
Publ. Math. Debrecen

90/3-4 (2017), 455–469

DOI: 10.5486/PMD.2017.7647

Some applications of index form in Finsler geometry

By MIHAI ANASTASIEI (Iaşi), LÁSZLÓ KOZMA (Debrecen)

and IOAN RADU PETER (Cluj-Napoca)

Abstract. In this paper, two results regarding the impact of some curvatures

on the topology of a Finsler manifold are established. The first one is a compactness

theorem, and the second is an intersection theorem. Their hypotheses involve conditions

on an invariant generalizing the Ricci curvature and the proofs are based on the index

form along geodesics.

1. Introduction

Various differential geometric invariants have strong impact on the topology

of differentiable manifolds as illustrated by deep results in the Riemannian ge-

ometry such as the theorems of Hopf–Rinow, Myers, Rauch, Synge. The area of

these results has been extended along years to the Finslerian setting. The most

recent and modern account of them is due to D. Bao, S. S. Chern and Z. Shen

(see [6, Chapter 6–9]). Their book has been followed by many papers in this field.

We cite only few, [4] and [23], as more related to our results.

The main differential geometric invariants involved in the results aiming to

establish a topological property are the flag curvature and the Ricci scalar. Among

the many others, there exists one, denoted by Rick, that interpolates between the

flag curvature and the Ricci curvature. It is associated to a (k + 1)-dimensional

subspace of the tangent space in a point of a manifold in such a way that for

k = 1 it coincides with the flag curvature, and for k = dimM − 1 it is nothing

but the Ricci curvature.
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In this paper, we prove two results related to Rick which are different in

their nature. The first one (see Section 3) provides a sufficient condition on the

average of the k-Ricci curvature in order that the Finsler manifold be compact.

The second one (see Section 4) says that if Rick is positive, then two submanifolds

of a Finslerian n-dimensional manifold, one with asymptotic index n− 1 and one

minimal, must intersect. The proofs of both results are based on the index form

written in a special frame along geodesics.

2. Preliminaries

2.1. The Morse index form. We are working in the framework of the standard

non-reversible Finsler setting: (M,F ) denotes a Finsler manifold, a pair of non-

reversible Finsler metric and a real manifold M of dimension n. ∇,Ω denote

the Cartan connection, and its curvature tensor, resp., living on the tangent

manifold TM . See for details [6], [21], or an outline in [4].

Now, we recall some facts about the variation of energy and Morse index

form, mainly from [18].

Let σ : [a, b] → M be a regular curve on M . Its length with respect to the

Finsler metric F : TM → R+ is given by L(σ) =
∫ b
a
F (σ̇(t))dt, and its energy is

given by E(σ) =
∫ b
a
F 2(σ̇(t))dt.

The Finsler metric induces naturally the (Finslerian) distance by d(p, q) =

infσ∈C(p,q) L(σ), where C(p, q) is the set of piecewise smooth curves from p to q.

The properties of a distance, except the symmetry, hold well. The pair (M,d) is

called sometimes a generalized metric space. For a non-reversible Finsler metric,

d is not symmetric, because the length of a curve may not coincide with the length

of the reverse curve σ̃(t) = σ(a + b − t) ∈ M . The non-reversibility property is

also reflected in the notion of Cauchy sequences.

The classical Hopf–Rinow theorem splits into forward and backward versions

(see [6], [10]).

The non-reversibility of the distance implies the existence of two open balls,

the forward balls

B+(p, r) = {x ∈M |d(p, x) < r},
where p ∈M and r > 0, and the backward balls

B−(p, r)) = {x ∈M |d(x, p) < r}.

A symmetrized distance can be defined as

ds(p, q) =
1

2
(d(p, q) + d(q, p)).



Some applications of index form in Finsler geometry 457

The closed balls will be denoted by a bar, i.e. B
+

(p, r) and B
−

(p, r). The

topologies induced by these two kinds of balls agree with the topology of the

manifold. We also denote the associated balls of ds by Bs(x, r). In [10, Propo-

sition 2.2], there is proved a Hopf–Rinow theorem for symmetrized closed balls,

i.e. the symmetrized distance ds is complete if Bs(p, r) are compact for all p ∈M
and r > 0 (or, equivalently, B

+
(p, r) ∩ B−(p, r) is compact for all p ∈ M and

r > 0). The conditions there are weaker than those in the theorems involving for-

ward or backward completeness. In the same paper [10], an example of Randers

type with compact symmetrized balls is constructed, which, however, fails to be

forward or backward complete.

The non-reversibility of the metric also induces two types of geodesic com-

pleteness, the forward type when the domain of the geodesic can always be ex-

tended to (a,∞) for some a ∈ R, and the backward type when it can be extended

to (−∞, b) for some b ∈ R.

The critical points of the (length) energy functional are the normal geo-

desics σ in the Finsler manifold M whenever they are parameterized by arc-

length, i.e. F (σ̇) = 1. One proves that the geodesics are characterized also by

Theorem 1 ([1]). A regular curve σ0 is geodesic for F iff

∇THTH ≡ 0,

where TH(u) = σ̇H = χu(σ̇(t)) ∈ Hu, for all u ∈ M̃σ(t).

The second variation formula provides the Jacobi fields and suggests the

consideration of the index form. It is derived by using a two-parameter geodesic

variation. For details, we refer to [1], [16].

Let σ : [a, b] → M be a normal geodesic in a Finsler manifold M . We will

denote by X[a, b] the space of piecewise smooth vector fields X along σ such that

〈XH , TH〉T ≡ 0.

Furthermore, we shall denote by X0[a, b] the subspace of all X ∈ X[a, b] such

that X(a) = X(b) = 0.

Definition 2 ([1]). The Morse index form I = Iba : X[a, b]×X[a, b]→ R of the

normal geodesic σ : [a, b]→M is the symmetric bilinear form

I(X,Y ) =

∫ b

a

[〈∇THXH ,∇THY H〉T − 〈Ω(TH , XH)Y H , TH〉T ]dt,

for all X,Y ∈ X[a, b].
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After some computations one gets another formula for the Morse index

form [1]:

I(X,Y ) = 〈∇THXH , Y H〉T
∣∣∣b
a
−
∫ b

a

〈∇TH∇THXH + Ω(TH , XH)TH , Y H〉T dt.

Definition 3 ([1]). A Jacobi field along a geodesic σ : [a, b] → M is a vector

field J which satisfies the Jacobi equation

∇TH∇THJH + Ω(TH , JH)TH ≡ 0,

where JH(t) = χσ̇(t)(J(t)).

σ̇ and tσ̇ are Jacobi fields; the first one never vanishes, the second one vanishes

only at t = 0.

Two points σ(t0) and σ(t1), t0, t1 ∈ [a, b] are said to be conjugate along σ if

there exists a nonzero Jacobi field J along σ with J(t0) = 0 and J(t1) = 0.

We recall from [6, p. 182] the following

Proposition 4. Let σ(t), 0 ≤ t ≤ r be a geodesic in a Finsler mani-

fold (M,F ). Suppose that no point σ(t), 0 < t ≤ r is conjugate to p := σ(0).

Let W be any piecewise C∞ vector field along σ, and let J denote the unique Ja-

cobi field along σ that has the same boundary values as W . That is, J(0) = W (0)

and J(r) = W (r). Then

I(W,W ) ≥ I(J, J).

Equality holds if and only if W is actually a Jacobi field, and in this case J = W .

2.2. Minimal submanifolds. Focal points. Let P be a submanifold of M of

dimension d < n. We consider the set

A = {(x, v)|x ∈ P, v ∈ TxM} = {x̃ ∈ M̃ |π(x̃) ∈ P}.

Let Hx̃TxM and Hx̃TxP be the horizontal lifts of TxM and TxP to x̃, and

HPTM =
⋃
x̃∈A

Hx̃TxM

and

HPTP =
⋃
x̃∈A

Hx̃TxP.

For horizontal vector fields X,Y ∈ HPTP , let X∗, Y ∗ be some prolongations of

them to HPTM . The restriction of ∇X∗Y ∗ to P̃ = TP \ 0 does not depend on

the choice of the prolongations.
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Let P⊥x̃ be the 〈·, ·〉x̃ orthogonal complement of Hx̃TP in Hx̃TM . By the

orthogonal decomposition

Hx̃TxM = Hx̃TxP ⊕ P⊥x̃ , x̃ = (x, v) ∈ A,

we obtain that

∇X∗Y ∗ = ∇∗XY + Iv(X,Y ).

We will call Iv(X,Y ) the second fundamental form at X and Y in the direction

of v. Note that for x̃ = (x, v) with v ∈ TxM \ TxP we have

〈∇X∗Y ∗, vH〉v = Iv(X,Y ). (1)

Definition 5. Let P ⊂ M be an r-dimensional submanifold of a Finsler

manifold (M,F ). The submanifold P is called minimal if for every tangent vec-

tor v to M and for any horizontal orthogonal vectors V Hi ∈ HPTP, i = 1, r (i.e.

〈V Hi , V Hj 〉v = 0 for i 6= j) we have
∑r
i=1 Iv(V Hi , V Hi ) = 0.

This definition is an analytical analogue of the one used for the Riemannian

metrics. In the Riemannian case, it comes from the fact that minimal submani-

folds are critical points of the volume with respect to a variation of the subman-

ifold in a normal direction. In the Finsler setting, the problem is not so simple.

In [2], it is pointed out that totally geodesic submanifolds could not be minimal

if one considers the Hausdorff measure. But in our second fundamental form the

reference vector is not tangent to submanifold in the problems considered here.

In fact, the only condition used is that the second fundamental form is zero on

directions orthogonal to the submanifold P .

The condition of minimality is equivalent with the vanishing of the trace of

the linear operator AvH , where AvH is defined by

〈AvHXH , Y H〉v = 〈Iv(XH , Y H), vH〉v.

For details, we refer to [11], [20].

Definition 6. Let f : N →M be an immersion. The asymptotic index of the

immersion f in the direction v is defined by

νf = min
x∈N

νf (x),

where νf (x) is the maximal dimension of a subspace of TxN on which the second

fundamental form vanishes in every direction v ∈ TxM \ TxN .
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Now, let σ : [a, b]→M be a normal geodesic in M with σ(a) ∈ P and σ̇H(a)

in the normal bundle of P (i.e. σ̇H(a) ⊥ (Hσ̇(a)Tσ(a)P )).

Let X̃P = XP [a, b] be the vector space of all piecewise smooth vector fields X

along σ such that XH(a) ∈ Tσ̇(a)P̃ , and let XP be the subspace of X̃P consisting

of these X such that XH is orthogonal to σ̇H along the curve σ.

We have that

〈∇THXH , Y H〉T = 〈∇XHTH + [TH , XH ] + θ(TH , Xh), Y H〉T
= 〈∇XHTH , Y H〉T , (2)

because [TH , XH ] and θ(TH , Xh) are vertical vector fields ([1]).

And for Y H orthogonal to TH , we have that

0 = XH〈TH , Y H〉T = 〈∇XHTH , Y H〉T + 〈TH ,∇XHY H〉T . (3)

By considering the vector fields XH , Y H such that XH(a), Y H(a) ∈ Tσ̇(a)P̃ and

taking account of formulas (1), (2), (3), the Morse index form IP : XP ×XP → R
becomes

IP (X,Y ) = 〈∇THXH , Y H〉T
∣∣∣b + 〈IT (XH , Y H), TH〉T

∣∣∣
a

−
∫ b

a

〈∇TH∇THXH + Ω(TH , XH)TH , Y H〉T dt.

From [18] we know that IP is symmetric.

Definition 7 ([18]). Let P ⊂M be a d-dimensional submanifold of a Finsler

manifold (M,F ). A P -Jacobi field J is a Jacobi field which satisfies in addition

J(a) ∈ Tσ(a)P

and

〈∇THJH +ATHJH , Y H〉T
∣∣∣
a

= 0,

for all Y ∈ Hσ̇(a)Tσ(a)P .

The last condition means in fact that

∇THJH +ATHJH ∈ P⊥σ̇(a).

The dimension of the vector space of all P -Jacobi fields along σ is equal to

the dimension of M , and the dimension of the vector space of the P -Jacobi fields

satisfying

〈JH , TH〉 = 0

is equal to dimM − 1.
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If P is a point, then a P -Jacobi field is a Jacobi field J along σ such that

J(a) = 0.

A point σ(t0), t0 ∈ [a, b] is said to be a P -focal point along σ if there exists

a non-null P -Jacobi field J along σ with J(t0) = 0.

We shall use the following Lemma from [18].

Lemma 8. Let (M,F ) be a Finsler manifold, σ : [a, b]→ M be a geodesic,

and P ⊂ M be a submanifold of M . Suppose that there is no P -focal point

along σ. Let X ∈ XP be a vector field orthogonal to σ, and J a P -Jacobi field

such that X(b) = J(b). Then

IP (X,X) ≥ IP (J, J),

with equality if and only if X = J .

2.3. k-Ricci curvature. We introduce the k-Ricci curvature Rick following [21].

For a (k + 1)-dimensional subspace V ∈ TxM , the Ricci curvature Ricy V on V is

the trace of the Riemann curvature restricted to V, with flagpole y, and is given

by:

Ricy(V) =

k∑
i=1

〈Ry(bi), bi〉y =

k∑
i=1

〈Ω(y, bi)y, bi〉y,

where Ry(bi) ≡ Ω(y, bi)y and y, (bi)i=1,k is an arbitrary orthonormal basis for

(V, 〈, 〉y). Ricy(V) is well-defined and positively homogeneous of degree 2 on V,

Ricλy(V) = λ2 Ricy(V), for λ > 0, y ∈ V.

It is clear from the definition that Ricy(TxM) is nothing but the Ricci cur-

vature Ric(y) for y ∈ TxM .

If V = P ⊂ TxM is a tangent plane, the flag curvature is given by

K(P, y) =
〈Ry(u), u〉y

〈y, y〉y〈u, u〉y − 〈u, y〉2y
,

where u ∈ P\{0}, span(y, u) = P. This is independent of the choice of u ∈ P\{0}.
If u is gy-orthogonal to y and its gy-norm is 1, then it becomes

K(P, y) =
Ricy P
F 2(y)

, y ∈ P.

Consider the following function on M :

Rick(x) := inf
dim(V)=k+1

inf
y∈V

Ricy(V)

F 2(y)
,
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the infimum being considered over all (k + 1)-dimensional subspaces V ⊂ TxM

and y ∈ V \ {0}. From the above definitions it can be seen that

Ric1 ≤ · · · ≤
Rick
k
≤ · · · ≤ Ricn−1

n− 1
,

and

Ric1 = inf
(P,y)

K(P, y) and Ric(n−1) = inf
F (y)=1

Ric(y).

We will say that the Finsler manifold (M,F ) has positive k-Ricci curvature

if and only if Rick > 0.

3. A compactness theorem

In this Section, we prove the Finslerian version of a Galloway compactness

theorem, see Theorem 2 in [13].

Let (M,F ) be a Finsler manifold such that B+(x, r)∩B−(x, r) is precompact

for all x ∈ M and r > 0. Then, for every x ∈ M , the geodesic starting from x

with some initial tangent vector is defined on an interval [0, ax). Consider an

increasing function f : [0,∞)→ [0, A) of class C1 (for example, take A = π
2 and

g(x) = arc tanx). We have the following composition

[0,∞)
u−→ [0, A)

v= ax
A t

←→ [0, ax),

and consider the inverse of the composed functionG := (v◦u)−1 : [0, ax)→ [0,∞).

Theorem 9. Let (M,F ) be a n-dimensional Finsler manifold which satisfies

the condition

B+(x, r) ∩B−(x, r) is precompact for all x ∈Mand r > 0. (4)

If there exists a point p ∈ M such that along any geodesic σ : [0,∞) → M

emanating from p and parameterized by arc length t the condition∫ ∞
0

tα Rick(t)dt =∞ (5)

holds at least for a k = 1, 2, ..., n− 1 and for some α ∈ [0, 1), then M is compact.

The Rick(t) means one of the Ricci’s curvatures for F or its reverse metric F̃ (u) =

F (−u).

We divide the proof into three lemmas.
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Lemma 10. Let (M,F ) be a n-dimensional Finsler manifold which satisfies

the condition

B+(x, r) ∩B−(x, r) is precompact for all x ∈Mand r > 0. (6)

If there exists a point p ∈M such that every geodesic ray emanating from p has

a point conjugate to p along the ray with respect to F or F̃ , then M is compact.

Proof. Let Sp be the indicatrix in the point p ∈M . For each y ∈ Sp issue

the unit speed geodesic from p with the initial unity velocity y. Let cy be the

value of t in the first conjugate point of p, and iy the value of t in the cut point

of p. By the hypothesis, the set of cy is forwardly bounded from above, and since

one has iy ≤ cy, it follows that supy∈Sp
iy ≤ supy∈Sp

cy, and because the diameter

of M is less or equal to supy∈Sp
iy, it comes out that M is forwardly bounded

from the above. As M is closed in its own topology, by the Hopf–Rinow theorem

it is compact. �

Before going on, we recall that a differential equation

x′′ + h(t)x = 0, (7)

where h is a continuous function on an interval I, is called of Jacobi type and it

is said to be conjugate if there exists a nontrivial solution φ which vanishes for at

least two values t1 and t2 in I.

The equation (7) is called oscillatory on [0,∞) if each solution of it on [0,∞)

has arbitrary large, and hence infinitely many zeros. If (7) is oscillatory, then it

is conjugate, too.

Lemma 11. Suppose that there exists a point p ∈M such that along a ge-

odesic σ : [0,∞)→ M emanating from p and parameterized by the arc length t,

the Jacobi type equation

x′′ +
Rick(t)

k
x = 0 (8)

is conjugate on [0,∞). Then p has a conjugate point on σ.

Proof. Suppose, by contrary, that p has no conjugate points on σ. Since

the equation (8) is conjugate, there exists a nontrivial solution φ : [0,∞)→ R of

it such that φ(t1) = φ(t2) = 0 for 0 ≤ t1 < t2, and φ(t) 6= 0 for t ∈ (t1, t2). Define

a function f that is null on [0, t1) and coincides with φ for t ∈ [t1, t2].

We consider a gT -orthonormal frame (ei(t)) along σ with each (ei(t)) parallel

along σ and en = T . We set Wα(t) = f(t)eα(t), α = 1, 2, . . . , n−1. These Wα are
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C∞-vector fields on [0, t1] and [t1, t2]. We compute the index form I(Wα,Wα) on

the interval [0, t2). Using DTWα = f ′eα, DTDTWα = f ′′eα and the definition

of f , we get

I(Wα,Wα) = −
∫ t2

0

(f ′′ +K(eα ∧ T )f)f dt. (9)

Summing up from 1 to a fixed k = 1, 2, . . . , n− 1, one yields

k∑
α=1

I(Wα,Wα) = −k
∫ t2

0

ff ′′dt−
∫ t2

0

f2
k∑

α=1

K(eα ∧ T )dt. (10)

By the definition of Rick, we get

−f2
k∑

α=1

K(eα ∧ T ) ≤ −f2 Rick(t), (11)

and so we obtain

k∑
α=1

I(Wα,Wα) ≤ −k
∫ t2

0

ff ′′dt−
∫ t2

0

f2 Rick(t)dt

= −k
∫ t2

t1

(φ′′(t) +
Rick(t)

k
φ)φ(t)dt = 0, (12)

because φ is a solution of equation (8). Thus, there exists at least an α such

that I(Wα,Wα) ≤ 0. We denote that Wα by W and then proceed by con-

tradiction using Proposition 4. The vector field W satisfies W (t) = 0 for t ∈
[t1, t2] and W (t2) = 0, and it cannot be a Jacobi field since is zero on the interval

(0, t1) (by unicity of solution of a second order differential equation). By Propo-

sition 4, we have 0 = I(J, J) < I(W,W ) < 0, which is a contradiction. Thus on

the geodesic σ there exists some point conjugate to p. �

Theorem 2 from the paper [17] by R. A. Moore, in some particular condi-

tions gives the following

Lemma 12. Consider equation (7) with t ∈ [0,∞). If for some α, 0 ≤ α < 1,

we have ∫ ∞
0

tαh(t)dt = +∞, (13)

then equation (7) is oscillatory.
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Now, let us combine the above three Lemmas. By Lemma 11, taking h(t) =
Rick(t)

k
, the assumptions of Theorem 14 imply that the equation (8) is oscillatory,

hence conjugate. Thus by Lemma 10, there exists a point p ∈ M such that each

geodesic starting from p has a conjugate point of p. By Lemma 9, the Finsler

manifold (M,F ) is compact. Thus Theorem 14 is proved. �

The observations in the beginning of Subsection 2.1 and the previous theorem

lead to the following

Theorem 13. Let (M,F ) be a forward (resp. backward) complete Finsler

manifold. If there exists a point p ∈M such that along any geodesic σ : [0,∞)→
M emanating from p and parameterized by arc length t the condition∫ ∞

0

tα Rick(t)dt =∞ (14)

holds at least for a k = 1, 2, ..., n− 1 and some α ∈ [0, 1), then M is compact.

Remark. If the condition
∫∞
0
tα Rick(t)dt = ∞ holds for k = 1, that is for

Ric1 = inf
(P,y)

K(P, y), then the inequalities on Rick in Subsection 2.3 give the same

condition for the same k = 2, 3, . . . , n− 1.

4. An intersection theorem

In this section, we prove a generalization of an intersection theorem in Rie-

mannian setting (see [14, Theorem 1]).

Theorem 14. Let (M,F ) be a n-dimensional Finsler manifold of nonnega-

tive k-Ricci curvature which satisfies the condition

B+(x, r) ∩B−(x, r) is precompact for all x ∈M and r > 0. (15)

Let Q be a complete immersed submanifold of dimQ = n−1 and with asymptotic

index n − 1, and P be a r-dimensional closed, minimal submanifold of M , with

r ≥ k. Suppose that both P and Q are closed, and one of them is compact. If M

has positive k-Ricci curvature either in all points of P or in all points of Q, then

P and Q must intersect.

Proof. Suppose, by contrary, that P and Q do not intersect. The discus-

sions of Theorem 5.2 in [8], the proof of Theorem 3.1 in [9], and the assumption 15
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imply that both P and Q should be compact, or one of them is forward bounded

and the other is backward bounded.

From [15, Theorem 2], see also [8, Theorem 5.2] and [9, Proposition 3.1], there

exists a normal geodesic γ : [0, l] → M which minimizes the distance between

P and Q (or between Q and P ). This geodesic strikes P and Q orthogonally with

respect to the inner product 〈·, ·〉γ′ , and is free of focal points except the initial or

final point of the geodesic. Consider now a vector v tangent to P . By the parallel

transport along γ induced by the Cartan connection, it gives rise to a vector field

along γ, and at the endpoint q = γ(l) will be a vector tangent to Q, because Q

has codimension 1.

Consider now a basis of TpP , v1, . . . vr orthonormal with respect to the in-

ner product 〈·, ·〉γ′(0). The parallel transport induced by the Cartan connection

generates the vector fields V1, . . . , Vr, which are orthogonal along γ with respect

to the inner product 〈·, ·〉γ′ .
The Morse index form, along each vector field Vi, is

I(P,Q)(Vi, Vi) = 〈IPT (Vi, Vi), T
H〉T

∣∣∣
l
− 〈IQT (Vi, Vi), T

H〉T
∣∣∣
0

−
∫ l

0

〈∇TH∇THV Hi + Ω(TH , V Hi )TH , V Hi 〉T dt.

The minimality of P implies that, in all the points of P, we have

r∑
i=1

〈IPT (Vi, Vi), T
H〉T = 0.

From Rick ≥ 0 in all the points of P and r ≥ k it follows that, for any subset

{i1, . . . , ik} ⊂ {1, . . . r}, we have

k∑
j=1

K(Vij , T ) ≥ 0,

and
r∑
i=1

K(Vi, T ) =
r

kCkr

∑
1≤i1≤···≤ik

k∑
j=1

K(Vij , T ) ≥ 0 ∀p ∈ P.

Further, the fact that M has positive k-Ricci curvature either in all points

of P or at all points of Q implies that either

k∑
j=1

K(Vij , T )
∣∣∣
0
> 0 or

k∑
j=1

K(Vij , T )
∣∣∣
l
> 0,
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for any distinct indices. Hence, we have either

r∑
i=1

K(Vi, T )
∣∣∣
0
> 0 or

r∑
i=1

K(Vi, T )
∣∣∣
l
> 0.

Hence, being
r∑
i=1

K(Vi, T )
∣∣∣
l
> 0, we get

r∑
i=1

I(P,Q)(Vi, Vi) = −
r∑
i=1

∫ l

0

K(Vi, T )dt < 0.

Thus, I(P,Q)(Vi, Vi) < 0 for some index i, which contradicts the minimality of the

geodesic. Hence, P and Q must intersect. �

One of the reviewers observed that the above theorem can be improved by

relaxing conditions about P and Q. The conclusion of the theorem remains valid

if Q is a closed, backward bounded hypersurface (without boundary) which is

the boundary of a connected open subset D, and 〈Iv(X,X), vH〉v ≥ 0 for any

X ∈ HPTP and v ∈ TxM is a normal vector to Q (i.e. 〈w, v〉v = 0 for all

w ∈ TxQ) pointing insideD, and P is a forward bounded closed immersed minimal

submanifold of dimension r ≥ k contained in M \ D. Moreover, if Q satisfies

〈Iv(X,X), vH〉v > 0, the assumption that Rick is positive on all points of P or Q

can be removed. This condition leads to analyzing the relation between the sign

of 〈Iv(X,X), vH〉v and the convexity of Q in the sense that its normal curvatures

with respect to a normal vector pointing outside D is positive semidefinite (see

[5]).

If the Finsler metric is forward (backward) complete, it follows

Theorem 15. Let (M,F ) be a forward (resp. backward) n-dimensional

Finsler manifold of nonnegative k-Ricci curvature. Let Q be a complete im-

mersed submanifold of dimQ = n − 1 and with asymptotic index n − 1, and P

be an r-dimensional complete, minimal submanifold of M , with r ≥ k. Suppose

that both P and Q are closed, and one of them is compact. If M has positive

k-Ricci curvature either in all points of P or in all points of Q, then P and Q

must intersect.

Remark. A Finsler manifold is called of Berwald type if the Cartan connection

does not depend on the reference vector. In this case, the Cartan connection is a

linear connection on the manifold M . The connection coefficients do not depend

on the tangent vectors. In this situation, the fact that the second fundamental
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form of a submanifold vanishes is equivalent to the fact that the submanifold is

totally geodesic. In the Berwald category, one has νf = dimP iff P is a totally

geodesic submanifold.

Consequently, for Berwald manifolds, in Theorems 14 and 15 we can replace

the condition that the asymptotic index of Q is n − 1 with that the submani-

fold Q is a totally geodesic submanifold of dimension n− 1.

The same situation holds for Riemannian metrics, and so our results in the

above-mentioned theorems also generalize the results of Kenmotsu and Xia [14].

Acknowledgements. The first author was partially supported by a grant

of the Romanian National Authority for Scientific Research, CNSS-UEFISCDI,

project number PN-II-ID-PCE-2011-3-0256. The work of the first and the third

author author has been co-funded by the bilateral Romanian–Hungarian grant

672/2013. The second author has been supported by the European Unions Sev-

enth Framework Programme (FP7/2007-2013) under grant agreement no. 317721,

and the Hungarian–Romanian project TÉT 12 RO-1-2013-0022.
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LÁSZLÓ KOZMA

INSTITUTE OF MATHEMATICS

UNIVERSITY OF DEBRECEN

H-4002 DEBRECEN

P. O. BOX 400

HUNGARY

E-mail: kozma@unideb.hu

(Received March 20, 2016; revised December 16, 2016)


