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On centralizers of an H∗-algebra

By LAJOS MOLNÁR (Debrecen)

Abstract. It is shown that the additive function T acting on a semi-simple H∗-
algebra A with the property that T (x3) = T (x)x2 (x ∈ A) is a left centralizer.

Let A be a *-ring. The additive function E : A → A is called a
Jordan *-derivation if E(x2) = E(x)x∗+xE(x) holds for all x ∈ A. These
mappings are extensively studied due to the fact that their structure is in a
close relation with the problem of representability of quadratic functionals
by sesquilinear forms (e.g. [9–11]). Recently, to give a simpler and more
natural proof of Šemrl’s fundamental theorem [11], Zalar introduced the
more general concept of Jordan *-derivation pairs [12, 13]. Moreover, to
prove a Jordan - von Neumann type theorem for Hilbert A-modules, he has
dealt with the structure of such pairs acting on an H*-algebra [14]. These
works of Zalar inspired us to introduce an even more general concept of
Jordan *-derivation pairs and in [7] we were able to show that for a large
class of complex *-algebras the representability of these pairs via double
centralizers still remains valid that means a significant generalization of
Zalar’s result. Our definition was the following:

Definition. Let A be a *-ring. If E, F : A → A are additive functions
such that

E(x3) = E(x)x∗2 + xF (x)x∗ + x2E(x)

F (x3) = F (x)x∗2 + xE(x)x∗ + x2F (x)
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hold for all x ∈ A, then (E,F ) is called a Jordan *-derivation pair.

We also recall the definition of a left centralizer. It is an additive
function T : A → A on the ring A with the property that T (xy) = T (x)y
for every x, y ∈ A. The definition of a right centralizer should be self-
explanatory.

Now, in case of a complex *-algebra the proof á la Zalar concerning the
representability may go like this. One should prove that for the additive
functions

T1(x) = − 1
2i

(E(ix∗)− iE(x∗)), S1(x) = − 1
2i

(F (ix) + iF (x))

T2(x) =
1
2i

(F (ix∗)− iF (x∗)), S2(x) =
1
2i

(E(ix) + iE(x))

(x ∈ A) we have T1(x3) = T1(x)x2, S1(x3) = x2S1(x), T2(x3) = T2(x)x2,
S2(x3) = x2S2(x) for every x ∈ A. As a matter of fact it is not trivial at all,
but after algebraic manipulations one can arrive at this. Then following
Zalar’s argument we should obtain that these mappings are left or right
centralizers on A. The aim of this paper is to deal with this latter question
(cf. [3, Proposition 2.5]).

We begin with some basic definitons, results and notation.
Concerning the statements on H*-algebras that follow, we refer to [1]. Let
A be a semi-simple H*-algebra and let {Aα : α ∈ Γ} denote the collec-
tion of minimal closed ideals of A. This system is pairwise orthogonal
and its orthogonal direct sum is A, moreover, for every α ∈ Γ there
exist a Hilbert space Hα, a real constant cα ≥ 1 and an isometric *-
isomorphism between Aα and HS(Hα) (= (HS(Hα), cα〈 . , . 〉)), the H*-
algebra of Hilbert-Schmidt operators. A self-adjoint idempotent element
e of A is said to be a projection; a nonzero projection is called minimal
if it cannot be represented as a sum of two mutually orthogonal nonzero
projections in A. For an element x ∈ A we have x = 0 if and only if xe = 0
for every minimal projection e ∈ A.
If X is a Banach space, then let L(X) and B(X) denote the algebra of all
linear and continuous linear operators on X, respectively. F(X) stands
for the ideal of finite rank operators in B(X). An algebra A ⊂ B(X) is
said to be standard provided F(X) ⊂ A.

Our basic lemma is as follows

Lemma. Let A ⊂ B(X) be a standard operator algebra and T : A →
L(X) be an additive function with the property that

T (A3) = T (A)A2



On centralizers of an H∗-algebra 91

holds for every A ∈ A. Then there exists an C ∈ L(X) such that

T (A) = CA (A ∈ A).

Proof. Let us first consider the restriction of T onto F(X). Suppose
that A,P ∈ F(X) and P is a projection with AP = PA = A. Then
linearizing the equation T (A3) = T (A)A2 by substituting A+P for A, we
obtain

3T (A2 + A) = T (A2P + APA + PA2 + P 2A + PAP + AP 2) =(1)

= T (A)AP + T (A)PA + T (P )A2 + T (P )PA + T (P )AP + T (A)P 2 =

= 2T (A)A + T (P )A2 + 2T (P )A + T (A)P.

Replacing A by A + P again, the linearization of (1) results in

(2) 6T (A) = 4T (P )A + 2T (A)P.

Multiplying both sides by P on the right, it follows that T (A)P = T (P )A
and substituting it into (2), we arrive at

(3) T (A) = T (P )A.

We next prove that T (AB) = T (A)B for every A,B ∈ F(X). If X is finite
dimensional, then it is obvious because in this case P can be chosen to be
the identity operator on X. So suppose that X is of infinite dimension
and let x ∈ X be fixed. We conclude from (3) that for every f ∈ X∗ there
exists a vector x(f) ∈ X such that T (x ⊗ f) = x(f) ⊗ f . Let f1, f2 be
nonzero elements of X∗. We show that x(f1) = x(f2). Indeed, if f1 and
f2 are linearly independent, then the equation

x(f1 + f2)⊗ f1 + x(f1 + f2)⊗ f2 = T (x⊗ (f1 + f2)) =

= T (x⊗ f1) + T (x⊗ f2) = x(f1)⊗ f1 + x(f2)⊗ f2,

together with the fact that no one of the subspaces ker f1 and ker f2 is
contained in the other, imply that

x(f1) = x(f1 + f2) = x(f2).

If f1 and f2 are linearly dependent, then choosing an f3 ∈ X∗ such that
f1, f3 as well as f2, f3 are independent, we obtain

x(f1) = x(f3) = x(f2).

Let 0 6= f, g ∈ X∗ and u ∈ X be such that f(u) 6= 0. Then

T (x⊗ f · u⊗ g) = T (x⊗ f(u)g) = f(u)x(f(u)g)⊗ g =

= f(u)x(f)⊗ g = x(f)⊗ f · u⊗ g = T (x⊗ f)u⊗ g.
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Also in case f(u) = 0, we have

T (x⊗ f · u⊗ g) = 0,

T (x⊗ f)u⊗ g = T (P )(x⊗ f · u⊗ g) = 0

with some finite dimensional projection P . The additivity of T implies
that

T (AB) = T (A)B A, B ∈ F(X).

As an easy consequence, we immediately have the linearity of T on F(X).
Now, let f ∈ X∗ and y ∈ X be such that f(y) = 1. Define

Cx = T (x⊗ f)y (x ∈ X).

Then C ∈ L(X),

(CA)x = T (Ax⊗ f)y = T (A)((x⊗ f)y) = T (A)x (x ∈ X)

and it implies T (A) = CA for every A ∈ F(X). It remains to prove that
this latter equation is valid on A as well. To this end let T1 : A → L(X)
be defined by T1(A) = CA and consider T0 = T − T1. We know that
T0(A3) = T0(A)A2 (A ∈ A), T0 is additive and it vanishes on F(X). Let
A ∈ A, suppose that P ∈ F(X) is a projection and S = (1− P )A(1− P ).
Since S−A ∈ F(X), we have T0(S) = T0(A). Moreover, from the equation

T0(S3 + P 3) = T0((S + P )3) =

= T0(S + P )(S + P )2 = T0(S + P )(S2 + P 2)

we infer

0 = T0(S)P + T0(P )S2 = T0(S)P + T0(P )PS2 = T0(S)P = T0(A)P.

Since it holds for every finite rank projection P , we have T0(A) = 0. This
completes the proof.

Now, we are in a position to prove our theorem which is a generaliza-
tion of [14, Lemma 15] and [6, Theorem 2] in case of n = 2.

Theorem. Let T : A → A be an additive function on the semi-simple
H*-algebra A with the property that T (x3) = T (x)x2 for every x ∈ A.
Then T is a left centralizer. Similar statement holds for right centralizers
as well.

Proof. Let us first linearize the equation T (x3) = T (x)x2 by substi-
tuting x + e for x. Then similarily to (1), we obtain

T (x2e + xex + ex2 + e2x + exe + xe2) =(4)

= T (x)xe + T (x)ex + T (e)x2 + T (e)ex + T (e)xe + T (x)e2.
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Let α ∈ Γ, x ∈ Aα and e be a minimal projection with e ∈ Aβ (α 6= β ∈ Γ).
Then, by T (e) = T (e)e, the equation (4) implies T (x)e = 0. Thus we
conclude T (x) ∈ Aα, and consequently we have proved that Aα is invariant
under T . Now, it follows from our Lemma that T is a left centralizer on
every minimal closed ideal of A. Consider the continuity of T . By Lemma
and [5, Remark 1], it follows that T is continuous on each Aα. To apply
the closed graph theorem, let (xn) be a sequence in A and y ∈ A such that

lim xn = 0 and lim T (xn) = y.

Linearizing (4) again, replacing x by x + e, we have

(5)
T (xe2 + exe + xe2 + e2x + exe + e2x) =

= T (x)e2 + T (e)xe + T (x)e2 + T (e)ex + T (e)xe + T (e)ex.

If e ∈ A is a minimal projection, then from (5) we infer

0 = lim(T (xn)e + T (e)xne + T (e)exn) = ye

and it results in y = 0. Consequently, T is continuous. Finally, if x =∑
α xa, y =

∑
α ya ∈ A, where xα, yα ∈ Aα (α ∈ Γ), then we conclude

T (xy) = T

(∑
α

xαyα

)
=

∑
α

T (xαyα) =
∑
α

T (xα)yα =

=

(∑
a

T (xα)

)(∑
α

ya

)
= T (x)y. ¤

Remarks. We first note that one can similarly prove the following
statement: If T : A → A is an additive function having the property that
T (xn+1) = T (x)xn for every x ∈ A with some fixed n ∈ N, then T is a left
centralizer.

We also remark that our argument can be applied to gain similar
results for other operator algebra like structures without an identity ele-
ment. (In case of a ring with an identity after two linearizations we can
achieve the desired goal.) For example, without any changes in the proof,
one can show the same statement for dual B*-algebras (e.g. [8]). These
B*-algebras are exactly the ones which are isometric and *-isomorphic to
the c0-direct sum of B*-algebras of compact operators on some Hilbert
spaces (for another characterization, see [4, Remark 5]).

Since in the formulation of our theorem we have used only algebraic
concepts, it would be desirable to study the relevant problem in a purely
ring theoretical context. As for this generality we are able only to show
the following statement (cf. [14, Lemma 15 and 3, Proposition 2.5]).
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Proposition. Let A be a 2-torsion free prime ring and T : A → A be
an additive function. If T (xyx) = T (x)yx holds for every x, y ∈ A, then
T is a left centralizer.

Proof. We use a similar argument to the proof of [2, Lemma 3.1].
For the sake of a simplified writing let T (a) be denoted by a′. Let a, b, c ∈
A. We prove that

((abc)′ − a′bc)x(abc− cba) = 0 (x ∈ A).

To this end we compute (abcxcba + cbaxabc)′ in two different ways. First
we have

(abcxcba + cbaxabc)′ = (abcxcba)′ + (cbaxabc)′ =

= (a(bcxcb)a)′ + (c(baxab)c)′ = a′(bcxcb)a + c′(baxab)c.

On the other hand, the linearization of the equation (xyx)′ = x′yx implies
that

(abcxcba + cbaxabc)′ = (abc)′x(cba) + (cba)′x(abc).

From these equations we infer

((abc)′ − a′bc)x(abc− cba) = (abc)′x(abc)− (abc)′x(cba)− (a′bc)x(abc)+

+(a′bc)x(cba) = (abc)′x(abc) + (cba)′x(abc)− (a′bc)x(abc)−
−c′(baxab)c = ((abc)′ + (cba)′ − (a′bc)− (c′ba))x(abc) = 0 (x ∈ A).

Now, there are two possibilities. The first is when there exist a0, b0, c0 ∈ A
such that a0b0c0 6= c0b0a0. Then by [2, Lemma 1.2] we conclude that
(abc)′ − a′bc = 0 for every a, b, c ∈ A. But it implies that (ab)′xy =
(abxy)′ = a′bxy from which we obtain that (ab)′ = a′b holds for any
a, b ∈ A.

The second possibility is that abc = cba for every a, b, c ∈ A. But in
this case we have

(ab− ba)x(ab− ba) = a(bxa)b− a(b(xb)a)− (b(ax)a)b + b(axb)a =
= aaxbb− aaxbb− aaxbb + aaxbb = 0,

consequently ab = ba for any a, b ∈ A, i.e. A is commutative. Let 0 6= x ∈
A be fixed and define a new operation on A in the following way:

a ◦ b = axb (a, b ∈ A).

We prove that with this operation A is a prime ring. Indeed, let a, b ∈ A
are such that a◦y◦b = 0 for every y ∈ A. Then the primeness of A implies
that ax = 0 or xb = 0. From the commutativity we infer that ayx = 0 or
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xyb = 0 holds for any y ∈ A from which we have a = 0 or b = 0. Now, it
follows that

(a ◦ a)′ = (axa)′ = a′xa = a′ ◦ a (a ∈ A)

and [3, Proposition 2.5] implies that

(axb)′ = (a ◦ b)′ = a′ ◦ b = a′xb (a, b ∈ A).

The proof can be completed as in the non-commutative case.
Since the structure theorem of semi-simple H*-algebras shows that

these algebras are generally not prime rings but they are semi-prime, it
would be of some importance to study whether the statement of our The-
orem (or more generally the one that was discussed in Remarks) remains
valid in case of such rings which question is left as an open problem.
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