
Publ. Math. Debrecen

90/1-2 (2017), 149–167

DOI: 10.5486/PMD.2017.7500

On numerical semigroups closed with respect
to the action of affine maps

By SIMONE UGOLINI (Trento)

Abstract. In this paper, we study numerical semigroups containing a given posi-

tive integer and closed with respect to the action of an affine map. For such semigroups

we find a minimal set of generators, their embedding dimension, their genus and their

Frobenius number.

1. Introduction

A numerical semigroup G is a subsemigroup of the semigroup of non-negative

integers (N,+) containing 0 and such that N\G is finite. A comprehensive intro-

duction to numerical semigroups is given in [4]. Nevertheless, for the reader’s

convenience we recall some basic notions, which we will make use of in the cur-

rent paper.

A set S ⊆ N generates a numerical semigroup G, namely, G = 〈S〉, if and

only if

gcd(S) = 1,

where gcd(S) is the greatest common divisor of the elements contained in S.

Any numerical semigroup G has a unique finite minimal set of generators,

whose cardinality is the embedding dimension e(G) of G.

The cardinality of N\G is called the genus of G and is denoted by g(G), while

the integer

F (G) := max{x : x ∈ Z\G}

is called the Frobenius number of G.
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Key words and phrases: numerical semigroups, Diophantine equations, Frobenius problem.



150 Simone Ugolini

If n ∈ G\{0}, then the set

Ap(G,n) := {s ∈ G : s− n 6∈ G}

is called the Apéry set of G with respect to n.

For any a ∈ N∗ := N\{0} and b ∈ N we define the affine map

ϑa,b : N→ N

x 7→ ax + b.

We give the following definition.

Definition 1.1. A subsemigroup G of (N,+) containing 0 is a ϑa,b-semigroup

if ϑa,b(y) ∈ G for any y ∈ G\{0}.

The problem we deal with in the paper consists in finding the smallest ϑa,b-

semigroup Ga,b(c) containing a given integer c ∈ N\{0, 1}, once two positive

integers a and b such that gcd(b, c) = 1 are chosen. We notice that under such

hypotheses Ga,b(c) is a numerical semigroup, while the same does not hold if

gcd(b, c) > 1. Indeed, if d := gcd(b, c) > 1, then all elements in G are divisible

by d and G is not co-finite. The existence and the structure of Ga,b(c) are dealt

with in Theorem 3.1.

In the literature, some special cases of ϑa,b-semigroups have been studied.

In [3], the authors studied Thabit numerical semigroups, namely, numerical

semigroups defined for any n ∈ N∗ as

T (n) := 〈
{

3 · 2n+i − 1 : i ∈ N
}
〉.

Indeed, if we set c := 3 · 2n − 1, then T (n) = G2,1(c).

Also Mersenne numerical semigroups [1], namely, numerical semigroups de-

fined for any n ∈ N∗ as

M(n) := 〈
{

2n+i − 1 : i ∈ N
}
〉,

are ϑ2,1-semigroups. In this case, setting c := 2n−1, we have that M(n) = G2,1(c).

In [2], for a given integer b ∈ N\{0, 1} and a given positive integer n, the

authors defined

M(b, n) := 〈
{
bn+i − 1 : i ∈ N

}
〉

as a submonoid of (N,+). If we set c := bn − 1, then M(b, n) = Gb,b−1(c).

We notice that this latter is not a numerical semigroup. Indeed, we have that

gcd(b− 1, c) 6= 1.
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Synopsis of the paper. The paper is organized as follows.

• In Section 2, we introduce some notations.

• In Section 3, we present (omitting the proofs) the main results of the paper

(Theorem 3.1, Theorem 3.2, Corollary 3.3 and Theorem 3.4). Some examples

of ϑa,b-semigroups follow.

• Section 4 and 5 contain all the necessary background and proofs supporting

the results presented in Section 3. In particular, Section 5 consists of the

proofs of Theorem 3.1, Theorem 3.2 and Theorem 3.4.

2. Definitions and notations

Let {a, b, c} ⊆ N∗.
• If y and z are two non-negative integers such that y < z, then

[y, z[ := {x ∈ N : y ≤ x < z};
[y, z] := {x ∈ N : y ≤ x ≤ z};

[y,+∞[ := {x ∈ N : y ≤ x}.

• If k ∈ N, then we define

sk(a) :=

{
0 if k = 0,∑k−1

i=0 ai otherwise,

and, accordingly,

tk(a, b, c) := akc + b · sk(a).

Moreover, we define the set

S(a, b, c) := {tk(a, b, c) : k ∈ N},

and, for any non-negative integer k̃,

Sk̃(a, b, c) := {tk(a, b, c) : k ∈ N and 0 ≤ k ≤ k̃}.

• We denote by H(a, b, c) the semigroup generated by S(a, b, c), namely,

H(a, b, c) := 〈S(a, b, c)〉.

If gcd(b, c) = 1, then gcd(c, ac + b) = 1, too. Therefore, since {c, ac +

b} ⊆ S(a, b, c), we have that gcd(S(a, b, c)) = 1, and S(a, b, c) generates a

numerical semigroup.
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• If K is a non-empty finite subset of N and k̃ := max{k ∈ K}, then we say

that a set {ji}i∈K of non-negative integers is a-reduced if

– ji ∈ [0, a] for any i ∈ K\{0};
– jk̃ 6= 0;

– if jk = a for some k ∈ K\{0}, then ji = 0 for any i ∈ K\{0} such that

i < k.

• If {ji}i∈K1
and {j̃i}i∈K2

are two a-reduced sets of integers indexed on two

subsets K1 and K2 of N∗ such that

k1 := max{k ∈ K1}, k2 := max{k ∈ K2},

then we say that

– {ji}i∈K1
= {j̃i}i∈K2

if and only if K1 = K2 and ji = j̃i for any i ∈ K1;

– {ji}i∈K1
≺ {j̃i}i∈K2

if and only if k1 < k2 or k1 = k2 and jM < j̃M ,

where M := max{k ∈ K1 : jk 6= j̃k}.

3. Main results and examples

In this and the following sections {a, b, c} is a subset of N∗, where c ≥ 2 and

gcd(b, c) = 1. The following holds.

Theorem 3.1. We have that Ga,b(c) = H(a, b, c).

In the following theorem a minimal set of generators for Ga,b(c) is provided.

Theorem 3.2. Let k̃ := min{k ∈ N : sk(a) > c− 1}. Then Sk̃−1(a, b, c) is a

minimal set of generators for Ga,b(c).

As an immediate consequence of Theorem 3.2, we obtain the embedding

dimension of Ga,b(c), since for each k̃ ∈ N we have that |Sk̃(a, b, c)| = k̃ + 1.

Corollary 3.3. Let k̃ := min{k ∈ N : sk(a) > c− 1}. Then e(Ga,b(c)) = k̃.

In the following theorem, we determine the Frobenius number F (Ga,b(c))

and the genus g(Ga,b(c)) of Ga,b(c).

Theorem 3.4. For any l ∈ [1, c− 1] there exists and is unique an a-reduced

set of integers {j(l)i }
kl
i=1, for some positive integer kl, such that

l =

kl∑
i=1

j
(l)
i · si(a).
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Moreover, if we define

xl :=

{
0 if l = 0,∑kl

i=1 j
(l)
i · ti(a, b, c) if l ∈ [1, c− 1],

then the following hold:

(1) xl = min{x ∈ Ga,b(c) : x ≡ bl (mod c)};
(2) Ap(Ga,b(c), c) = {xl : l ∈ [0, c− 1]};
(3) F (Ga,b(c)) = xc−1 − c;

(4) g(Ga,b(c)) = 1
c ·
∑c−1

l=1 xl − c−1
2 .

As a by-product of Theorem 3.4, we get the following membership criterion:

if n ∈ N and n ≡ xl (mod c) for some l ∈ [0, c− 1], then n ∈ Ga,b(c) if and only

if n ≥ xl.

Example 3.5. In this example, we study the semigroup G3,1(3).

Adopting the notations introduced above, we have that

a = 3, b = 1, c = 3.

Moreover,

x0 = 0, x1 = 1 · t1(3, 1, 3) = 1 · (3 · 3 + 1) = 10, x2 = 2 · t1(3, 1, 3) = 20.

Therefore,

F (G3,1(3)) = 17, g(G3,1(3)) = 9,

according to Theorem 3.4.

Since

min{k ∈ N : sk(3) > 2} = 2,

we have that

G3,1(3) = 〈S1(3, 1, 3)〉,

according to Theorem 3.2.

The non-negative integers smaller than 21, belonging to G3,1(3), are listed

in the following table (the numbers in bold are the elements of S1(3, 1, 3)):

0 3 6 9 12 15 18

10 13 16 19

20
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Example 3.6. In this example, we study the semigroup G3,1(5).

We have that

a = 3, b = 1, c = 5.

Moreover,

x0 = 0, x1 = 1 · t1(3, 1, 5) = 1 · (3 · 5 + 1) = 16, x2 = 2 · t1(3, 1, 5) = 32,

x3 = 3 · t1(3, 1, 5) = 48, x4 = 1 · t2(3, 1, 5) = 32 · 5 + 4 = 49.

Therefore,

F (G3,1(5)) = 44, g(G3,1(5)) = 27,

according to Theorem 3.4.

Since

min{k ∈ N : sk(3) > 4} = 3,

we have that

G3,1(5) = 〈S2(3, 1, 5)〉,

according to Theorem 3.2.

The non-negative integers smaller than 50, belonging to G3,1(5), are listed

in the following table (the numbers in bold are the elements of S2(3, 1, 5)):

0 5 10 15 20 25 30 35 40 45

16 21 26 31 36 41 46

32 37 42 47

48

49

Example 3.7. In this example, we study the semigroup G2,3(4).

We have that

a = 2, b = 3, c = 4.

Moreover,

x0 = 0, x1 = 1 · t1(2, 3, 4) = 1 · (2 · 4 + 3) = 11,

x2 = 2 · t1(2, 3, 4) = 22, x3 = 1 · t2(2, 3, 4) = 1 · (4 · 4 + 3 · 3) = 25.

Therefore,

F (G2,3(4)) = 21, g(G2,3(4)) = 13,

according to Theorem 3.4.
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Since

min{k ∈ N : sk(2) > 3} = 3,

we have that

G2,3(4) = 〈S2(2, 3, 4)〉,

according to Theorem 3.2.

The non-negative integers smaller than 28, belonging to G2,3(4), are listed

in the following table (the numbers in bold are the elements of S2(2, 3, 4)):

0 4 8 12 16 20 24

25

22 26

11 15 19 23 27

4. Background

In this section, we prove some technical lemmas which we will repeatedly use

in Section 5.

Lemma 4.1. We have that S(a, b, c) ⊆ Ga,b(c).

Proof. We prove by induction on k ∈ N that any tk(a, b, c) belongs to

Ga,b(c). If k = 0, then t0(a, b, c) = c ∈ Ga,b(c).

Suppose now that tk(a, b, c) ∈ Ga,b(c) for some non-negative integer k. Then

tk+1(a, b, c) = a · tk(a, b, c) + b = ϑa,b(tk(a, b, c)) ∈ Ga,b(c). �

Lemma 4.2. H(a, b, c) is a subsemigroup of (N,+) closed with respect to

the action of the map ϑa,b.

Proof. By definition, H(a, b, c) is a subsemigroup of (N,+). We prove that

H(a, b, c) is closed with respect to the action of the map ϑa,b.

Consider an element

y =
∑
k∈K

jk · tk(a, b, c) ∈ H(a, b, c),

where K is a non-empty finite subset of N and {jk}k∈K is a set of positive integers.

Let k̃ be a chosen element of K. Then

ay + b =
∑
k∈K

ajk · tk(a, b, c) + b =
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=
∑
k∈K
k 6=k̃

ajk · tk(a, b, c) + a(jk̃ − 1) · tk̃(a, b, c) + a · tk̃(a, b, c) + b

=
∑
k∈K
k 6=k̃

ajk · tk(a, b, c) + a(jk̃ − 1) · tk̃(a, b, c) + tk̃+1(a, b, c).

Since this latter is a linear combination of elements in S(a, b, c) with coefficients

in N, we conclude that ay + b ∈ H(a, b, c). �

Lemma 4.3. For any k ∈ N we have that the set

Ik(a, b, c) := {akc + bi : i ∈ [0, sk(a)]}

is contained in H(a, b, c).

Proof. We prove the claim by induction on k. Proving the base step is

trivial, since c ∈ H(a, b, c) and

I0(a, b, c) = {c}.

Suppose now that Ik(a, b, c) ⊆ H(a, b, c) for some k ∈ N. For any r ∈
[0, sk(a)[ and any j ∈ [0, a] we have that

ak+1c + b(ar + j) ∈ H(a, b, c).

In fact,

ak+1c + b(ar + j) = (a− j) · (akc + br) + j · (akc + b(r + 1)),

where

{akc + br, akc + b(r + 1)} ⊆ Ik(a, b, c).

Therefore,

{ak+1c + bi : i ∈ [0, a · sk(a)]} ⊆ H(a, b, c).

Finally,

tk+1(a, b, c) = ϑa,b(tk(a, b, c)) ∈ H(a, b, c).

Hence, Ik+1(a, b, c) ⊆ H(a, b, c) and the inductive step is proved. �

Lemma 4.4. Let k be a non-negative integer such that sk(a) ≥ c− 1. Then

[tk(a, b, c),+∞[⊆ H(a, b, c).
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Proof. Let y ∈ [tk(a, b, c),+∞[. Then

y ≡ r (mod c)

for some r ∈ [0, c− 1].

Since gcd(b, c) = 1, there exists an integer i ∈ [0, c− 1] ⊆ [0, sk(a)] such that

akc + bi ≡ r (mod c).

Therefore,

y − akc− bi ≡ 0 (mod c),

namely,

y = akc + bi + cq

for some non-negative integer q. Since

{akc + bi, c} ⊆ H(a, b, c),

according to Lemma 4.3, we conclude that y ∈ H(a, b, c), and the result

follows. �

Lemma 4.5. If k is a positive integer such that sk(a) ≤ c− 1, then

tk(a, b, c) 6∈ 〈Sk−1(a, b, c)〉.

Proof. Suppose by contradiction that∑
i∈K

ji · ti(a, b, c) = tk(a, b, c)

for some positive integers {ji}i∈K indexed on a non-empty set K ⊆ [0, k − 1].

Before proceeding, we define K∗ := K\{0}.
We distinguish three different cases.

Case 1.
∑

i∈K ji · ai ≤ ak. We distinguish four subcases.

• Subcase 1. a = 1. Then ∑
i∈K

ji1
i ≤ 1k.

This latter is possible only if |K| = 1 and the only integer ji is equal to 1.

Therefore, K = {r} for some r ∈ [0, k − 1] and jr = 1. Hence,∑
i∈K

ji · ti(a, b, c) = c + b · sr(1),

while

tk(a, b, c) = c + b · sk(1).

Since sr(1) < sk(1), we conclude that
∑

i∈K ji · ti(a, b, c) 6= tk(a, b, c).
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• Subcase 2. a > 1 and
∑

i∈K∗ ji = 0. Then K = {0} and∑
i∈K

ji · ti(a, b, c) = j0 · c ≡ 0 (mod c).

Since

tk(a, b, c) ≡ b · sk(a) (mod c)

and

b · sk(a) 6≡ 0 (mod c)

because gcd(b, c) = 1 and 1 ≤ sk(a) ≤ c − 1, we conclude that
∑

i∈K ji ·
ti(a, b, c) 6= tk(a, b, c).

• Subcase 3. a > 1 and
∑

i∈K∗ ji = 1. Then either K = {r} or K = {0, r}
for some positive integer r. In both cases, jr = 1.

If K = {r}, then∑
i∈K

ji · ti(a, b, c) = arc + b · sr(a) < tk(a, b, c).

If K = {0, r}, then∑
i∈K

ji · ti(a, b, c) = j0 · c + arc + b · sr(a).

We notice that

tk(a, b, c) ≡ b · sk(a) (mod c),
∑
i∈K

ji · ti(a, b, c) ≡ b · sr(a) (mod c).

Since gcd(b, c) = 1 and

0 < sk(a)− sr(a) < c− 1,

we conclude that

tk(a, b, c) 6≡
∑
i∈K

ji · ti(a, b, c) (mod c),

and, consequently, tk(a, b, c) 6=
∑

i∈K ji · ti(a, b, c).



On numerical semigroups and affine maps 159

• Subcase 4. a > 1 and
∑

i∈K∗ ji ≥ 2. Then∑
i∈K

ji · ti(a, b, c)

=
∑
i∈K

ji · aic + b ·
∑
i∈K∗

ji · si(a) ≤ ak · c + b ·

(∑
i∈K∗

ji ·
ai − 1

a− 1

)

= ak · c +
b

a− 1
·

(∑
i∈K∗

ji · ai−
∑
i∈K∗

ji

)
≤ ak · c +

b

a− 1
·

(
ak−

∑
i∈K∗

ji

)

≤ ak · c +
b

a− 1
·
(
ak − 2

)
< ak · c + b · a

k − 1

a− 1
= tk(a, b, c).

Case 2.
∑

i∈K ji · ai > ak and
∑

i∈K ji · si(a) > sk(a). Then∑
i∈K

ji · ti(a, b, c) > tk(a, b, c),

in contradiction with the initial assumption.

Case 3.
∑

i∈K ji · ai > ak and
∑

i∈K ji · si(a) ≤ sk(a). Since(∑
i∈K

jia
i − ak

)
· c = b ·

(
sk(a)−

∑
i∈K

jisi(a)

)

and
(∑

i∈K
jia

i − ak

)
· c > 0,

we get that

0 < sk(a)−
∑
i∈K

jisi(a) ≤ c− 1.

This latter fact implies that

b ·

(
sk(a)−

∑
i∈K

jisi(a)

)
6≡ 0 (mod c),

in contradiction with the fact that(∑
i∈K

jia
i − ak

)
· c ≡ 0 (mod c).

Hence, also in this case
∑

i∈K ji · ti(a, b, c) 6= tk(a, b, c). �
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Lemma 4.6. Let k be a positive integer. If x is a positive integer such that

sk(a) ≤ x < sk+1(a),

then there exists and is unique an a-reduced set of integers {ji}ki=1 such that

x =

k∑
i=1

ji · si(a).

Proof. We prove the claim by induction on k ∈ N∗. If k = 1, then s1(a) ≤
x < s2(a) = 1 + a. Therefore, x = j1 · s1(a), where j1 = x.

Suppose that k > 1 and sk(a) ≤ x < sk+1(a). Then there exist and are

unique two non-negative integers q and r such that{
x = qsk(a) + r

0 ≤ r < sk(a)

and q ≤ a.

If r = 0, then q ≥ 1. The result follows, setting jk := q and ji := 0 for any

i < k.

If r > 0, then 1 ≤ q < a and sk̃(a) ≤ r < sk̃+1(a) for some positive integer k̃.

By inductive hypothesis, we have that

r =

k̃∑
i=1

ji · si(a)

for some a-reduced set of integers {ji}k̃i=1. Therefore, the result follows setting

jk := q and ji := 0 for any i ∈ [k̃ + 1, k − 1]. �

Lemma 4.7. If

x =
∑
i∈K

ji · ti(a, b, c),

where {ji}i∈K is a set of positive integers indexed on a finite subset K of N, then

x =
∑
i∈K̃

j̃i · ti(a, b, c)

for some a-reduced set of integers {j̃i}i∈K̃ indexed on a finite subset K̃ of N.
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Proof. We notice that

a · ti2(a, b, c) + ti1(a, b, c) = ti2+1(a, b, c) + a · ti1−1(a, b, c)

for any choice of positive integers i1 and i2 such that i1 ≤ i2.

We define l := 0, K(l) := K and j̃i := ji for any i ∈ K(l). Then we enter

the following iterative procedure.

(1) If {j̃i}i∈K(l) is a-reduced, then we break the procedure, else we define

M(l) := max{i ∈ K(l) : j̃i ≥ a}, m(l) := min{i ∈ K(l)\{0} : j̃i 6= 0}.

(2) We set

j̃m(l)−1 := j̃m(l)−1 + a, j̃m(l) := j̃m(l) − 1,

j̃M(l) := j̃M(l) − a, j̃M(l)+1 := j̃M(l)+1 + 1.

(3) We set

K(l + 1) := K(l) ∪ {m(l)− 1,M(l) + 1}, l := l + 1,

and go to step (1).

We notice that for each l we have that∑
i∈K(l+1)

ji =
∑

i∈K(l)

ji,

and at least one of the following holds:

m(l + 1) = m(l)− 1 or
∑

i∈K(l+1)\{0}

ji <
∑

i∈K(l)\{0}

ji.

In particular, when m(l) = 1 for some integer l, we have that∑
i∈K(l+1)\{0}

ji <
∑

i∈K(l)\{0}

ji.

Therefore, after some iterations the procedure breaks.

Hence,

x =
∑
i∈K̃

j̃i · ti(a, b, c),

where K̃ := K(l). �
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Example 4.8. Suppose that

a = 2, b = 3, c = 4.

Let K = {1, 2, 4} and

j1 = 2, j2 = 4, j4 = 3.

We have that

t0(2, 3, 4) = 4, t1(2, 3, 4) = 11, t2(2, 3, 4) = 25,

t3(2, 3, 4) = 53, t4(2, 3, 4) = 109, t5(2, 3, 4) = 221.

Let

x =
∑
i∈K

ji · ti(2, 3, 4) = 449.

We use the iterative procedure described in the proof of Lemma 4.7 with the

aim to write

x =
∑
i∈K̃

j̃i · ti(2, 3, 4)

for some a-reduced set of integers {j̃i}i∈K̃ .

We set l := 0, K(0) := K and j̃i = ji for any i ∈ K(0). Since {j̃i}i∈K(0) is

not a-reduced, we define

M(0) := 4, m(0) := 1.

Then we set

j̃0 := 2, j̃1 := 1, j̃2 := 4, j̃4 := 1, j̃5 := 1,

and

K(1) := {0, 1, 2, 4, 5}, l := 1.

Since {j̃i}i∈K(1) is not a-reduced, we define

M(1) := 2, m(1) := 1.

Then we set

j̃0 := 4, j̃1 := 0, j̃2 := 2, j̃3 := 1, j̃4 := 1, j̃5 := 1,

and

K(2) := {0, 1, 2, 3, 4, 5}, l := 2.

We notice that {j̃i}i∈K(2) is a-reduced and define K̃ := K(2).

We have that

x =
∑
i∈K̃

j̃i · ti(2, 3, 4).
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Lemma 4.9. Let k be a positive integer. If {ji}ki=1 is an a-reduced set of

integers, then
k∑

i=1

ji · ti(a, b, c) < tk+1(a, b, c).

Proof. We prove the claim by induction on k. If k = 1, then

1∑
i=1

ji · ti(a, b, c) ≤ a · t1(a, b, c) = t2(a, b, c)− b < t2(a, b, c).

Let k > 1. We distinguish two cases.

• If jk = a, then

k∑
i=1

ji · ti(a, b, c) = a · tk(a, b, c) < tk+1(a, b, c).

• If jk ≤ a− 1, then, by inductive hypothesis, we have that

k∑
i=1

ji · ti(a, b, c) =

k−1∑
i=1

ji · ti(a, b, c) + jk · tk(a, b, c)

< tk(a, b, c) + (a− 1) · tk(a, b, c) < tk+1(a, b, c). �

Lemma 4.10. Suppose that

• k1 and k2 are two positive integers such that k1 ≤ k2;

• {ji}k1
i=1 and {j̃i}k2

i=1 are two different a-reduced sets of integers;

• x and y are two integers such that

x =

k1∑
i=1

ji · ti(a, b, c), y =

k2∑
i=1

j̃i · ti(a, b, c).

The following hold.

• If {ji}k1
i=1 ≺ {j̃i}

k2
i=1, then x < y.

• If {j̃i}k2
i=1 ≺ {ji}

k1
i=1, then y < x.

Proof. Without loss of generality we suppose that {ji}k1
i=1 ≺ {j̃i}

k2
i=1. If

k1 < k2, then

x =

k1∑
i=1

ji · ti(a, b, c) < tk1+1(a, b, c) ≤ tk2
(a, b, c) ≤ y,
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according to Lemma 4.9.

If k1 = k2, then we define M := max{i ∈ [1, k2] : ji 6= j̃i}. Since {ji}k1
i=1 ≺

{j̃i}k2
i=1, we have that jM < j̃M . Therefore,

x =

k1∑
i=1

ji · ti(a, b, c) =

k2∑
i=1

ji · ti(a, b, c)

=

M−1∑
i=1

ji · ti(a, b, c) + jM · tM (a, b, c) +

k2∑
i=M+1

ji · ti(a, b, c)

< tM (a, b, c) + jM · tM (a, b, c) +

k2∑
i=M+1

j̃i · ti(a, b, c)

≤ j̃M · tM (a, b, c) +

k2∑
i=M+1

j̃i · ti(a, b, c) ≤
k2∑
i=1

j̃i · ti(a, b, c) = y. �

In analogy with Lemma 4.9 and Lemma 4.10, we state two more lemmas,

whose proofs (which are omitted) follow the same lines as the proofs of the two

lemmas above.

Lemma 4.11. If {ji}ki=1 is an a-reduced set of integers for some positive

integer k, then

k∑
i=1

ji · si(a) < sk+1(a).

Lemma 4.12. Suppose that

• k1 and k2 are two positive integers such that k1 ≤ k2;

• {ji}k1
i=1 and {j̃i}k2

i=1 are two different a-reduced sets of integers;

• x and y are two integers such that

x =

k1∑
i=1

ji · si(a), y =

k2∑
i=1

j̃i · si(a).

The following hold.

• If {ji}k1
i=1 ≺ {j̃i}

k2
i=1, then x < y.

• If {j̃i}k2
i=1 ≺ {ji}

k1
i=1, then y < x.
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5. Proofs

5.1. Proof of Theorem 3.1. First, we notice that H(a, b, c) ⊆ Ga,b(c), accord-

ing to Lemma 4.1.

According to Lemma 4.2, H(a, b, c) is a subsemigroup of (N,+) closed with

respect to the action of the map ϑa,b.

Moreover, N\H(a, b, c) is finite. In fact, according to Lemma 4.4, we have

that

[tk(a, b, c),+∞[⊆ H(a, b, c)

for any positive integer k such that sk(a) ≥ c− 1.

Hence, H(a, b, c) is a numerical semigroup and Ga,b(c) = H(a, b, c).

5.2. Proof of Theorem 3.2. According to Lemma 4.5, we have that

tk(a, b, c) 6∈ 〈Sk−1(a, b, c)〉

for any positive integer k < k̃ . In fact, for any such k we have that sk(a) ≤ c−1.

Nevertheless,

tk̃(a, b, c) ∈ 〈Sk̃−1(a, b, c)〉.

The latter assertion holds, since{
tk̃(a, b, c)− ak̃c = b(qc + r)

0 ≤ r < c

for some non-negative integers q and r. Since

r ≤ c− 1 < sk̃(a),

we have that

ak̃c + br ∈ Ga,b(c),

according to Lemma 4.3. Therefore,

tk̃(a, b, c) ∈ 〈Sk̃−1(a, b, c)〉,

namely, Sk̃−1(a, b, c) is a minimal set of generators for Ga,b(c).
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5.3. Proof of Theorem 3.4. We prove separately the 4 assertions.

(1) Let l ∈ [1, c − 1]. According to Lemma 4.6, there exists and is unique an

a-reduced set {j(l)i }
kl
i=1 such that

l =

kl∑
i=1

j
(l)
i · si(a).

Moreover,

xl =

kl∑
i=1

j
(l)
i · ti(a, b, c) =

kl∑
i=1

j
(l)
i · a

ic + b ·
kl∑
i=1

j
(l)
i · si(a) ≡ bl (mod c).

Let x ∈ Ga,b(c). Since

{bl : l ∈ [0, c− 1]}

is a set of representatives of the residue classes in Z/cZ, we can say that

x ≡ bl (mod c)

for some l ∈ [0, c− 1].

If x 6≡ 0 (mod c), then

x =
∑
i∈K̃

j̃i · ti(a, b, c)

for some a-reduced set of integers {j̃i}i∈K̃ , according to Lemma 4.7.

We distinguish two cases.

• If 0 ∈ K̃ and j̃0 6= 0, then

x = j̃0 · c +
∑

i∈K̃\{0}

j̃i · ti(a, b, c) >
∑

i∈K̃\{0}

j̃i · ti(a, b, c) ≡ bl (mod c).

• If 0 6∈ K̃ or j̃0 = 0, then {j(l)i }
kl
i=1 � {j̃i}i∈K̃ and xl ≤ x, according to

Lemma 4.10.

Indeed, suppose by contradiction that {j̃i}i∈K̃ ≺ {j
(l)
i }

kl
i=1. We notice

that

x ≡ b ·
∑
i∈K̃

j̃i · si(a) ≡ bl (mod c),
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namely, ∑
i∈K̃

j̃i · si(a) ≡ l (mod c).

This latter is absurd, because

1 ≤
∑
i∈K̃

j̃i · si(a) <

kl∑
i=1

j
(l)
i · si(a) = l,

according to Lemma 4.12.

(2) This assertion follows from (1).

(3) Since xi < xc−1 for any i ∈ [0, c− 1[, we have that F (Ga,b(c)) = xc−1 − c.

(4) This assertion follows from Selmer’s formulas.
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