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An observation on Asanov’s Unicorn metrics

By CSABA VINCZE (Debrecen)

Abstract. Finsleroid–Finsler metrics form an important class of singular (y-local)

Finslerian metrics. They were introduced by G. S. Asanov in 2006. As a special case,

Asanov produced examples of Landsberg spaces of dimension at least three that are

not of Berwald type. These are called Unicorns [5]. The existence of regular (y-global)

Landsberg metrics that are not of Berwald type is an open problem up to this day. In

this paper, we prove that Asanov’s Unicorns belong to the class of generalized Berwald

manifolds. More precisely, we prove the following theorems: a Finsleroid–Finsler space

is a generalized Berwald space if and only if the Finsleroid charge is constant. Especially,

a Finsleroid–Finsler space is a Landsberg space if and only if it is a generalized Berwald

manifold with a semi-symmetric compatible linear connection.

Introduction

Finsleroid–Finsler metrics were introduced by G. S. Asanov in 2006. As a

special case, Asanov produced singular (y-local) examples of Landsberg spaces of

dimension at least three that are not of Berwald type. The existence of regular

(y-global) Landsberg metrics that are not of Berwald type is an open problem up

to this day, see D. Bao [5]. The cronology of the basic steps:

• 1998 – the central symmetric version of the Finsleroid–Finsler metric in

Asanov [3].

• 2003 – the non-symmetric version of the Finsleroid–Finsler metric in

Vincze [15] as Asanov-type Finslerian metric functions.

Mathematics Subject Classification: 53C60.
Key words and phrases: Finsler spaces, conformality, Finsleroid–Finsler metrics, generalized

Berwald manifolds.
Supported by the University of Debrecen’s internal research project RH/885/2013.



252 Csaba Vincze

• 2006 – Asanov’s examples for (non-symmetric) Finsleroid–Finsler metrics

that are of Landsberg but not of Berwald type in Asanov [4];

• 2016 – non-symmetric Finsleroid–Finsler metrics with closed Finsleroid axis

1-forms as the solutions of a conformal rigidity problem, Vincze [26].

In this paper, we prove that Asanov’s Unicorns belong to the class of gen-

eralized Berwald manifolds. More precisely, we prove the following theorems: a

Finsleroid–Finsler space is a generalized Berwald space if and only if the Finsleroid

charge is constant. Especially, a Finsleroid–Finsler space is a Landsberg space if

and only if it is a generalized Berwald manifold with a semi-symmetric compatible

linear connection.

1. Notations and terminology

Let M be a manifold with local coordinates u1, . . . , un. The induced coordi-

nate system of the tangent manifold TM consists of the functions x1, . . . , xn and

y1, . . . , yn, where x’s refer to the coordinates of the base point, and y’s denote

the coordinates of the direction. A Finslerian metric is a continuous function

F : TM → R satisfying the following conditions: F is smooth on the complement

of the zero section (regularity), F (tv) = tF (v) for all t > 0 (positive homogeneity),

and the Hessian

gij =
∂2E

∂yi∂yj
of the Finslerian energy E =

1

2
F 2

is positive definite at all nonzero elements v ∈ TM (strong convexity). It is called

the Riemann–Finsler metric of the Finsler manifold. The Riemann–Finsler metric

makes each tangent space (except at the origin) a Riemannian manifold with

standard canonical objects such as the volume form

dµ =
√

det gij dy
1 ∧ · · · ∧ dyn,

the Liouville vector field

C := y1∂/∂y1 + · · ·+ yn∂/∂yn,

and the induced volume form on the indicatrix hypersurface

∂Kp := F−1(1) ∩ TpM (p ∈M).
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The coordinate expression is

µ =
√

det gij

n∑
i=1

(−1)i−1 y
i

F
dy1 ∧ · · · ∧ dyi−1 ∧ dyi+1 · · · ∧ dyn.

As a general reference of Finsler geometry, see [6]; we will use the following

notations and terminology:

li =
∂F

∂yi
, gij = (gij)

−1, Cijk =
1

2

∂gij
∂yk

, where Clij = glkCijk

is the so-called first Cartan tensor. The first Cartan tensor is totally symmetric

and ykCijk = 0. The geodesic spray coefficients and the horizontal sections are

given by

Gl =
1

2
glm

(
yk

∂2E

∂ym∂xk
− ∂E

∂xm

)
and

δ

δxi
=

∂

∂xi
−Gli

∂

∂yl
, (1)

where

Gli =
∂Gl

∂yi
.

The second Cartan tensor or Landsberg tensor is

P lij =
1

2
glm

(
∂gjm
∂xi

− 2Gki Cjkm −Gkijgkm −Gkimgjk
)
, where Glij =

∂Gli
∂yj

.

The mixed curvature of the Berwald connection is defined as

P lijk = −Glijk, where Glijk =
∂Glij
∂yk

.

By some direct computations, we get the identity

P lij = −F
2
lmg

klPmijk. (2)

Definition 1. Let M be a Finsler manifold; a linear connection ∇ on the base

manifold M is called compatible to the Finslerian metric if the parallel trans-

ports with respect to ∇ preserve the Finslerian length of tangent vectors. Finsler

manifolds admitting compatible linear connections are called generalized Berwald

manifolds. Berwald manifolds are generalized Berwald manifolds with torsion-free

compatible linear connections.
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Definition 2. A Finsler manifold is a Landsberg manifold if the Landsberg

tensor vanishes.

The notion of generalized Berwald manifolds goes back to V. Wagner [27].

The basic questions of the theory are the unicity of the compatible linear con-

nection and its expression in terms of the canonical data of the Finsler manifold

(intrinsic characterization). In the case of a classical Berwald manifold (com-

patible linear connection with zero torsion), the intrinsic characterization is the

vanishing of the mixed curvature tensor of the Berwald connection. This means

that the quantities Glij ’s depend only on the position. They constitute the co-

efficients of the compatible linear connection on the base manifold. In general,

the intrinsic characterization of the compatible linear connection is based on the

so-called averaged Riemannian metric

γp(v, w) :=

∫
∂Kp

g(v, w)µ. (3)

Using average processes is a new and important trend with a rapidly increas-

ing number of papers in Finsler geometry: R. G. Torromé [14], T. Aikou [2],

M. Crampin [7] and [8], V. S. Matveev et al. [9], [10] and [11], Cs. Vincze

[16], [17], [22] and [24]. For further references, see also [20], [21] and [25].

Theorem 1 ([17]). If a linear connection on the base manifold is compatible

with the Finslerian metric function, then it must be metrical with respect to the

averaged Riemannian metric γ.

It is well known that a metric connection is uniquely determined by the

torsion tensor. Following Agricola–Friedrich [1], consider the decomposition

T (X,Y ) := T1(X,Y ) + T2(X,Y ),

where

T1(X,Y ) := T (X,Y )− 1

n− 1

(
T̃ (X)Y − T̃ (Y )X

)
,

T̃ is the trace tensor of the torsion, and

T2(X,Y ) :=
1

n− 1

(
T̃ (X)Y − T̃ (Y )X

)
.

Note that the torsion tensor of a metric linear connection on a manifold of di-

mension 2 is automatically of the form T = T̃ (X)Y − T̃ (Y )X (cf. Definition 3).

Otherwise, the trace-less part can be divided into two further components

T1(X,Y ) = A1(X,Y )+S1(X,Y ) ⇒ T (X,Y ) = A1(X,Y )+S1(X,Y )+T2(X,Y ),
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by separating the totally anti-symmetric/axial part A1. Therefore, we have eight

possible classes of generalized Berwald manifolds depending on the surviving

terms, such as classical Berwald manifolds admitting torsion-free compatible lin-

ear connections Szabó [12] (we have no surviving terms) or Finsler manifolds

admitting semi-symmetric compatible linear connections Vincze [22].

Definition 3. A linear connection is said to be semi-symmetric if the torsion

tensor is of the form

T (X,Y ) = λ(Y )X − λ(X)Y, (4)

where λ is a one-form on the manifold.

The problem of the intrinsic characterization of compatible semi-symmetric

linear connections is completely solved [22]: it can be expressed in terms of metrics

and differential forms given by averaging. For the special case of exact (or at least

closed) differential forms in the torsion (4), see [16].

Theorem 2 ([22]). A non-Riemannian Finsler manifold is a generalized

Berwald manifold admitting a semi-symmetric compatible linear connection if

and only if σ(p) > 0 for any p ∈M , and the linear connection

∇̄XY = ∇∗XY +
1

2σ

(
η∗(Y )X − γ(X,Y )η∗]

)
is compatible with the Finslerian metric function, where E∗ and ∇∗ are the

Riemannian energy and the Lévi–Civita connection of the averaged Riemannian

metric, h∗ and S∗ are the horizontal endomorphism and the canonical spray

associated with ∇∗; see formula (1) with substitution of the Riemannian energy

function E∗,

ρ∗ :=
dh∗E

E
− 1

2

S∗E

E

dJE
∗

E∗
and f := log

E∗

E
,

where

J

(
∂

∂xi

)
=

∂

∂yi
and J

(
∂

∂yi

)
= 0

is the canonical vertical endomorphism/almost tangent structure on the tangent

manifold. Furthermore,

η∗(Xp) :=

∫
∂K∗

p

dJρ
∗(Θ, Xc)+

1

2

S∗E

E
Xvf µ∗ and σ(p) :=

∫
∂K∗

p

1

2E∗
‖JΘ‖2 µ∗,
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where Xc and Xv denote the complete and the vertical lifts of the vector field X,

respectively. The vector field JΘ is defined by the formula

g∗(JΘ, Xv) = E∗dJf(Xc),

where g∗ is the Riemann–Finsler metric of E∗ as a special Finslerian energy, the

norm of JΘ is also taken with respect to g∗, and µ∗ is the induced volume form

on the indicatrix hypersurface ∂K∗p as a Riemannian submanifold in TpM .

Remark 1. Note that JΘ is enough to be defined to compute the integrand,

because of

dJρ
∗(Ω1,Ω2) := dρ∗(JΩ1, JΩ2),

where Ω1 and Ω2 are vector fields on the tangent manifold.

1.1. Randers metrics, (α, β)-metrics, the sign property. The complete

solution of the intrinsic characterization is also given in the special case of Randers

manifolds, without any special requirement for the torsion tensor. Let (M,α) be

a connected Riemannian manifold, and suppose that the one-form β in ∧1(M)

satisfies condition

sup
α(v,v)=1

β(v) < 1. (5)

The Randers metric on the manifold M is defined as F (v) =
√
α(v, v) + β(v).

Theorem 3 ([23]). A Randers manifold is a generalized Berwald manifold

if and only if there exists a linear connection ∇ such that ∇α = 0 and ∇β = 0.

The following theorem formulates a necessary and sufficient condition for

a Randers manifold to be a generalized Berwald manifold in terms of the dual

vector field α(β], X) = β(X).

Theorem 4 ([23]). A Randers manifold is a generalized Berwald manifold

if and only if β] is of constant Riemannian length.

The compatible linear connection is given as

∇XY = ∇∗XY +
α(∇∗Xβ], Y )β] − α(Y, β])∇∗Xβ]

α(β], β])
. (6)

If the compatible linear connection is semi-symmetric, then we also have a struc-

ture theorem for the Riemannian manifold admitting a perturbation β such that

the Randers manifold is a generalized Berwald manifold with a semi-symmetric

compatible linear connection [23]. By the main result in [23], the manifold carries
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a warped product metric structure; for the special case of exact (or at least closed)

differential forms in the torsion (4), see Vincze [18], and also Vincze [19]. These

results have been generalized by Tayebi and Barzegari in [13] for (α, β)-metrics

satisfying the sign property

Φ′(−s)Φ(s) + Φ(−s)Φ′(s) > 0 or Φ′(−s)Φ(s) + Φ(−s)Φ′(s) < 0, (7)

where F = αΦ
(
β
α

)
is a Finslerian metric function, and Φ: (−b0, b0) → R+.

According to the positivity of Φ the sign property, (7) is equivalent to

ϕ′(−s)ϕ(s) + ϕ(−s)ϕ′(s) > 0 or ϕ′(−s)ϕ(s) + ϕ(−s)ϕ′(s) < 0, (8)

where ϕ = Φ2.

Theorem 5 ([13]). A Finsler manifold with an (α, β)-metric satisfying the

sign property is a generalized Berwald manifold if and only if there exists a linear

connection ∇ such that ∇α = 0 and ∇β = 0.

Theorem 6 ([13]). A Finsler manifold with an (α, β)-metric satisfying the

sign property is a generalized Berwald manifold if and only if β] is of constant

Riemannian length.

2. Asanov’s Finsleroid–Finsler metrics

Using Asanov’s original notations in [4], the general form of Finsleroid–

Finsler metrics is given by

F = eGΦ/2
√
b2 + gqb+ q2, (9)

where b = biy
i is the Finsleroid axis 1-form, q =

√
rijyiyj , rij = aij − bibj , and

aij is a Riemannian metric such that aijbibj = 1,

g = g(p) and − 2 < g(p) < 2 (the Finsleroid charge),

h =

√
1− g2

4
, G = g/h, Φ =

+π
2 + arctan G

2 − arctan
q+ g

2 b

hb if b > 0

−π2 + arctan G
2 − arctan

q+ g
2 b

hb if b < 0.

The common limit of the right hand sides as b→ 0 is arctan
G

2
.
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2.1. An alternative formulation. In what follows, we present the metric in a

more compact form. If

f(b) := arctan
q + g

2b

hb
,

then

lim
b→±∞

f(b) = arctan
g

2h
= arctan

G

2
and f ′(b) = − qh

b2 + q2 + bgq
, (10)

because h2 + g2/4 = 1. In a similar way, if

f̃(b) := arctan
2b+ gq

2hq
,

then

lim
b→±∞

f̃(b) = ±π
2

and f̃ ′(b) =
qh

b2 + q2 + bgq
. (11)

Therefore, f + f̃ is constant on the connected parts of the domain. Taking the

limits b→∞ and b→ −∞, respectively, we have

arctan
q + g

2b

hb
+ arctan

2b+ gq

2hq
=

+π
2 + arctan G

2 if b > 0

−π2 + arctan G
2 if b < 0.

⇒

Φ = arctan
2b+ gq

2hq
. (12)

Using the notations α =
√
aijyiyj , β = biy

i (Finsleroid axis 1-form) and

g =
K

2
(Finsleroid charge), it follows that

q =
√
α2 − β2, h :=

√
1− g2

4
=

√
1− K2

16
=

√
16−K2

4
,

and

G = g/h =
2K√

16−K2
.

Definition 4. The Finslerian energy E = (1/2)F 2 of a Finsleroid–Finsler

metric is

E =
1

2

(
α2 +

K

2
β
√
α2 − β2

)
e

2K√
16−K2

arctan 1√
16−K2

(
4β√
α2−β2

+K

)
. (13)



An observation on Asanov’s Unicorn metrics 259

The metric (13) is formally an (α, β)-metric

E =
1

2
α2ϕ

(
β

α

)
, (14)

where

ϕ(s) =

(
1 +

K

2
s
√

1− s2

)
e

2K√
16−K2

arctan 1√
16−K2

(
4s√
1−s2

+K

)
, (15)

s ∈ [−1, 1], and the value at ±1 is defined by the continuous extension

ϕ(±1) = lim
s→±1

ϕ(s) = e
± 2K√

16−K2
π
2 ⇒ E(±β]) =

1

2
e
± 2K√

16−K2
π
2 . (16)

Actually, (14) represents a more general form of metrics, because ϕ depends on

the position by the Finsleroid charge K/2, too. In the case of a standard (α, β)-

metric, ϕ is a function of the single variable s.

Lemma 1. The function ϕ is of class C1 with respect to the variable s.

Proof. Fix a point p ∈ M ; in what follows, we prove that ϕ is of class C1

at ±1. We discuss the case of s = 1 in details. The case of s = −1 is similar. By

definition,

ϕ′(1) = lim
s→1

ϕ(s)− ϕ(1)

s− 1
.

For any fixed s < 1, we can use the Lagrange mean value theorem

ϕ(s)− ϕ(1) = ϕ′(t)(s− 1),

because ϕ is continuous on the closed interval [s, 1] (see formula (16) of the con-

tinuous extension), and differentiable on ]s, 1[. Therefore,

ϕ′(1) = lim
t→1

ϕ′(t) = 0 (17)

as a simple calculation shows:

> f:=s->(1+K*s*sqrt(1-s^2)/2)*

> exp((2*K/sqrt(16-K^2))*tan^(-1)((1/sqrt(16-K^2))*

> ((4*s/sqrt(1-s^2))+K)));

> g:=s->diff(f(s),s);

> simplify(g(s));

> sqrt(1-s^2)*K*

> exp((2*K/sqrt(16-K^2))*tan^(-1)((1/sqrt(16-K^2))*

> ((4*s/sqrt(1-s^2))+K)));
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i.e.

ϕ′(s) = K
√

1− s2e
2K√

16−K2
arctan 1√

16−K2

(
4s√
1−s2

+K

)
. (18)

�

Theorem 7. The function ϕ satisfies the sign property

a(s) := ϕ′(−s)ϕ(s) + ϕ(−s)ϕ(−s) = 2K
√

1− s2e2A(−s)+2A(s)

> 0 if K > 0,

< 0 if K < 0,

where

A(s) :=
K√

16−K2
arctan

1√
16−K2

(
4s√

1− s2
+K

)
.

Proof. The proof is a straightforward calculation:

> h:=s->sqrt(1-s^2)*K*

> exp((2*K/sqrt(16-K^2))*tan^(-1)((1/sqrt(16-K^2))*

> ((4*s/sqrt(1-s^2))+K)));

> a:=s->f(-s)*h(s)+f(s)*h(-s);

> simplify(a(s));

> 2*sqrt(1-s^2)*K*

> exp((2*K/sqrt(16-K^2))*(tan^(-1)((1/sqrt(16-K^2))*

> ((4*s/sqrt(1-s^2))+K)))*

> exp((2*K/sqrt(16-K^2))*tan^(-1)((1/sqrt(16-K^2))*

> ((-4*s/sqrt(1-s^2))+K)));

The worksheet is the continuation of the previous one. �

Theorem 8 ([4]). A Finsleroid–Finsler space is a Landsberg space if and

only if the function K is constant and

(∇∗β)(X,Y ) =
div β]

n− 1
(α(X,Y )− β(X)β(Y )) . (19)

Remark 2. The original formulation of Theorem 8 in [4, Theorem 3, p. 278]

is that a Finsleroid–Finsler space is a Landsberg space if and only if the Finsleroid

axis 1-form β is closed, the Finsleroid charge is constant, and

(∇∗β)(X,Y ) = k (α(X,Y )− β(X)β(Y )) (20)
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for some scalar field k : M → R. Note that if (20) holds, then the closedness of β

is redundant because

dβ(X,Y ) = ∇∗β(X,Y )−∇∗β(Y,X)
(20)
= 0.

On the other hand, condition (20) is obviously equivalent to

α(∇∗Xβ], Y ) = k (α(X,Y )− β(X)β(Y )) ⇒ k =
divβ]

n− 1
,

because of the unit length of β] with respect to α.

3. The main results

Theorem 9. A connected Finsleroid–Finsler space is a generalized Berwald

space if and only if the Finsleroid charge is constant.

Proof. Suppose that there exists a linear connection such that it is compat-

ible to the Finsleroid–Finsler metric. Since the parallel transports preserve the

Finslerian norm of tangent vectors and they are linear between the tangent spaces,

it follows that they preserve the Riemann–Finsler metric gij , and the indicatrices

with the induced Riemannian metric are isometric. Asanov’s Finsleroid–Finsler

metric has indicatrices of constant curvature

1− K2(p)

4
;

see [4, formula (2.32)]. Therefore, the Finsleroid charge K must be constant on a

connected manifold. Conversely, suppose that the function K is constant. Then

the Finsleroid–Finsler metric is an (α, β)-metric of the form

F = αΦ

(
β

α

)
, where Φ2 = ϕ,

because ϕ does not depend on the position; see formula (14) and Definition 4.

We have two possible cases:

• If K = 0, then the space is Riemannian as a special generalized Berwald

manifold.

• If K 6= 0, then Theorem 7 implies that the function ϕ satisfies the sign prop-

erty (8), and, by Theorem 6, it is a generalized Berwald manifold, because

the Finsleroid axis 1-form β is of constant (unit) length with respect to α. �
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Theorem 10. A connected Finsleroid–Finsler space is a Landsberg space if

and only if it is a generalized Berwald space with a semi-symmetric compatible

linear connection such that the torsion tensor is of the form

T (X,Y ) = λ(Y )X − λ(X)Y, where λ = −divβ]

n− 1
β.

Proof. Suppose that a Finsleroid–Finsler space is a Landsberg space. Then,

by Theorem 8, we have that the Finsleroid charge K is constant, i.e. the space

is a generalized Berwald space in the sense of Theorem 9. By formula (6), the

compatible linear connection is

∇XY = ∇∗XY +
α(∇∗Xβ], Y )β] − α(Y, β])∇∗Xβ]

α(β], β])

= ∇∗XY + α(∇∗Xβ], Y )β] − α(Y, β])∇∗Xβ],

because β] is of unit length with respect to α. On the other hand,

α(∇∗Xβ], Y ) = (∇∗β)(X,Y )
(19)
=

divβ]

n− 1
(α(X,Y )− β(X)β(Y )) ⇒

∇∗Xβ] =
divβ]

n− 1

(
X − β(X)β]

)
and, consequently,

∇XY = ∇∗XY −
divβ]

n− 1
β(Y )X +

divβ]

n− 1
α(X,Y )β], (21)

i.e.

∇XY = ∇∗XY + λ(Y )X − α(X,Y )λ], where λ = − divβ]

n− 1
β. (22)

Formula (22) determines the only metric linear connection with torsion

T (X,Y ) = λ(Y )X − λ(X)Y.

Conversely, suppose that we have a Finsleroid–Finsler space such that it is a

generalized Berwald manifold with ∇ in formula (21) as a compatible linear con-

nection. Then, by Theorem 9, the Finsleroid charge is constant, and we have an

(α, β)-metric. We have two possible cases:

• If K = 0, then the space is Riemannian as a special Landsberg manifold.

• If K 6= 0, then Theorem 7 implies that the function ϕ satisfies the sign

property (8), and, by Theorem 5, ∇β = 0. This implies the special form (19)

of ∇∗β, and the statement follows by Theorem 8. �
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4. Appendix: regularity properties of Finsleroid–Finsler metrics

Finsleroid–Finsler metrics belong to the class of y-local Finslerian metrics,

because the third order partial derivatives with respect to the variables y’s are

singular at±β]. In what follows, we prove that the partial derivatives with respect

to the variables y’s exist, and continuous up to order 2, i.e. Finsleroid–Finsler

metrics are of class C2 on the complement of the zero section.

4.1. The first y-derivatives of a Finsleroid–Finsler energy function. By

Lemma 1, the function ϕ is of class C1. Therefore,

∂E

∂yi
(14)
=

1

2

(
2yiϕ

(
β

α

)
+ α2ϕ′

(
β

α

)
∂β/α

∂yi

)
=

1

2

(
2yiϕ

(
β

α

)
+ α2ϕ′

(
β

α

)
biα− (β/α)yi

α2

)
(23)

is of class C1 on the complement of the zero section. For the sake of simplicity,

we can use an orthonormal coordinate system

y1, . . . , yn such that yn = β i.e. bi = δni and α2 = (y1)2+· · ·+(yn)2. (24)

In terms of an orthonormal coordinate system (24),

∂E

∂yi
(15),(18),(23)

= e

2K√
16−K2

arctan 1√
16−K2

 4( βα )√
1−( βα )

2
+K

yi +
K

2
δni α

√
1−

(
β

α

)2
 ,

∂E

∂yi
= e

2K√
16−K2

arctan 1√
16−K2

(
4β√
α2−β2

+K

)(
yi +

K

2
δni
√
α2 − β2

)
. (25)

By (16), (17) and (23),

∂E

∂yi (0,...,0,±1)

= δni e
± 2K√

16−K2
π
2 . (26)

4.2. The second y-derivatives of a Finsleroid–Finsler energy function.

To compute the second order partial derivatives, it is useful to introduce the

function

A :=
K√

16−K2
arctan

1√
16−K2

(
4β√
α2 − β2

+K

)
.
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It can be expressed as the function of the variable s = β/α

A(s) :=
K√

16−K2
arctan

1√
16−K2

(
4s√

1− s2
+K

)
.

Since formula (25) can be written as

∂E

∂yi
= e2A( βα )

(
yi +

K

2
δni
√
α2 − β2

)
,

it follows that

∂2E

∂yj∂yi
=
∂e2A

∂yj

(
yi +

K

2
δni
√
α2 − β2

)
+ e2A( βα )

(
δij +

K

2
δni

yj − βδnj√
α2 − β2

)
, (27)

where

∂e2A

∂yj
= e2A( βα )(2A)′

(
β

α

)
∂β/α

∂yj

= K
e2A( βα )

2

√
1−

(
β
α

)2
(

1 + K
2
β
α

√
1−

(
β
α

)2
) bjα− (β/α)yj

α2

as a straightforward calculation shows:

> f0:=s->

> exp((2*K/sqrt(16-K^2))*tan^(-1)((1/sqrt(16-K^2))*

> ((4*s/sqrt(1-s^2))+K)));

> f1:=s->diff(f0(s),s);

> simplify(f1(s));

> (K/2)*(1/(sqrt(1-s^2)*(1+K*s*sqrt(1-s^2)/2)))*

> exp((2*K/sqrt(16-K^2))*tan^(-1)((1/sqrt(16-K^2))*

> ((4*s/sqrt(1-s^2))+K)));

Therefore,

∂e2A

∂yj
= K

e2A( βα )

2
√
α2 − β2

(
α2 + K

2 β
√
α2 − β2

) (δnj α
2 − βyj), (28)

and we have

∂2E

∂yj∂yi
(27),(28)

=
e2A( βα )

α2 + K
2 β
√
α2 − β2

K
α2δnj − βyj

2
√
α2 − β2

(
yi +

K

2
δni
√
α2 − β2

)
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+
e2A( βα )

α2+K
2 β
√
α2−β2

(
δij+

K

2
δni

yj−βδnj√
α2−β2

)(
α2+

K

2
β
√
α2 − β2

)
,

where

K
α2δnj − βyj

2
√
α2 − β2

(
yi +

K

2
δni
√
α2 − β2

)

+

(
δij +

K

2
δni

yj − βδnj√
α2 − β2

)(
α2 +

K

2
β
√
α2 − β2

)

= K
(α2δnj − βyj)yi + δni (yj − βδnj )α2

2
√
α2 − β2

+ δji

(
α2 +

K

2
β
√
α2 − β2

)
+
K2

4
(δnj α

2 − βyj)δni +
K2

4
βδni (yj − βδnj )

= K
α2(δnj y

i + δni y
j)− β(yiyj + α2δni δ

n
j )

2
√
α2 − β2

+ δji

(
α2 +

K

2
β
√
α2 − β2

)
+
K2

4
δni δ

n
j (α2 − β2).

Finally,

∂2E

∂yj∂yi
=

e2A( βα )

α2 + K
2 β
√
α2 − β2

K
α2(δnj y

i + δni y
j)− β(yiyj + α2δni δ

n
j )

2
√
α2 − β2

+
e2A( βα )

α2 + K
2 β
√
α2 − β2

(
δji

(
α2 +

K

2
β
√
α2 − β2

)
+
K2

4
δni δ

n
j (α2 − β2)

)
. (29)

4.3. The continuity of the second order partial derivatives.

4.3.1. The case of i = 1, . . . , n− 1 and j = 1, . . . , n− 1. By (29),

∂2E

∂yj∂yi
=

e2A( βα )

α2 + K
2 β
√
α2 − β2

(
−Kβyiyj

2
√
α2 − β2

+δji

(
α2+

K

2
β
√
α2 − β2

))
, (30)

and ∣∣∣∣∣ yi√
α2 − β2

∣∣∣∣∣ =

∣∣∣∣∣ yi√
(y1)2 + · · ·+ (yi)2 + . . . (yn−1)2

∣∣∣∣∣ ≤ 1 (boundedness).

Therefore,
−Kβyiyj

2
√
α2 − β2

7→ 0 as yj → 0
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and, consequently,

lim
v→(0,...,0,±1)

∂2E

∂yj∂yi v

(30)
= e

± 2K√
16−K2

π
2 δji . (31)

By definition,

∂2E

∂yj∂yi (0,...,0,±1)

:= lim
s→0

∂E
∂yi (0,...,0,s,0,...,0,±1)

− ∂E
∂yi (0,...,0,±1)

s
.

Using that the first order partial derivatives are continuous (Subsection 4.1), the

Lagrange mean value theorem shows that the second order partial derivatives at

(0, . . . , 0,±1) are just given by the limit (31):

∂E

∂yi (0,...,0,s,0,...,0,±1)

− ∂E

∂yi (0,...,0,±1)

=
∂2E

∂yj∂yi (0,...,0,t,0,...,0,±1)

(s− 0),

where t is between 0 and s, i.e.

∂2E

∂yj∂yi (0,...,0,±1)

= lim
t→0

∂2E

∂yj∂yi (0,...,0,t,0,...,0,±1)

(31)
= e

± 2K√
16−K2

π
2 δji ,

and we have the continuity of the second order partial derivatives.

4.3.2. The case of i = 1, . . . , n− 1 and j = n. Using that yn = β, formula (29)

implies that

∂2E

∂yn∂yi
=

e2A( βα )

α2 + K
2 β
√
α2 − β2

(
K
α2yi − β2yi

2
√
α2 − β2

+ δni

(
α2 +

K

2
β
√
α2 − β2

))

=
e2A

α2 + K
2 β
√
α2 − β2

K

2
yi
√
α2 − β2.

Therefore,

lim
v→(0,...,0,±1)

∂2E

∂yn∂yi v
= 0.

The computation of the second order partial derivative at (0, . . . , 0,±1) by def-

inition needs the same step based on the Lagrange mean value theorem as in

Subsection 4.3.1.
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4.3.3. The case of i = j = n. Since yn = β, it follows by (29) that

∂2E

∂yn∂yn
=

e2A( βα )

α2 + K
2 β
√
α2 − β2

×

(
K

2α2β − β(β2 + α2)

2
√
α2 − β2

+ α2 +
K

2
β
√
α2 − β2 +

K2

4
(α2 − β2)

)

=
e2A

α2 + K
2 β
√
α2 − β2

(
Kβ
√
α2 − β2 + α2 +

K2

4
(α2 − β2)

)
.

Therefore,

lim
v→(0,...,0,±1)

∂2E

∂yn∂yn v
= e
± 2K√

16−K2
π
2 .

The computation of the second order partial derivative at (0, . . . , 0,±1) by def-

inition needs the same step based on the Lagrange mean value theorem as in

Subsection 4.3.1.
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