
t−n
)
<∞ (4.1)

for every δ > 0, and
sup
t>r

Ψ−1
(
t−n
)
ϕ1(x, t)

Ψ−1
(
r−n

)
ϕ2(x, r)

≤ C0, (4.2)

where C0 does not depend on x and r, then the fractional maximal operator Mα

is bounded from VMΦ,ϕ1(Rn) to VWMΨ,ϕ2(Rn) under the conditions (2.7), and

from VMΦ,ϕ1(Rn) to VMΨ,ϕ2(Rn) under the conditions (2.8).
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Proof. The norm inequalities follow from Theorem 2.20. Thus we only have

to prove that

lim
r→0

sup
x∈Rn

AΦ,ϕ1(f ;x, r) = 0 =⇒ lim
r→0

sup
x∈Rn

AΨ,ϕ2(Mαf ;x, r) = 0, (4.3)

under the conditions (2.8), and

lim
r→0

sup
x∈Rn

AΦ,ϕ1
(f ;x, r) = 0 =⇒ lim

r→0
sup
x∈Rn

AWΨ,ϕ2
(Mf ;x, r) = 0, (4.4)

under the conditions (2.7).

In the proof of (4.3)–(4.4), we follow the ideas of [40], where the authors

investigated the boundedness of some classical operators on vanishing generalized

Morrey spaces, but base ourselves on Lemma 2.13.

We start with (4.3). We rewrite the inequality (2.13) in the form

AΨ,ϕ2
(Mαf ;x, r) ≤ C

supt>r Ψ−1
(
t−n
)
‖f‖LΦ(B(x,t))

ϕ2(x, r)Ψ−1 (r−n)
. (4.5)

To show that sup
x∈Rn

AΨ,ϕ2
(Mαf ;x, r) < ε for small r, we split the right-hand

side of (4.5):

AΨ,ϕ2
(Mαf ;x, r) ≤ C[Iδ0(x, r) + Jδ0(x, r)], (4.6)

where δ0 > 0 will be chosen as shown below (we may take δ0 < 1), and

Iδ0(x, r) :=
supr<t<δ0 Ψ−1

(
t−n
)
‖f‖LΦ(B(x,t))

ϕ2(x, r)Ψ−1 (r−n)
,

Jδ0(x, r) :=
supt>δ0 Ψ−1

(
t−n
)
‖f‖LΦ(B(x,t))

ϕ2(x, r)Ψ−1 (r−n)
,

and it is supposed that r < δ0. Now, we choose any fixed δ0 > 0 such that

sup
x∈Rn

AΦ,ϕ1(f ;x, t) <
ε

2CC0
, for all 0 < t < δ0,

where C and C0 are constants from (4.6) and (4.2), which is possible since f is

assumed to be in VMΦ,ϕ1(Rn). Then ‖f‖LΦ(B(x,t)) < ε
2CC0

ϕ1(x, t), and we

obtain the estimate of the first term uniform in r ∈ (0, δ0):

sup
x∈Rn

CIδ0(x, r) <
ε

2
, 0 < r < δ0,

by (4.2).
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The estimation of the second term now may be made already by the choice

of r sufficiently small thanks to the condition (3.2). We have

Jδ(x, r) ≤
mδ0‖f‖MΦ,ϕ1

Ψ−1(r−n)ϕ2(x, r)
,

where mδ0 is the constant from (4.1) with δ = δ0. Then, by (3.2), it suffices to

choose r small enough such that

sup
x∈Rn

1

Ψ−1(r−n)ϕ2(x, r)
≤ ε

2mδ0‖f‖MΦ,ϕ1

,

which completes the proof of (4.3).

The proof of (4.4) is, line by line, similar to the proof of (4.3). �

Remark 4.2. The condition (4.1) may be omitted when ϕ(x, r) does not

depend on x, since (4.1) follows from (4.2) in this case.

If we take Φ(t) = tp, Ψ(t) = tq with 1 ≤ p, q < ∞ at Theorem 4.1, we get

the following new result.

Corollary 4.3. Let 0 ≤ α < n, 1 ≤ p < n
α , 1

q = 1
p −

α
n and ϕ1 ∈ ΩVp ,

ϕ2 ∈ ΩVq . Let also ϕ1, ϕ2 satisfy the conditions

lim
r→0

r
n
p

infx∈Rn ϕ2(x, r)
= 0, sup

t>δ
sup
x∈Rn

ϕ1(x, t)t−
n
q <∞

for every δ > 0, and

sup
t>r

ϕ1(x, t)

t
n
q

≤ Cϕ2(x, r)

r
n
q

,

where C does not depend on x and r. Then the operator Mα is bounded from

VMp,ϕ1(Rn) to VMq,ϕ2(Rn) when p>1, and from VMp,ϕ1(Rn) to VWMq,ϕ2(Rn)
when p ≥ 1.

Remark 4.4. Theorem 2.20 leads us to the corresponding mapping properties

in the vanishing spaces stated in Theorem 4.1. Note that for vanishing spaces we

have to impose the condition (4.2) more restrictive than the condition (2.17).

Indeed, if the condition (4.2) holds, then

sup
t>r

ess inf
t<s<∞

ϕ1(x, s) Ψ−1
(
t−n
)
≤ sup

t>r
ϕ1(x, t)Ψ−1

(
t−n
)
, r ∈ (0,∞),

so the condition (2.17) holds.
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On the other hand, the functions

ϕ1(x, t) =
tβ

χ
(1,∞)

(t)
, ϕ2(x, t) = Ψ−1

(
t−n
)
(1 + tβ), β > 0 (4.7)

with supremal regularity condition

sup
t>r

Ψ−1
(
t−n
)
tβ . Ψ−1

(
r−n

)
rβ

satisfy the condition (2.17), but do not satisfy the condition (4.2).

To compare, we formulate the following theorem (proved in [15]) and remark

below.

Theorem 4.5. Let 0 < α < n, Φ,Ψ be Young functions ϕ1 ∈ ΩVΦ , ϕ2 ∈ ΩVΨ
and Φ,Ψ ∈ ∆′. If

cδ :=

∫ ∞
δ

sup
x∈Rn

ϕ1(x, t)
Ψ−1

(
t−n
)

t
dt <∞ (4.8)

for every δ > 0, and∫ ∞
r

ϕ1(x, t) Ψ−1
(
t−n
)dt
t
≤ C0ϕ2(x, r)Ψ−1

(
r−n

)
, (4.9)

where C0 does not depend on x ∈ Rn and r > 0, then the operator Iα is bounded

from VMΦ,ϕ1(Rn) to VMΨ,ϕ2(Rn) under the conditions (2.10)–(2.11), and from

VMΦ,ϕ1(Rn) to VWMΨ,ϕ2(Rn) under the conditions (2.9).

Remark 4.6. Although fractional maximal function is pointwise dominated

by the Riesz potential, and consequently, the results for the former could be

derived from the results for the latter, we consider them separately, because we

are able to study the fractional maximal operator under weaker assumptions

than derived from the results for the potential operator. More precisely, under

the nondecreasingness condition on ϕ1(x, r) in r, conditions (4.9) and (4.8) imply

the conditions (4.2) and (4.1), respectively. Indeed, by (2.3) we have

Ψ−1
(
s−n

)
≈ Ψ−1

(
s−n

)
sn
∫ ∞
s

dt

tn+1
.
∫ ∞
s

Ψ−1
(
t−n
)dt
t
.

This inequality implies that

ϕ2(x, r)Ψ−1
(
r−n

)
&
∫ ∞
r

ϕ1(x, t) Ψ−1
(
t−n
)dt
t
&
∫ ∞
s

ϕ1(x, t)Ψ−1
(
t−n
)dt
t
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& ϕ1(x, s)

∫ ∞
s

Ψ−1
(
t−n
)dt
t
& ϕ1(x, s)Ψ−1

(
s−n

)
,

where we took s ∈ (r,∞), so that

sup
s>r

ϕ1(x, s)Ψ−1
(
s−n

)
. ϕ2(x, r)Ψ−1

(
r−n

)
.

The proof of implication “(4.8)⇒ (4.1)” can be made similarly.

Note that if we did not impose the monotonicity condition on ϕ1(x, r) in r,

these implications could not be true. For example, for the function ϕ1(x, r) =∑∞
n=0 χ[n,n+2−n](r)

Ψ−1(r−n)
, the implication “(4.9) ⇒ (4.2)” is not true. Also note that

the functions ϕ1(x, t) = ϕ2(x, t) = 1

Ψ−1
(
t−n
) satisfy (4.2), but not (4.9).

5. Commutators of the fractional maximal operator

in the spaces V MΦ,ϕ

For a possibility to compare with our new results, we formulate the following

theorem, which was proved in [15].

Theorem 5.1. Let 0 < α < n and b ∈ BMO(Rn). Let Φ be a Young

function and Ψ defined, via its inverse, by Ψ−1(t) := Φ−1(t)t−α/n and Φ,Ψ ∈
∆′ ∩∇2. Let also ϕ1 ∈ ΩVΦ , ϕ2 ∈ ΩVΨ,

∫ ∞
r

(
1 + ln

t

r

)
ϕ1(x, t) Ψ−1

(
t−n
) dt
t
≤ C0ϕ2(x, r)Ψ−1

(
r−n

)
, (5.1)

where C0 does not depend on x ∈ Rn and r > 0,

lim
r→0

ln 1
r

Ψ−1(r−n) infx∈Rn ϕ2(x, r)
= 0 (5.2)

and

cδ :=

∫ ∞
δ

(1 + |ln t|) sup
x∈Rn

ϕ1(x, t)
Ψ−1

(
t−n
)

t
dt <∞ (5.3)

for every δ > 0. Then the operator [b, Iα] is bounded from VMΦ,ϕ1(Rn) to

VMΨ,ϕ2(Rn).
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We find it important to underline once again that the results of this section

for the commutator Mb,α of the fractional maximal operator are obtained in

supremal terms, i.e., under weaker assumptions than derived from Theorem 5.1.

More precisely, the supremal condition (5.6) is weaker than the corresponding

integral condition (5.1), see Remark 4.6.

The following lemma and theorem were proved in [19].

Lemma 5.2. Let 0 ≤ α < n and b ∈ BMO(Rn). Let also Φ be a Young

function and Ψ defined, via its inverse, by Ψ−1(t) := Φ−1(t)t−α/n and Φ,Ψ ∈
∆2 ∩∇2. Then

‖Mb,αf‖LΨ(B(x0,r)) .
‖b‖∗

Ψ−1
(
r−n

) sup
t>2r

(
1 + ln

t

r

)
Ψ−1

(
t−n
)
‖f‖LΦ(B(x0,t)) (5.4)

for any ball B(x0, r) and all f ∈ LΦ
loc(Rn).

Theorem 5.3. Let 0 ≤ α < n and b ∈ BMO(Rn). Let also Φ be a Young

function and Ψ defined, via its inverse, by Ψ−1(t) := Φ−1(t)t−α/n, Φ,Ψ ∈ ∆′∩∇2

and ϕ1 ∈ ΩΦ, ϕ2 ∈ ΩΨ. If

sup
t>r

(
1 + ln

t

r

)
ess inf
t<s<∞

ϕ1(x, s) Ψ−1
(
t−n
)
≤ C0 ϕ2(x, r) Ψ−1

(
r−n

)
, (5.5)

then the operator Mb,α is bounded from MΦ,ϕ1(Rn) to MΨ,ϕ2(Rn).

These results lead us to the following theorem.

Theorem 5.4. Let 0 ≤ α < n, b ∈ BMO(Rn), Φ be a Young function and

Ψ defined, via its inverse, by Ψ−1(t) := Φ−1(t)t−α/n and Φ,Ψ ∈ ∆′ ∩ ∇2. Let

also ϕ1 ∈ ΩVΦ , ϕ2 ∈ ΩVΨ satisfy the conditions (5.2) and

sup
t>r

(
1 + ln

t

r

)
ϕ1(x, t) Ψ−1

(
t−n
)
≤ C0 ϕ2(x, r) Ψ−1

(
r−n

)
. (5.6)

Suppose also that

sup
t>δ

(1 + | ln t|) Ψ−1
(
t−n
)

sup
x∈Rn

ϕ1(x, t) <∞ (5.7)

for every δ > 0. Then the operator Mb,α is bounded from VMΦ,ϕ1(Rn) to

VMΨ,ϕ2(Rn).
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Proof. The norm inequality have already been provided by Theorem 5.3,

hence we only have to prove the implication

lim
r→0

sup
x∈Rn

‖f‖LΦ(B(x,r))

ϕ1(x, r)
= 0 =⇒ lim

r→0
sup
x∈Rn

‖Mb,αf‖LΨ(B(x,r))

ϕ2(x, r)
= 0. (5.8)

To check whether

sup
x∈Rn

‖Mb,αf‖LΨ(B(x,r))

ϕ2(x, r)
< ε for small r,

we use the estimate (5.4):

‖Mb,αf‖LΨ(B(x,r))

ϕ2(x, r)
.

‖b‖∗
ϕ2(x, r)Ψ−1

(
r−n

) sup
r<t<∞

(
1+ln

t

r

)
Ψ−1

(
t−n
)
‖f‖LΦ(B(x,t)).

We take r < δ0, where δ0 will be chosen small enough, and split the integration:

‖Mb,αf‖LΨ(B(x,r))

ϕ2(x, r)
≤ C[Iδ0(x, r) + Jδ0(x, r)], (5.9)

where

Iδ0(x, r) :=
1

Ψ−1(r−n)ϕ2(x, r)
sup

r<t<δ0

(
1 + ln

t

r

)
Ψ−1

(
t−n
)
‖f‖LΦ(B(x,t)),

and

Jδ0(x, r) :=
1

Ψ−1(r−n)ϕ2(x, r)
sup

δ0<t<∞

(
1 + ln

t

r

)
Ψ−1

(
t−n
)
‖f‖LΦ(B(x,t)).

We choose a fixed δ0 > 0 such that

sup
x∈Rn

‖f‖LΦ(B(x,t))

ϕ1(x, t)
<

ε

2CC0
, t ≤ δ0,

where C and C0 are constants from (5.9) and (5.6), which yields the estimate of

the first term uniform in r ∈ (0, δ0): sup
x∈Rn

CIδ0(x, r) < ε
2 , 0 < r < δ0.

For the second term, writing 1 + ln t
r ≤ 1 + |ln t|+ ln 1

r , we obtain

Jδ0(x, r) ≤
mδ0 + m̃δ0 ln 1

r

Ψ−1(r−n)ϕ2(x, r)
‖f‖MΦ,ϕ ,

where mδ0 is the constant from (5.7) with δ = δ0, and c̃δ0 is a similar constant

with omitted logarithmic factor in the integrand. Then, by (5.2) we can choose

small r such that supx∈Rn Jδ0(x, r) < ε
2 , which completes the proof. �
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If we take Φ(t) = tp, Ψ(t) = tq with 1 < p, q < ∞ at Theorem 5.4, we get

the following new result.

Corollary 5.5. Let 0 ≤ α < n, 1 < p < n
α , 1

q = 1
p −

α
n , b ∈ BMO(Rn),

ϕ1 ∈ ΩVp , ϕ2 ∈ ΩVq and

sup
t>r

(
1 + ln

t

r

)
ϕ1(x, t)

t
n
q

≤ C0
ϕ2(x, r)

r
n
q

be fulfilled, where C0 does not depend on x ∈ Rn and r > 0. If

lim
r→0

r
n
q ln 1

r

infx∈Rn ϕ2(x, r)
= 0

and

sup
t>δ

1 + | ln t|
t
n
q

sup
x∈Rn

ϕ1(x, t) <∞

for every δ > 0, then the commutator Mb,α is bounded from VMp,ϕ1(Rn) to

VMq,ϕ2(Rn). In particular, this holds for the spaces VMp,λ(Rn) with ϕ1(x, r) =

r
λ
p and ϕ2(x, r) = r

λ
q , 0 ≤ λ < n.
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