A basis for the unitary subgroup of the group of units in a finite commutative group algebra

By A. A. BOVDI (Debrecen) and A. SZAKÁCS (Eger)

1. Introduction

Let G be a finite abelian group, K the field $G F\left(p^{m}\right)$ of p^{m} elements and $\mathrm{V}(\mathrm{KG})$ the group of normalized units (that is units of augmentation 1) in the group algebra $K G$.

For $x=\sum_{g \in G} \alpha_{g} g \in K G$, we say that the element $x^{*}=\sum_{g \in G} \alpha_{g} g^{-1}$ is conjugate to x, and if $x^{*}=x$, we say that x is selfconjugate. The map $x \rightarrow x^{*}$ is easily seen to be an involutory anti-automorphism (involution) of the algebra $K G$. An element $u \in V(K G)$ is called unitary if $u^{-1}=u^{*}$. The set of all unitary elements of the group $V(K G)$ is obviously a subgroup; we call it the unitary subgroup of $V(K G)$, and we denote it by $V_{*}(K G)$.
S. P. Novikov had raised the problem of determining the invariants of $V_{*}(K G)$ when G has p-power order. This was solved by the authors in [1]; and in case $p>2, m=1$, we gave an explicit basis for $V_{*}(K G)$. Here we continue this work by giving a basis for the Sylow p-subgroup of $V_{*}(K G)$ whenever G is an arbitrary finite abelian group, without any restriction on p or m.

We shall write F for the field $G F(p)$ of p elements, C for the Sylow p subgroup of G, and H for the direct complement of C in G : thus $G=C \times$ H. Further, $C[p]=\left\{g \in C \mid g^{p}=1\right\} ; C^{p^{i}}=\left\{g^{p^{i}} \mid g \in C\right\} ; f_{i}(C)$ denotes the number of components of order p^{i} in the decomposition of the group C into a direct product of cyclic groups; $r(C)=f_{1}(C)+f_{2}(C)+\cdots$ denotes the p-rank of $C ; J=J(C)$ denotes the ideal of the algebra $K G$ generated

[^0]by the elements $g-1(g \in C)$; and $V_{p}(K G)$ (respectively $W_{p}(K G)$) denotes the Sylow p-subgroup of the group $V(K G)$ (respectively $V_{*}(K G)$). Of course J is nilpotent, and $V_{p}(K G)=1+J$.

Note that the words 'basis' and 'independent' are used in two different senses to describe subsets of $K G$: on the one hand, additively, as subsets of the vector space $K G$; on the other, multiplicatively, as subsets of the abelian group $V_{p}(K G)$. The context should make it clear which meaning is intended.

It is easy to prove the following statements using methods of proofs from [1].

Proposition 1.1. Let be $p>2$. Then

$$
r\left(W_{p}(K G)\right)=\frac{m}{2}|H|\left(|C|-\left|C^{p}\right|\right)
$$

and

$$
f_{i}\left(W_{p}(K G)\right)=\frac{m}{2}|H|\left(\left|C^{p^{i-1}}\right|-2\left|C^{p^{i}}\right|+\left|C^{p^{i+1}}\right|\right)(i=1,2,3, \ldots)
$$

Proposition 1.2. $W_{2}(K G)=C \times D(C) \times T(C)$,

$$
\begin{gathered}
r\left(W_{2}(K G)\right)=\frac{m}{2}\left(|H|\left(|C|-\left|C^{2}\right|\right)+|C[2]|+\left|C^{2}[2]\right|-2\right), \\
f_{1}(T(C))=r(T(C))=m(|C[2]|-1)-f_{1}(C),
\end{gathered}
$$

and $f_{i}(D(C))=t_{i-1}-2 t_{i}+t_{i+1}-f_{i+1}(C) \quad(i=1,2,3, \ldots)$
where $t_{j}=\frac{m}{2}\left(|H|\left(\left|C^{2^{j}}\right|-1\right)-\left|C^{2^{j}}[2]\right|+1\right) \quad(j=0,1,2, \ldots)$.

2. A basis for $V_{p}(K G)$

We shall use the following notation: $C=\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{n}\right\rangle$ is a decomposition of the p-group C as direct product of cyclic subgroups; q_{i} is the order of the element $a_{i}(i=1, \ldots, n)$; and $L(C)$ is the set of all n-tuples of integers $\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\alpha$ for which $0 \leq \alpha_{i}<q_{i}$ and $p \nmid \alpha_{i}$ for some i.
R. Sandling [2] proved that the set

$$
\left\{x_{\alpha}=1+\left(a_{1}-1\right)^{\alpha_{1}} \cdots\left(a_{n}-1\right)^{\alpha_{n}} \mid \alpha \in L(C)\right\}
$$

is a basis for $V(F C)$. We extend this result to the group $V_{p}(K G)$.
It is known (see [3], Theorem 2.35) that K has an F-basis of the form

$$
\begin{equation*}
\varepsilon, \varepsilon^{p}, \ldots, \varepsilon^{p^{m-1}} \tag{2.1}
\end{equation*}
$$

The following statement was proved by S. A. Jennings (see [4], p. 89).

Lemma 2.1. Let $A=A(K C)$ denote the augmentation ideal of the modular group algebra $K C$. Then the elements $y\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$

$$
y(\alpha)=\left(a_{1}-1\right)^{\alpha_{1}} \cdots\left(a_{n}-1\right)^{\alpha_{n}} \quad\left(0 \leq \alpha_{i}<q_{i}, \alpha_{1}+\cdots+\alpha_{n} \geq k\right)
$$

form a K-basis for A^{k}.
Lemma 2.2. Let $J=J(C)$ be the ideal of the algebra $K G$ defined above and

$$
y(i, h, \alpha)=y\left(i, h, \alpha_{1}, \ldots, \alpha_{n}\right)=\varepsilon^{p^{i}} h\left(a_{1}-1\right)^{\alpha_{1}} \cdots\left(a_{n}-1\right)^{\alpha_{n}}
$$

Then

$$
\begin{gathered}
M_{k}=\left\{y(i, h, \alpha) \mid 0 \leq i<m, h \in H, 0 \leq \alpha_{j}<q_{j}(j=1, \ldots, n),\right. \\
\left.\alpha_{1}+\cdots+\alpha_{n} \geq k\right\}
\end{gathered}
$$

is an F-basis for J^{k}.
Proof. It is known that the elements $h\left(c_{1}-1\right) \cdots\left(c_{r}-1\right) \quad(h \in H$, $\left.c_{i} \in C, \quad r \geq k\right)$ form a K-basis for J^{k}. By writing the elements $\left(c_{1}-1\right) \cdots\left(c_{r}-1\right) \in J^{k}$ in terms of the basis given in Lemma 2.1, and the elements of K in terms of the basis (2.1), we can obtain a proof of the lemma.

Theorem 2.3. The set

$$
B(G)=\{x(i, h, \alpha)=1+y(i, h, \alpha) \mid 0 \leq i<m, h \in H, \alpha \in L(C)\}
$$

is a basis for $V_{p}(K G)$.
Proof. It is easy to see that

$$
\widetilde{M}_{k}=\left\{y(i, h, \alpha)+J^{k+1} \mid y(i, h, \alpha) \in M_{k}, \alpha_{1}+\cdots+\alpha_{n}=k\right\}
$$

is an F-basis for the vector space J^{k} / J^{k+1}. The additive group J^{k} / J^{k+1} is isomorphic to the multiplicative group $1+J^{k} / 1+J^{k+1}$, so this factor-group is generated by the elements

$$
(1+y(i, h, \alpha))\left(1+J^{k+1}\right) \quad\left(\alpha_{1}+\cdots+\alpha_{n}=k\right)
$$

The subgroups $1+J^{k}(k=1,2,3, \ldots)$ of $V_{p}(K G)=1+J$ form a finite series descending to 1 , because J is nilpotent. Therefore $V_{p}(K G)$ is generated by the elements $x(i, h, \alpha)=1+y(i, h, \alpha) \quad\left(y(i, h, \alpha) \in M_{1}\right)$. If $\alpha_{1}=$ $\beta_{1} p^{s}, \ldots, \alpha_{n}=\beta_{n} p^{s}$ and $p \nmid \beta_{t}$ for some t, then

$$
x(i, h, \alpha)=\left(1+\varepsilon^{p^{j}} g\left(a_{1}-1\right)^{\beta_{1}} \cdots\left(a_{n}-1\right)^{\beta_{n}}\right)^{p^{s}}=x(j, g, \beta)^{p^{s}},
$$

where $h=g^{p^{s}}, \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in L(C)$ and $j \equiv i-s(\bmod m)$. Consequently, $x(j, g, \beta) \in B(G)$ and so it follows that $V_{p}(K G)$ is generated by $B(G)$.

It is obvious that the cardinality $|B(G)|$ of the set $B(G)$ coincides with the rank of $V_{p}(K G)$. Let $x(i, h, \alpha)$ be an element from $B(G)$ for which

$$
x(i, h, \alpha)^{p^{k}}=1+\varepsilon^{p^{i+k}} h^{p^{k}}\left(a_{1} p^{k}-1\right)^{\alpha_{1}} \cdots\left(a_{n}{ }^{p^{k}}-1\right)^{\alpha_{n}} \neq 1 .
$$

Then $\alpha_{j}<\frac{q_{j}}{p^{k}}$ for every $j=1, \ldots, n$ and $x(i, h, \alpha)^{p^{k}} \in B\left(C^{p^{k}} \times H\right)$. Therefore, the cardinality of the set $B(G)^{p^{k}}=\left\{x^{p^{k}} \mid x \in B(G)\right\}$ coincides with $\left|B\left(C^{p^{k}} \times H\right)\right|=m|H|\left(\left|C^{p^{k}}\right|-\left|C^{p^{k+1}}\right|\right)$, and it follows that the number of elements of $B(G)$ of order p^{k} equals $\left|B(G)^{p^{k-1}}\right|-\left|B(G)^{p^{k}}\right|=$ $f_{k}\left(V_{p}(K G)\right)$. This completes the proof of our theorem.

Using this theorem, we describe a basis of the Sylow p-subgroup $W_{p}(K G)$ of the unitary subgroup $V_{*}(K G)$. First we consider the case $p>2$.

3. A basis for $W_{p}(K G)$ in the case $p>2$

It is easy to prove the following lemma by induction on n.
Lemma 3.1. For $p>2$ the cardinality of the set

$$
L_{1}(C)=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in L(C) \mid \alpha_{1}+\cdots+\alpha_{n} \text { is an odd number }\right\}
$$

is equal to $\frac{1}{2}\left(|C|-\left|C^{p}\right|\right)$.
Theorem 3.2. Let $p>2, H[2]=\left\{h \in H \mid h^{2}=1\right\}, E$ be a subset of $H \backslash H[2]$ having a unique representative in every set of the form $\left\{h, h^{-1}\right\}$,

$$
B_{1}(G)=\left\{x(i, h, \alpha)^{*} x(i, h, \alpha)^{-1} \mid x(i, h, \alpha) \in B(G), h \in E\right\}
$$

and

$$
\begin{gathered}
B_{2}(G)=\left\{x(i, h, \alpha)^{*} x(i, h, \alpha)^{-1} \mid x(i, h, \alpha) \in B(G), h \in H[2],\right. \\
\left.\alpha_{1}+\cdots+\alpha_{n} \text { is an odd number }\right\} .
\end{gathered}
$$

Then $B_{*}(G)=B_{1}(G) \cup B_{2}(G)$ is a basis for $W_{p}(K G)$.
Proof. Let $b_{i}=a_{i}-1, k=\alpha_{1}+\cdots+\alpha_{n}$ and

$$
y(\alpha)=y\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(a_{1}-1\right)^{\alpha_{1}} \cdots\left(a_{n}-1\right)^{\alpha_{n}} .
$$

By virtue of the equality

$$
1+b_{i}^{q_{i}}=\left(1+b_{i}\right)\left(1-b_{i}+b_{i}^{2}-b_{i}^{3}+\cdots+b_{i}^{q_{i}-1}\right)=1
$$

it is easy to obtain that

$$
\begin{equation*}
b_{i}^{*}=-b_{i}+b_{i}^{2}-b_{i}^{3}+\cdots+b_{i}^{q_{i}-1} . \tag{3.1}
\end{equation*}
$$

Then $y(\alpha)^{*}=(-1)^{k} y(\alpha)+v$ for some v in $J^{k+1}(C)$ and
$x(i, h, \alpha)^{*}=\left(1+\varepsilon^{p^{i}} h y(\alpha)\right)^{*}=1+(-1)^{k} \varepsilon^{p^{i}} h^{-1} y(\alpha)+\widetilde{v} \quad\left(\widetilde{v} \in J^{k+1}(C)\right)$.
Clearly, for the $x(i, h, \alpha)=1+\varepsilon^{p^{i}} h y(\alpha) \in B(G)$ the element $y(\alpha)$ is nilpotent and

$$
x(i, h, \alpha)^{-1}=1-\varepsilon^{p^{i}} h y(\alpha)+\left(\varepsilon^{p^{i}} h y(\alpha)\right)^{2}-\left(\varepsilon^{p^{i}} h y(\alpha)\right)^{3}+\cdots
$$

Since

$$
x(i, h, \alpha)^{*} x(i, h, \alpha)^{-1}=1+\left((-1)^{k} h^{-1}-h\right) \varepsilon^{p^{i}} y(\alpha)+v
$$

for some v in $J^{k+1}(C)$, it follows that $x(i, h, \alpha)^{*} x(i, h, \alpha)^{-1} \neq 1$ whenever $h \in E$ or k is odd. As an immediate consequence we have that $x(i, h, \alpha)^{*} x(i, h, \alpha)^{-1} \neq x(j, g, \beta)^{*} x(j, g, \beta)^{-1}$ if $i \neq j$ or $\alpha \neq \beta$ or $\left\{h, h^{-1}\right\} \neq\left\{g, g^{-1}\right\}$. This shows that the set $B_{*}(G)$ consists of pairwise distinct unitary elements. According to Lemma 3.1,
$\left|B_{2}(G)\right|=\frac{m}{2}|H[2]|\left(|C|-\left|C^{p}\right|\right)$. Since $|E|=\frac{1}{2}(|H|-|H[2]|)$, we also know that

$$
\left|B_{1}(G)\right|=\frac{m}{2}(|H|-|H[2]|)\left(|C|-\left|C^{p}\right|\right) .
$$

Therefore, by Proposition 1.2, $\left|B_{*}(G)\right|=r\left(W_{p}(K G)\right)$.
We shall prove that $\left(B_{*}(H \times C)\right)^{p^{s}}=B_{*}\left(H \times C^{p^{s}}\right)$. Suppose that $w(i, g, \alpha)=x(i, g, \alpha)^{*} x(i, g, \alpha)^{-1}$ and $w(j, h, \beta)=x(j, h, \beta)^{*} x(j, h, \beta)^{-1}$ are the different elements from $B_{*}(G)$ and their orders greater than p^{s}, yet $w(i, g, \alpha)^{p^{s}}=w(j, h, \beta)^{p^{s}}$. Then the element $v=(x(i, g, \alpha))^{p^{s}}\left(x(j, h, \beta)^{*}\right)^{p^{s}}$ is selfconjugate in the group algebra of the group $H \times C^{p^{s}}$. Let

$$
\begin{gathered}
c_{j}=a_{j} p^{p^{s}}, z(\alpha)=z\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(c_{1}-1\right)^{\alpha_{1}} \cdots\left(c_{n}-1\right)^{\alpha_{n}}, \\
(x(i, g, \alpha))^{p^{s}}=1+\varepsilon^{p^{i+s}} g^{p^{s}} z(\alpha), \quad(x(j, h, \beta))^{p^{s}}=1+\varepsilon^{p^{j+s}} h^{p^{s}} z(\beta)
\end{gathered}
$$

and $k=\alpha_{1}+\cdots+\alpha_{n} \leq \beta_{1}+\cdots+\beta_{n}$. Then, according to (3.1), we have

$$
v \equiv 1+\varepsilon^{p^{i+s}} g^{p^{s}} z(\alpha)+(-1)^{k} \varepsilon^{p^{j+s}} h^{-p^{s}} z(\beta) \quad\left(\bmod J^{k+1}\left(C^{p^{s}}\right)\right)
$$

$$
v^{*} \equiv 1+(-1)^{k} \varepsilon^{p^{i+s}} g^{-p^{s}} z(\alpha)+\varepsilon^{p^{j+s}} h^{p^{s}} z(\beta) \quad\left(\bmod J^{k+1}\left(C^{p^{s}}\right)\right)
$$

Therefore from the condition $v=v^{*}$ we deduce that

$$
\begin{gather*}
\varepsilon^{p^{i+s}}\left(g^{p^{s}}-(-1)^{k} g^{-p^{s}}\right) z(\alpha) \tag{3.2}\\
-\varepsilon^{p^{j+s}}\left(h^{p^{s}}-(-1)^{k} h^{-p^{s}}\right) z(\beta) \equiv 0 \quad\left(\bmod J^{k+1}\left(C^{p^{s}}\right)\right)
\end{gather*}
$$

where $\left(g^{p^{s}}-(-1)^{k} g^{-p^{s}}\right) z(\alpha) \neq 0$ since $w(i, g, \alpha) \in B_{*}(G)$. For any two different elements $w(i, g, \alpha)$ and $w(j, h, \beta)$ of $B_{*}(G)$ at least one of the following conditions holds: a) $i \neq j$; b) $\alpha \neq \beta$; c) $\left\{g, g^{-1}\right\} \neq\left\{h, h^{-1}\right\}$. Since $w(i, g, \alpha) \in B_{*}(G)$, it follows that $g \neq(-1)^{k} g^{-1}$ and neither the order of g nor the order of h is divisible by p, so c) is equivalent to the condition $\left\{g^{p^{s}}, g^{-p^{s}}\right\} \neq\left\{h^{p^{s}}, h^{-p^{s}}\right\}$. Hence (3.2) contradicts Lemma 2.2. Consequently, $\left(B_{*}(H \times C)\right)^{p^{s}}=B_{*}\left(H \times C^{p^{s}}\right)$ and $B_{*}(G)$ has exactly $\left|B_{*}(G)^{p^{s-1}}\right|-\left|B_{*}(G)^{p^{s}}\right|=f_{s}\left(W_{p}(K G)\right)$ elements of order p^{s}.

We shall prove the independence of $B_{*}(G)$. Let

$$
w\left(i_{1}, h_{1}, \alpha^{(1)}\right), \ldots, w\left(i_{s}, h_{s}, \alpha^{(s)}\right)
$$

be different elements from $B_{*}(G)$, and let

$$
w\left(i_{1}, h_{1}, \alpha^{(1)}\right)^{k_{1}} \cdots w\left(i_{s}, h_{s}, \alpha^{(s)}\right)^{k_{s}}=1 .
$$

Then it is easy to see that the element

$$
v=x\left(i_{1}, h_{1}, \alpha^{(1)}\right)^{k_{1}} \cdots x\left(i_{s}, h_{s}, \alpha^{(s)}\right)^{k_{s}}
$$

is selfconjugate. Let $k_{r}=t_{r} p^{\nu(r)}$ and $p \nmid t_{r}$. Then

$$
x\left(i_{r}, h_{r}, \alpha^{(r)}\right)^{k_{r}}=x\left(j_{r}, g_{r}, \beta^{(r)}\right)^{t_{r}}
$$

where $j_{r} \equiv i_{r}+\nu(r)(\bmod m), g_{r}={h_{r}}^{p^{\nu(r)}}$ and

$$
\beta^{(r)}=\left(p^{\nu(r)} \alpha_{1}^{(r)}, \ldots, p^{\nu(r)} \alpha_{n}^{(r)}\right) .
$$

Hence v can be written in the form

$$
v=x\left(j_{1}, g_{1}, \beta^{(1)}\right)^{t_{1}} \cdots x\left(j_{s}, g_{s}, \beta^{(s)}\right)^{t_{s}}
$$

where $p \nmid t_{1} t_{2} \cdots t_{s}$. Let $y(i, g, \alpha)=\varepsilon^{p^{i}} g\left(a_{1}-1\right)^{\alpha_{1}} \cdots\left(a_{n}-1\right)^{\alpha_{n}}$ and
$k=\min _{1 \leq r \leq s}\left\{\beta_{1}^{(r)}+\cdots+\beta_{n}^{(r)}\right\}$. Therefore $x\left(j_{r}, g_{r}, \beta^{(r)}\right)=1+y\left(j_{r}, g_{r}, \beta^{(r)}\right)$ $(r=1, \ldots, s)$ and

$$
v \equiv 1+t_{1} y\left(j_{1}, g_{1}, \beta^{(1)}\right)+\cdots+t_{s} y\left(j_{s}, g_{s}, \beta^{(s)}\right) \quad\left(\bmod J^{k+1}(C)\right)
$$

Without loss of generality we can assume that

$$
k=\beta_{1}^{(1)}+\cdots+\beta_{n}^{(1)}=\cdots=\beta_{1}^{(s)}+\cdots+\beta_{n}^{(s)} .
$$

It is clear that

$$
\begin{gathered}
v^{*} \equiv 1+(-1)^{k} t_{1} y\left(j_{1}, g_{1}^{-1}, \beta^{(1)}\right)+\cdots+(-1)^{k} t_{s} y\left(j_{s}, g_{s}^{-1}, \beta^{(s)}\right) \\
\left(\bmod J^{k+1}(C)\right) .
\end{gathered}
$$

Hence, by virtue of the equality $v=v^{*}$, we have

$$
\begin{gather*}
t_{1}\left(y\left(j_{1}, g_{1}, \beta^{(1)}\right)-(-1)^{k} y\left(j_{1}, g_{1}^{-1}, \beta^{(1)}\right)\right)+\cdots+ \tag{3.3}\\
t_{s}\left(y\left(j_{s}, g_{s}, \beta^{(s)}\right)-(-1)^{k} y\left(j_{s}, g_{s}^{-1}, \beta^{(s)}\right)\right) \equiv 0\left(\bmod J^{k+1}(C)\right)
\end{gather*}
$$

Since $w\left(i_{r}, h_{r}, \alpha^{(r)}\right) \in B_{*}(G)$ and $p>2$, it follows that $g_{r} \neq(-1)^{k} g_{r}{ }^{-1}$ and the summand $u_{r}=y\left(j_{r}, g_{r}, \beta^{(r)}\right)-(-1)^{k} y\left(j_{r}, g_{r}^{-1}, \beta^{(r)}\right)$ is nonzero. If $\beta^{(r)} \neq \beta^{(q)}$, then obviously $u_{r} \neq u_{q}$. Hence from (3.3) follows that $\beta^{(1)}=\cdots=\beta^{(s)}=\beta$ and $g_{r}=h_{r}{ }^{p^{\nu}}(r=1, \ldots, s)$ for a fixed ν. If $\left\{h_{r}, h_{r}^{-1}\right\} \neq\left\{h_{q}, h_{q}^{-1}\right\}$, then $\left\{g_{r}, g_{r}^{-1}\right\} \neq\left\{g_{q}, g_{q}^{-1}\right\}$ (p does not divide the order of h_{r}, h_{q}) and $u_{r} \neq u_{q}$. Therefore, from (3.3) we deduce that $\left\{g_{1}, g_{1}^{-1}\right\}=\cdots=\left\{g_{s}, g_{s}^{-1}\right\}$. Since $y\left(j_{1}, g_{1}, \beta\right), \ldots, y\left(j_{s}, g_{1}, \beta\right)$ are the pairwise distinct elements, it follows from (3.3) that $t_{1} \varepsilon^{p^{j_{1}}}+\cdots+t_{s} \varepsilon^{p^{j_{s}}} \equiv 0$ $(\bmod p)$ which is impossible because $p \nmid t_{1} t_{2} \cdots t_{s}$. This completes the proof of the theorem.

4. A basis for $W_{2}(K G)$

We now turn to the case $p=2$. First we describe a basis $B_{*}(C)$ for the unitary subgroup $V_{*}(K C)$. It is obvious that $V_{*}(K C)=V(K C)$ when C is elementary abelian or C is the cyclic group of order 4 . Therefore we shall assume that the exponent of C is greater than 2 and C is not the cyclic group of order 4.

Let $N(C)$ denote the set of all n-tuples of integers $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \neq$
$(0, \ldots, 0)$ for which $\alpha_{i} \in\left\{0, q_{i}-1\right\}$ and

$$
T(C)=\left\{1+\sum_{\alpha \in N(C)} \lambda_{\alpha}\left(1+a_{1}\right)^{\alpha_{1}} \cdots\left(1+a_{n}\right)^{\alpha_{n}} \mid \lambda_{\alpha} \in K\right\} .
$$

It is easy to see that $T(C)$ is an elementary subgroup of $V_{*}(K C)$, $T(C) \cap C=\left\{a_{i} \mid a_{i}{ }^{2}=1, i=1, \ldots, n\right\}$ and the group $T(C)$ has a basis of the form

$$
B_{T}(C)=\left\{1+\varepsilon^{2^{r}}\left(1+a_{1}\right)^{\alpha_{1}} \cdots\left(1+a_{n}\right)^{\alpha_{n}} \mid 0 \leq r<m, \alpha \in N(C)\right\}
$$

where $\varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{2^{m-1}}$ is a $G F(2)$-basis of the field $K=G F\left(2^{m}\right)$ (see (2.1)). According to Proposition 1.2,

$$
V_{*}(K C)=\left\langle a_{i} \mid a_{i}^{2} \neq 1\right\rangle \times T(C) \times D(C)
$$

where by [1] $D(C) \subset\left\{x^{*} x^{-1} \mid x \in V(K C)\right\}$. In the following we shall construct a basis of the group $D(C)$.

From now on, let F be the field of 2 elements, C a finite abelian 2group of exponent greater than 2 and different from the cyclic group of order $4, A=A(F C)$ the augmentation ideal of the algebra $F C$,
$L_{2}(C)=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i} \in\left\{0,2,4, \ldots, q_{i}-2\right\}, i=1,2, \ldots, n\right\}$ and

$$
\mu(C)=\frac{1}{2}\left(|C|-\left|C^{2}\right|-|C[2]|+\left|C^{2}[2]\right|\right)-r\left(C^{2}\right)
$$

We shall construct a subset $L_{*}(C)$ of $L(C)$ for which the set
$B_{0}(C)=\left\{x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1} \mid x_{\alpha}=1+\left(a_{1}+1\right)^{\alpha_{1}} \cdots\left(a_{n}+1\right)^{\alpha_{n}} \in B(C), \alpha \in L_{*}(C)\right\}$
is a basis of the group $D(C)$. For the proof of this fact we shall construct a subsets $L_{0}(C) \subset L(C) \cup L_{2}(C)$ and $L_{1}(C) \subset L(C)$ and we shall prove that they have the following properties:
$\left.a_{1}\right)$ there exists a one-to-one map ψ from $L_{*}(C)$ onto $L_{0}(C)$;
$\left.a_{2}\right) L_{0}(C) \cap L_{*}(C)=\emptyset$ (empty set);
a $\left.a_{3}\right) L_{0}(C) \cap L_{1}(C)=\emptyset$;
$\left.a_{4}\right)\left|L_{*}(C)\right|=\mu(C)$;
$\left.a_{5}\right)$ if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in L_{*}(C)$ and $\psi(\alpha)=\bar{\alpha}=\left(\bar{\alpha}_{1}, \ldots, \bar{\alpha}_{n}\right) \in L_{0}(C)$, then $\alpha_{1}+\cdots+\alpha_{n}=\bar{\alpha}_{1}+\cdots+\bar{\alpha}_{n}-1=k$ and

$$
x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1}=x_{\bar{\alpha}}\left(\prod_{\tau \in Q} x_{\tau}\right)\left(\prod_{\nu \in R} x_{\nu}\right)(1+y) \quad\left(y \in A^{k+2}\right)
$$

where $Q \subset\left\{\tau \in L_{*}(C) \mid \tau_{1}+\cdots+\tau_{n}=k+1\right\}$ and $R \subset\left\{\nu \in L_{1}(C) \mid \nu_{1}+\cdots+\nu_{n}=k+1\right\}$.

Note that the subsets Q and R may be empty.
For the proof of property a_{5}) and the following below theorems we need two lemmas.

Lemma 4.1. Let a be an element of order q in the 2-group C and let $\gamma=a+1$. Then $\left(\gamma^{*}\right)^{s}=\left(a^{-1}+1\right)^{s}=\ell_{0} \gamma^{s}+\ell_{1} \gamma^{s+1}+\ell_{2} \gamma^{s+2}+v$ for some v in A^{s+3}, with $\ell_{0}, \ell_{1}, \ell_{2}$ defined in terms of s as follows:
if $s \equiv 0(\bmod 4)$ or $s \in\{q-1, q-2\}$, then $\ell_{0}=1, \ell_{1}=\ell_{2}=0$;
if $s \equiv 1(\bmod 4), \quad$ then $\ell_{0}=\ell_{1}=\ell_{2}=1$;
if $s \equiv 2(\bmod 4)$ and $s<q-2, \quad$ then $\ell_{0}=\ell_{2}=1, \ell_{1}=0$;
if $s \equiv 3(\bmod 4)$ and $s<q-1, \quad$ then $\ell_{0}=\ell_{1}=1, \ell_{2}=0$.
Proof. According to (3.1), $\gamma^{*}=\gamma+\gamma^{2}+\cdots+\gamma^{q-1}$. Since $K C$ is a ring of characteristic 2 , it follows that $\left(\gamma^{*}\right)^{2}=\gamma^{2}+\gamma^{4}+\cdots+\gamma^{q-2}$ and $\left(\gamma^{*}\right)^{4}=\gamma^{4}+\gamma^{8}+\cdots+\gamma^{q-4}$. Hence we easily obtain a proof of the lemma.

Lemma 4.2. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in L(C), \alpha_{1}+\cdots+\alpha_{n}=k$ and $x_{\alpha}=1+\left(a_{1}+1\right)^{\alpha_{1}} \cdots\left(a_{n}+1\right)^{\alpha_{n}}$. Then

$$
x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1}=\left(\prod_{\tau} x_{\tau}\right)(1+y) \quad\left(y \in A^{k+3}\right)
$$

where the product is taken over all $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ such that $k+1 \leq$ $\tau_{1}+\cdots+\tau_{n} \leq k+2$ and the components τ_{i} satisfy the following conditions:

1) $\tau_{i}=\alpha_{i}, \quad$ if $\alpha_{i} \equiv 0(\bmod 4)$ or $\alpha_{i} \in\left\{q_{i}-1, q_{i}-2\right\}$;
2) $\tau_{i} \in\left\{\alpha_{i}, \alpha_{i}+1, \alpha_{i}+2\right\}$, if $\alpha_{i} \equiv 1(\bmod 4)$;
3) $\tau_{i} \in\left\{\alpha_{i}, \alpha_{i}+2\right\}, \quad$ if $\alpha_{i} \equiv 2(\bmod 4)$ and $\alpha_{i}<q_{i}-2$;
4) $\tau_{i} \in\left\{\alpha_{i}, \alpha_{i}+1\right\}, \quad$ if $\alpha_{i} \equiv 3(\bmod 4)$ and $\alpha_{i}<q_{i}-1$.

Proof. In the following we shall make frequent use of the fact: if $u \in A^{k}$ and $v \in A^{r}$ there exists a $z \in A^{k+r}$ for which

$$
\begin{equation*}
1+u+v=(1+u)(1+v)(1+z) . \tag{4.1}
\end{equation*}
$$

According to Lemma 4.1,

$$
\begin{equation*}
\left(a_{i}^{-1}+1\right)^{\alpha_{i}}=\ell_{0}^{(i)}\left(a_{i}+1\right)^{\alpha_{i}}+\ell_{1}^{(i)}\left(a_{i}+1\right)^{\alpha_{i}+1}+\ell_{2}^{(i)}\left(a_{i}+1\right)^{\alpha_{i}+2}+v_{i} \tag{4.2}
\end{equation*}
$$

where $v_{i} \in A^{\alpha_{i}+3}$ and $\ell_{0}^{(i)}, \ell_{1}^{(i)}, \ell_{2}^{(i)}$ we defined as in Lemma 4.1 (with reference to $s=\alpha_{i}$). By definition, $x_{\alpha}{ }^{*}=1+\left(a_{1}{ }^{-1}+1\right)^{\alpha_{1}} \cdots\left(a_{n}{ }^{-1}+1\right)^{\alpha_{n}}$,
and so by (4.2),

$$
\begin{aligned}
& x_{\alpha}^{*}=1+\left(v_{1}+\sum_{j_{1}=0}^{2} \ell_{j_{1}}^{(1)}\left(a_{1}+1\right)^{\alpha_{1}+j_{1}}\right) \cdots\left(v_{n}+\sum_{j_{n}=0}^{2} \ell_{j_{n}}^{(n)}\left(a_{n}+1\right)^{\alpha_{n}+j_{n}}\right) \\
& =1+\sum_{j_{1}, \ldots, j_{n}} \ell_{j_{1}}^{(1)}\left(a_{1}+1\right)^{\alpha_{1}+j_{1}} \cdots \ell_{j_{n}}^{(n)}\left(a_{n}+1\right)^{\alpha_{n}+j_{n}}+v \quad\left(v \in A^{k+3}\right)
\end{aligned}
$$

Obviously, we can assume that $j_{1}+\cdots+j_{n} \leq 2$. Therefore, according to (4.1), we have $x_{\alpha}{ }^{*}=x_{\alpha}\left(\prod_{\tau} x_{\tau}\right)(1+y)\left(y \in A^{k+3}\right)$, where the product is taken over all those $\tau=\left(\tau_{1}, \ldots, \tau_{n}\right)$ for which $k+1 \leq \tau_{1}+\cdots+\tau_{n} \leq$ $k+2$ and whose components τ_{i} satisfy the conditions of the lemma. This completes the proof.

We now turn to the construction of the sets $L_{*}(C), L_{0}(C)$ and $L_{1}(C)$. Let $C=\left\langle a_{1}\right\rangle \times \cdots \times\left\langle a_{n}\right\rangle, n \geq 1, q_{1}=2^{t}, q_{1} \geq q_{2} \geq \cdots \geq q_{n}$ and a_{1}, \ldots, a_{s} $(s \leq n)$ be all those basic elements of the group C, which have orders greater than 2 . We shall construct the sets $L_{*}(C), L_{0}(C), L_{1}(C)$ by induction on s . The first step of the induction (the cases $s=n=1 ; s=1$ and $n>1 ; s=n=2$) is the following three lemmas.

Lemma 4.3. Let C be a cyclic group of order $q_{1}>4$. Put $L_{1}(C)=\emptyset$,

$$
L_{*}(C)=\left\{\alpha=(4 i+1) \mid i=1, \ldots, \frac{1}{4} q_{1}-1\right\}
$$

and

$$
L_{0}(C)=\left\{\bar{\alpha}=(4 i+2) \mid i=1, \ldots, \frac{1}{4} q_{1}-1\right\}
$$

Then $L_{*}(C), L_{0}(C)$ and $L_{1}(C)$ have properties $\left.\left.a_{1}\right)-a_{5}\right)$.
Proof. Properties a_{2}) and a_{3}) are obvious. We define the one-to-one map ψ of $L_{*}(C)$ onto $L_{0}(C)$ the following way: $\psi((4 i+1))=(4 i+2)$. It is easy to see that $\mu(C)=\frac{1}{2}\left(q_{1}-\frac{1}{2} q_{1}\right)-1=\frac{1}{4} q_{1}-1$ and so $\left|L_{*}(C)\right|=$ $\mu(C)$. According to Lemma 4.2,

$$
\left(x_{(4 i+1)}\right)^{*}\left(x_{(4 i+1)}\right)^{-1}=x_{(4 i+2)}(1+y) \quad\left(y \in A^{4 i+3}\right)
$$

The proof is complete.

Lemma 4.4. Let be $n>1, q_{1} \geq 4$ and $q_{2}=\cdots=q_{n}=2$. Put

$$
\begin{aligned}
& L_{1}(C)=\emptyset, \quad L_{*}(C)=\left\{\alpha=(4 i+1,0, \ldots, 0) \mid i=1, \ldots, \frac{1}{4} q_{1}-1\right\} \cup \\
& \cup\left\{\alpha=\left(2 i-1, \alpha_{2}, \ldots, \alpha_{n}\right) \mid i=1, \ldots, \frac{1}{2} q_{1}-1, \alpha_{2}+\cdots+\alpha_{n}>0\right\}
\end{aligned}
$$

and

$$
\begin{gathered}
L_{0}(C)=\left\{\bar{\alpha}=(4 i+2,0, \ldots, 0) \mid i=1, \ldots, \frac{1}{4} q_{1}-1\right\} \cup \\
\cup\left\{\bar{\alpha}=\left(2 i, \alpha_{2}, \ldots, \alpha_{n}\right) \mid i=1, \ldots, \frac{1}{2} q_{1}-1, \alpha_{2}+\cdots+\alpha_{n}>0\right\} .
\end{gathered}
$$

Then $L_{*}(C), L_{0}(C)$ and $L_{1}(C)$ have properties $\left.\left.a_{1}\right)-a_{5}\right)$.
Proof. Properties a_{2}) and a_{3}) are obvious. We define ψ the following way: $\psi\left(\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)\right)=\left(\alpha_{1}+1, \alpha_{2}, \ldots, \alpha_{n}\right)$. It is clear that $\left|L_{*}(C)\right|=\left(\frac{1}{4} q_{1}-1\right)+\left(\frac{1}{2} q_{1}-1\right)\left(2^{n-1}-1\right)$ and $\mu(C)=\frac{1}{2}\left(q_{1} 2^{n-1}-\frac{1}{2} q_{1}-2^{n}+2\right)-1$, so $\left.a_{4}\right)$ holds. If $\alpha \in L_{*}(C)$ and $\psi(\alpha)=\bar{\alpha} \in L_{0}(C)$, then by Lemma 4.2,

$$
x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1}=x_{\bar{\alpha}}(1+y) \quad\left(y \in A^{\alpha_{1}+\cdots+\alpha_{n}+2}\right) .
$$

So the lemma is true.
Lemma 4.5. Let $n=2, q_{1}=2^{t} \geq q_{2} \geq 4$. Put

$$
\begin{gathered}
L_{1}(C)=\left\{\left(\alpha_{1}, \alpha_{2}\right) \mid \alpha_{1} \equiv 0 \quad(\bmod 4), \alpha_{2} \equiv 1 \quad(\bmod 4)\right\} \cup \\
\cup\left\{\left(\alpha_{1}, \alpha_{2}\right) \mid \alpha_{1} \equiv 3 \quad(\bmod 4), \alpha_{1} \neq 2^{i}-1(1<i \leq t), \alpha_{2} \equiv 0 \quad(\bmod 4)\right\}, \\
L_{*}(C)=\left\{\left(0, \alpha_{2}\right) \mid \alpha_{2} \equiv 1 \quad(\bmod 4), \alpha_{2}>1\right\} \cup \\
\cup\left\{\left(2^{i}, \alpha_{2}\right) \mid 1<i<t, \alpha_{2} \equiv 1 \quad(\bmod 4)\right\} \cup \\
\cup\left\{\left(1, \alpha_{2}\right) \mid \alpha_{2}>0\right\} \cup\left\{\left(\alpha_{1}, \alpha_{2}\right) \mid \alpha_{1} \equiv 1 \quad(\bmod 4), \alpha_{1}>1\right\} \cup \\
\cup\left\{\left(\alpha_{1}, \alpha_{2}\right) \mid \alpha_{1} \equiv 3 \quad(\bmod 4), \alpha_{2} \equiv 1 \quad(\bmod 4)\right\} \cup
\end{gathered} \qquad\left\{\left(\alpha_{1}, \alpha_{2}\right) \mid \alpha_{1} \equiv 3 \quad(\bmod 4), \alpha_{1} \neq 2^{i}-1(1<i \leq t), \alpha_{2} \equiv 3 \quad(\bmod 4)\right\} \text { ? }
$$

and

$$
\begin{gathered}
L_{0}(C)=\left\{\left(0, \bar{\alpha}_{2}\right) \mid \bar{\alpha}_{2} \equiv 2 \quad(\bmod 4), \bar{\alpha}_{2}>2\right\} \cup \\
\cup\left\{\left(2^{i}, \bar{\alpha}_{2}\right) \mid 1<i<t, \bar{\alpha}_{2} \equiv 2 \quad(\bmod 4)\right\} \cup
\end{gathered}
$$

$$
\begin{gathered}
\cup\left\{\left(2, \bar{\alpha}_{2}\right) \mid \bar{\alpha}_{2}>0\right\} \cup\left\{\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}\right) \mid \bar{\alpha}_{1} \equiv 2 \quad(\bmod 4), \bar{\alpha}_{1}>2\right\} \cup \\
\cup\left\{\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}\right) \mid \bar{\alpha}_{1} \equiv 3 \quad(\bmod 4), \bar{\alpha}_{2} \equiv 2 \quad(\bmod 4)\right\} \cup \\
\cup\left\{\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}\right) \mid \bar{\alpha}_{1} \equiv 0 \quad(\bmod 4), \bar{\alpha}_{1} \neq 2^{i}(1<i<t), \bar{\alpha}_{2} \equiv 3 \quad(\bmod 4)\right\} .
\end{gathered}
$$

Then $L_{*}(C), L_{0}(C)$ and $L_{1}(C)$ have properties $\left.\left.a_{1}\right)-a_{5}\right)$.
Proof. First we define the one-to-one map ψ :

$$
\psi\left(\left(\alpha_{1}, \alpha_{2}\right)\right)=\left\{\begin{array}{l}
\left(\alpha_{1}, \alpha_{2}+1\right), \text { if } \alpha_{2} \equiv 1(\bmod 4) \text { and } \alpha_{1} \not \equiv 1(\bmod 4) \\
\left(\alpha_{1}+1, \alpha_{2}\right), \text { otherwise }
\end{array}\right.
$$

Let $\beta=\left(\beta_{1}, \beta_{2}\right) \in L_{0}(C) \cap L_{*}(C)$. If β_{1} is odd, then from $\beta \in$ $L_{0}(C)$ it follows that $\beta_{1} \equiv 3(\bmod 4)$ and $\beta_{2} \equiv 2(\bmod 4)$. But from $\left(\beta_{1}, \beta_{2}\right) \in L_{*}(C), \beta_{1} \equiv 3(\bmod 4)$ we have that $\beta_{2} \equiv 1(\bmod 2)$, which is impossible. Similarly, if β_{1} is even, then from $\beta \in L_{*}(C)$ it follows $\beta_{1} \in\left\{0 ; 2^{i}(1<i<t)\right\}$ and $\beta_{2} \equiv 1(\bmod 4)$. However for $\left(\beta_{1}, \beta_{2}\right) \in L_{0}(C)$ we have $\beta_{2} \equiv 2(\bmod 4)$ and, therefore, $L_{0}(C) \cap L_{*}(C)=\emptyset$.

Let now $\beta=\left(\beta_{1}, \beta_{2}\right) \in L_{0}(C) \cap L_{1}(C)$. If $\beta_{1} \equiv 0(\bmod 4)$, then $\beta_{2} \equiv 1(\bmod 4)$ for the elements β of $L_{1}(C)$, and $\beta_{2} \equiv 2(\bmod 4)$ or $\beta_{2} \equiv 3(\bmod 4)$ for $\beta \in L_{0}(C)$, so we get a contradiction. Similarly, if $\beta_{1} \equiv 3(\bmod 4)$, then on the one hand, $\beta_{2} \equiv 0(\bmod 4)$ and on the other, $\beta_{2} \equiv 2(\bmod 4)$. Therefore, $L_{0}(C) \cap L_{1}(C)=\emptyset$.

It is easy to see that $\left|L_{*}(C)\right|=\left(\frac{1}{4} q_{2}-1\right)+(t-2) \frac{1}{4} q_{2}+\left(q_{2}-1\right)+$ $\left(\frac{1}{4} q_{1}-1\right) q_{2}+\frac{1}{4} q_{1} \frac{1}{4} q_{2}+\left(\frac{1}{4} q_{1}-(t-1)\right) \frac{1}{4} q_{2}=\frac{3}{8} q_{1} q_{2}-2$, which equals $\mu(C)=\frac{1}{2}\left(q_{1} q_{2}-\frac{1}{4} q_{1} q_{2}-4+4\right)-2$.

Let now $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in L_{*}(C)$. Then according to Lemma 4.2,

$$
x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1}=\left(x_{\left(\alpha_{1}+1, \alpha_{2}\right)}\right)^{k_{1}}\left(x_{\left(\alpha_{1}, \alpha_{2}+1\right)}\right)^{k_{2}}(1+y) \quad\left(y \in A^{\alpha_{1}+\alpha_{2}+2}\right)
$$

where

$$
k_{i}= \begin{cases}0, & \text { if } \alpha_{i} \equiv 0(\bmod 2) \text { or } \alpha_{i}=q_{i}-1 \\ 1, & \text { if } \alpha_{i} \equiv 1(\bmod 2) \text { and } \alpha_{i}<q_{i}-1\end{cases}
$$

So if $\alpha_{1} \equiv 0(\bmod 4)$ and $\alpha_{2} \equiv 1(\bmod 4)$, then $k_{1}=0$ and the element $\left(\alpha_{1}, \alpha_{2}+1\right)$ coincides with $\psi(\alpha) \in L_{0}(C)$. Suppose that $\alpha_{1} \equiv 1(\bmod 4)$. Then $\left(\alpha_{1}+1, \alpha_{2}\right)$ coincides with $\psi(\alpha)$ and $\left(\alpha_{1}, \alpha_{2}+1\right) \in L_{*}(C)$ whenever $k_{2} \neq 0$. Let now $\alpha_{1} \equiv 3(\bmod 4)$ and $\alpha_{2} \equiv 1(\bmod 4)$. Then $\left(\alpha_{1}, \alpha_{2}+1\right)=$ $\psi(\alpha)$ and $\left(\alpha_{1}+1, \alpha_{2}\right) \in L_{1}(C)$ in case $\alpha_{1}<q_{1}-1$. At last, if $\alpha_{1} \equiv 3$ $(\bmod 4), \alpha_{1} \neq 2^{i}-1$ and $\alpha_{2} \equiv 3(\bmod 4)$, then $\left(\alpha_{1}+1, \alpha_{2}\right)=\psi(\alpha) \in$
$L_{0}(C)$ and $\left(\alpha_{1}, \alpha_{2}+1\right) \in L_{1}(C)$ whenever $\alpha_{2}<q_{2}-1$. The proof is complete.

We remind that we shall construct by induction on the p-rank of the group C such sets $L_{*}(C), L_{0}(C)$ and $L_{1}(C)$ which have properties $\left.a_{1}\right)$ a_{5}). In the Lemmas 4.3-4.5 the first step of the induction is proved. Now we present the group C as the direct product of groups $\left\langle a_{1} \mid a_{1}{ }^{2^{t}}=1\right\rangle$ and $\widetilde{C}=\left\langle a_{2}, \ldots, a_{n}\right\rangle$. According to Lemmas 4.3-4.5, we can assume that the sets $L_{*}(\widetilde{C}), L_{0}(\widetilde{C})$ and $L_{1}(\widetilde{C})$ exist and have properties $\left.\left.a_{1}\right)-a_{5}\right)$. We remind that

$$
\begin{gathered}
N(C)=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i}=0 \text { or } q_{i}-1, \alpha_{1}+\cdots+\alpha_{n}>0\right\}, \\
L_{2}(C)=\left\{\left(\alpha_{1}, \ldots, \alpha_{n}\right) \mid \alpha_{i} \in\left\{0,2,4, \ldots, q_{i}-2\right\}, i=1,2, \ldots, n\right\} .
\end{gathered}
$$

Let L_{i}^{*} denotes the set of all elements from $L(C)$ for which the condition i) holds:

1) $\alpha_{1}=0$ and $\left(\alpha_{2}, \ldots, \alpha_{n}\right) \in L_{*}(\widetilde{C})$;
2) $\alpha_{1}=1$ and $\alpha_{2}+\cdots+\alpha_{n}>0$;
3) $\alpha_{1} \equiv 1(\bmod 4), \alpha_{1}>1$;
4) $\alpha_{1}=2^{i}-1(1<i \leq t)$ and $\left(\alpha_{2}, \ldots, \alpha_{n}\right) \in L_{*}(\widetilde{C})$;
5) $\alpha_{1}=2^{i}-1(1<i<t),\left(\alpha_{2}, \ldots, \alpha_{n}\right) \in N(\widetilde{C}), s<n$ and $\alpha_{s+1}+\cdots+\alpha_{n}>0 ;$
6) $\alpha_{1}=2^{i}-1(1<i \leq t)$ and α has the form

$$
\eta^{(j)}=\left(\alpha_{1}, 0, \ldots, 0,1,0, \ldots, 0\right) \quad(1 \text { in the } j \text {-th position })
$$

where $j=2, \ldots, s$;
7) $\alpha_{1} \equiv 3(\bmod 4), \alpha_{1} \neq 2^{i}-1(1<i \leq t)$ and $\left(\alpha_{2}, \ldots, \alpha_{n}\right) \in L(\widetilde{C})$;
8) $\alpha_{1}=2^{i}(1<i<t)$ and $\left(\alpha_{2}, \ldots, \alpha_{n}\right) \in L_{*}(\widetilde{C})$;
9) $\alpha_{1}=2^{i}(1<i<t)$ and $\alpha \in\left\{\eta^{(2)}, \eta^{(3)}, \ldots, \eta^{(s)}\right\}$.

Let L_{i}^{0} denotes the set of all elements from $L(C) \cup L_{2}(C)$ for which the condition i^{\prime}) holds:
$\left.1^{\prime}\right) \bar{\alpha}_{1}=0$ and $\left(\bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right) \in L_{0}(\widetilde{C}) ;$
$\left.2^{\prime}\right) \bar{\alpha}_{1}=2$ and $\bar{\alpha}_{2}+\cdots+\bar{\alpha}_{n}>0$;
$\left.3^{\prime}\right) \bar{\alpha}_{1} \equiv 2(\bmod 4), \bar{\alpha}_{1}>2$;
$\left.4^{\prime}\right) \bar{\alpha}_{1}=2^{i}-1(1<i \leq t)$ and $\left(\bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right) \in L_{0}(\widetilde{C})$;
$\left.5^{\prime}\right) \bar{\alpha}_{1}=2^{i}(1<i<t),\left(\bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right) \in N(\widetilde{C}), s<n$ and
$\bar{\alpha}_{s+1}+\cdots+\bar{\alpha}_{n}>0 ;$
$\left.6^{\prime}\right) \bar{\alpha}_{1}=2^{i}-1(1<i \leq t)$ and $\bar{\alpha}$ has the form

$$
\bar{\eta}^{(j)}=\left(\bar{\alpha}_{1}, 0, \ldots, 0,2,0, \ldots, 0\right) \quad(2 \text { in the } j \text {-th position })
$$

where $j=2, \ldots, s$;
$\left.7^{\prime}\right) \bar{\alpha}_{1} \equiv 0(\bmod 4), \bar{\alpha}_{1}>0, \bar{\alpha}_{1} \neq 2^{i}(1<i \leq t)$ and $\left(\bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right) \in$ $L(\widetilde{C}) ;$
$\left.8^{\prime}\right) \bar{\alpha}_{1}=2^{i}(1<i<t)$ and $\left(\bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right) \in L_{0}(\widetilde{C})$;
$\left.9^{\prime}\right) \bar{\alpha}_{1}=2^{i}(1<i<t)$ and $\bar{\alpha} \in\left\{\bar{\eta}^{(2)}, \bar{\eta}^{(3)}, \ldots, \bar{\eta}^{(s)}\right\}$.
Lemma 4.6. Put $L_{*}(C)=L_{1}^{*} \cup L_{2}^{*} \cup \cdots \cup L_{9}^{*}$,
$L_{0}(C)=L_{1}^{0} \cup L_{2}^{0} \cup \cdots \cup L_{9}^{0}$ and

$$
\begin{gathered}
L_{1}(C)=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \mid \alpha_{1} \equiv 3 \quad(\bmod 4), \alpha_{1} \neq 2^{i}-1,1<i \leq t\right\} \cup \\
\cup\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \mid \alpha_{1} \in\left\{0 ; 2^{i}(1<i<t) ; 2^{i}-1(1<i \leq t)\right\}\right. \\
\left.\left(\alpha_{2}, \ldots, \alpha_{n}\right) \in L_{1}(\widetilde{C})\right\}
\end{gathered}
$$

Then $L_{*}(C), L_{0}(C)$ and $L_{1}(C)$ have properties $\left.\left.a_{1}\right)-a_{5}\right)$.
Remark. Note that in case $n>2, q_{1} \geq q_{2} \geq 4, q_{3}=\cdots=q_{n}=2$ the set $L_{1}(\widetilde{C})$ is empty (see Lemma 4.4) and so $L_{1}(C)$ has the form

$$
L_{1}(C)=\left\{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \mid \alpha_{1} \equiv 3 \quad(\bmod 4), \alpha_{1} \neq 2^{i}-1,1<i \leq t\right\}
$$

Proof of the Lemma. First we prove that if $q_{n}=2$ and $q_{s}>q_{s+1}=\cdots=q_{n}=2$, then

$$
\begin{equation*}
L_{0}(C) \cap\left\{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in N(C) \mid \gamma_{s+1}+\cdots+\gamma_{n}>0\right\}=\emptyset \tag{4.3}
\end{equation*}
$$

We shall use induction on s. In case $s=1$ (4.3) follows from Lemma 4.4. Suppose that $s>1$ and

$$
\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in L_{0}(C) \cap\left\{\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in N(C) \mid \gamma_{s+1}+\cdots+\gamma_{n}>0\right\}
$$

If $\delta_{1}=0$, then the element $\left(\delta_{2}, \ldots, \delta_{n}\right)$ belongs to the set

$$
L_{0}(\widetilde{C}) \cap\left\{\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in N(\widetilde{C}) \mid \gamma_{s+1}+\cdots+\gamma_{n}>0\right\}
$$

which, by the induction hypothesis, is empty. Hence, using the form of the elements from $N(C)$, it follows that $\delta_{1}=q_{1}-1$. Then for $\delta \in L_{0}(C)$ condition $\left.4^{\prime}\right)$ holds and, therefore, $\left(\delta_{2}, \ldots, \delta_{n}\right) \in L_{0}(\widetilde{C})$. Since $\left(\delta_{2}, \ldots, \delta_{n}\right) \in$ $N(\widetilde{C})$ and $\delta_{s+1}+\cdots+\delta_{n}>0$, it follows that

$$
\left(\delta_{2}, \ldots, \delta_{n}\right) \in L_{0}(\widetilde{C}) \cap\left\{\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in N(\widetilde{C}) \mid \gamma_{s+1}+\cdots+\gamma_{n}>0\right\}
$$

and, by the induction hypothesis, we get a contradiction. The statement is proved.

Let us prove now by induction on s that

$$
\begin{equation*}
N(C) \cap\left(L_{*}(C) \cup L_{1}(C)\right)=\emptyset . \tag{4.4}
\end{equation*}
$$

In cases $s=1$ or $s=n=2$ (4.4) immediately follows from Lemmas 4.34.5. Suppose that $N(\widetilde{C}) \cap\left(L_{*}(\widetilde{C}) \cup L_{1}(\widetilde{C})\right)=\emptyset$ and $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right)$ belongs to the set $N(C) \cap\left(L_{*}(C) \cup L_{1}(C)\right)$. If $\delta_{1}=0$, then $\left(\delta_{2}, \ldots, \delta_{n}\right) \in$ $N(\widetilde{C}) \cap\left(L_{*}(\widetilde{C}) \cup L_{1}(\widetilde{C})\right)$, which contradicts the induction hypothesis. So $\delta_{1}=q_{1}-1$. It is easy to see that $\left(q_{1}-1,0, \ldots, 0\right) \notin L_{*}(C) \cup L_{1}(C)$. Clearly, $\left(\delta_{2}, \ldots, \delta_{n}\right) \in N(\widetilde{C})$ and from $\left(q_{1}-1, \delta_{2}, \ldots, \delta_{n}\right) \in L_{*}(C) \cup L_{1}(C)$ it follows that $\left(\delta_{2}, \ldots, \delta_{n}\right) \in L_{1}(\widetilde{C}) \cup L_{*}(\widetilde{C})$ or δ has the form $\eta^{(j)}=$ $\left(q_{1}-1,0, \ldots, 0,1,0, \ldots, 0\right)$ (1 in the j-th position and $2 \leq j \leq s$). By the induction hypothesis, $\left(\delta_{2}, \ldots, \delta_{n}\right)$ can not belongs to the set $L_{*}(\widetilde{C}) \cup L_{1}(\widetilde{C})$. Obviously, $\eta^{(j)} \notin N(C)$ and so (4.4) is proved.

Now we turn to the proof of the lemma. According to Lemmas 4.3-4.5, we shall assume that the sets $L_{*}(\widetilde{C}), L_{0}(\widetilde{C})$ and $L_{1}(\widetilde{C})$ have properties $\left.a_{1}\right)-a_{5}$).

By the induction hypothesis, we can assume that if $\left(\alpha_{2}, \ldots, \alpha_{n}\right) \in$ $L_{*}(\widetilde{C})$, there exists an element $\left(\bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right)$ in $L_{0}(\widetilde{C})$. So we can define ψ the following way:

$$
\psi(\alpha)= \begin{cases}\left(\alpha_{1}, 0, \ldots, 0,2,0, \ldots, 0\right), & \text { if } \alpha \in L_{6}^{*} \cup L_{9}^{*} \\ \left(\alpha_{1}, \bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right), & \text { if } \alpha \in L_{1}^{*} \cup L_{4}^{*} \cup L_{8}^{*} \\ \left(\alpha_{1}+1, \alpha_{2}, \ldots, \alpha_{n}\right), & \text { if } \alpha \in L_{2}^{*} \cup L_{3}^{*} \cup L_{5}^{*} \cup L_{7}^{*}\end{cases}
$$

Obviously if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in L_{i}^{*}$, then $\psi(\alpha) \in L_{i}^{0}$.
Let us prove $\left.a_{2}\right)$. Suppose that $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right) \in L_{0}(C) \cap L_{*}(C)$. If $\gamma_{1}=0$, then $\left(\gamma_{2}, \ldots, \gamma_{n}\right)$ belongs to the set $L_{0}(\widetilde{C}) \cap L_{*}(\widetilde{C})$, which, by the induction hypothesis, is empty. Therefore, comparing the first components of elements from $L_{0}(C)$ and $L_{*}(C)$, we have that $\gamma_{1}=2^{i}(1<i<t)$ or $\gamma_{1}=2^{i}-1(1<i \leq t)$.

Suppose $\gamma_{1}=2^{i}(1<i<t)$. Then for $\gamma \in L_{0}(C)$ one of the conditions $\left.\left.5^{\prime}\right), 8^{\prime}\right), 9^{\prime}$) holds and from the condition $\gamma \in L_{*}(C)$ we have
that $\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in L_{*}(\widetilde{C})$ or $\gamma \in\left\{\eta^{(2)}, \ldots, \eta^{(s)}\right\}$. It is easy to see that the elements $\eta^{(2)}, \ldots, \eta^{(s)}$ are not in the set $L_{5}^{0} \cup L_{8}^{0} \cup L_{9}^{0}$. Hence $\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in L_{*}(\widetilde{C})$. The induction hypothesis $L_{*}(\widetilde{C}) \cap L_{0}(\widetilde{C})=\emptyset$ gives that $\gamma \notin L_{8}^{0}$, and from (4.4) it follows $\gamma \notin L_{5}^{0}$. So $\gamma \in L_{9}^{0}$, that is γ coincides with some $\bar{\eta}^{(r)}=\left(2^{i}, 0, \ldots, 0,2,0, \ldots, 0\right)$, which contradicts the condition $\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in L_{*}(\widetilde{C})$.

Suppose now $\gamma_{1}=2^{i}-1(1<i \leq t)$. Then for the element $\gamma \in L_{*}(C)$ one of the conditions 4),5), 6) holds and from $\gamma \in L_{0}(C)$ it follows that $\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in L_{0}(\widetilde{C})$ or $\gamma \in\left\{\bar{\eta}^{(2)}, \ldots, \bar{\eta}^{(s)}\right\}$. Since for $\bar{\eta}^{(2)}, \ldots, \bar{\eta}^{(s)}$ the conditions 4), 5), 6) do not hold, we have that $\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in L_{0}(\widetilde{C})$ and $\gamma \in L_{4}^{*} \cup L_{5}^{*} \cup L_{6}^{*}$. From the induction hypothesis $L_{*}(\widetilde{C}) \cap L_{0}(\widetilde{C})=\emptyset$ we have that $\left(\gamma_{2}, \ldots, \gamma_{n}\right) \notin L_{4}^{*} \cup L_{6}^{*}$ and hence

$$
\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in L_{0}(\widetilde{C}) \cap N(\widetilde{C}), \gamma_{s+1}+\cdots+\gamma_{n}>0
$$

which contradicts (4.3). So property a_{2}) is proved.
Let now $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right) \in L_{0}(C) \cap L_{1}(C)$. If γ such element from $L_{1}(C)$ for which $\gamma_{1} \equiv 3(\bmod 4), \gamma_{1} \neq 2^{i}-1,1<i \leq t$, then obviously γ can not belong to the set $L_{0}(C)$. So for the element γ from $L_{1}(C)$ the conditions

$$
\gamma_{1} \in\left\{0 ; 2^{i} \quad(1<i<t) ; 2^{i}-1 \quad(1<i \leq t)\right\},\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in L_{1}(\widetilde{C})
$$

hold. Hence $\gamma\left(\right.$ as an element of the set $\left.L_{0}(C)\right)$ belongs to the set $L_{1}^{0} \cup L_{4}^{0} \cup$ $L_{5}^{0} \cup L_{6}^{0} \cup L_{8}^{0} \cup L_{9}^{0}$. Using the induction hypothesis $L_{0}(\widetilde{C}) \cap L_{1}(\widetilde{C})=\emptyset$, it follows that $\gamma \notin L_{1}^{0} \cup L_{4}^{0} \cup L_{8}^{0}$. If $\gamma \in L_{6}^{0} \cup L_{9}^{0}$, then the element $\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in L_{1}(\widetilde{C})$ has the form $(0, \ldots, 0,2,0, \ldots, 0)$, which contradicts to the construction of the set $L_{1}(\widetilde{C})$. So $\gamma \in L_{5}^{0}$, that is, $\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in$ $N(\widetilde{C})$. Hence from the condition $\left(\gamma_{2}, \ldots, \gamma_{n}\right) \in L_{1}(\widetilde{C})$ using (4.4) we get a contradiction. Property $\left.a_{3}\right)$ is proved.

Let us prove a_{4}). Using the induction hypothesis we have

$$
\left|L_{1}^{*}\right|=\left|L_{*}(\widetilde{C})\right|=\mu(\widetilde{C})=\frac{1}{2}\left(|\widetilde{C}|-\left|\widetilde{C}^{2}\right|-|\widetilde{C}[2]|+\left|\widetilde{C}^{2}[2]\right|\right)-r\left(\widetilde{C}^{2}\right) .
$$

It is easy to see that $\left|L_{4}^{*}\right|=(t-1)\left|L_{1}^{*}\right|,\left|L_{8}^{*}\right|=(t-2)\left|L_{1}^{*}\right|$,
$\left|L_{2}^{*}\right|=|\widetilde{C}|-1,\left|L_{6}^{*}\right|=(t-1) r\left(\widetilde{C}^{2}\right),\left|L_{9}^{*}\right|=(t-2) r\left(\widetilde{C}^{2}\right),\left|L_{3}^{*}\right|=$ $\left(2^{t-2}-1\right)|\widetilde{C}|$ and $\left|L_{7}^{*}\right|=\left(2^{t-2}-t+1\right)\left(|\widetilde{C}|-\left|\widetilde{C}^{2}\right|\right)$. Therefore

$$
\begin{gathered}
\left|L_{1}^{*} \cup L_{4}^{*} \cup L_{6}^{*} \cup L_{8}^{*} \cup L_{9}^{*}\right|= \\
(1+(t-1)+(t-2)) \frac{1}{2}\left(|\widetilde{C}|-\left|\widetilde{C}^{2}\right|-|\widetilde{C}[2]|+\left|\widetilde{C}^{2}[2]\right|\right)-r\left(\widetilde{C}^{2}\right)
\end{gathered}
$$

and

$$
\begin{gathered}
\left|L_{2}^{*} \cup L_{3}^{*} \cup L_{7}^{*}\right|= \\
(|\widetilde{C}|-1)+\left(2^{t-2}|\widetilde{C}|-|\widetilde{C}|\right)+\left(2^{t-2}-t+1\right)\left(|\widetilde{C}|-\left|\widetilde{C}^{2}\right|\right)= \\
2^{t-1}|\widetilde{C}|-1-(t-1)\left(|\widetilde{C}|-\left|\widetilde{C}^{2}\right|\right)-2^{t-2}\left|\widetilde{C}^{2}\right|
\end{gathered}
$$

It is clear that $|N(\widetilde{C})|=|\widetilde{C}[2]|-1$ and the cardinality of the set

$$
\left\{\left(\gamma_{1}, \ldots, \gamma_{s}, 0, \ldots, 0\right) \in N(\widetilde{C})\right\}
$$

is equal to $\left|\widetilde{C}^{2}[2]\right|-1$. Hence $\left|L_{5}^{*}\right|=(t-2)\left(|\widetilde{C}[2]|-\left|\widetilde{C}^{2}[2]\right|\right)$. So

$$
\begin{gathered}
\left|L_{*}(C)\right|=(t-1)\left(|\widetilde{C}|-\left|\widetilde{C}^{2}\right|-|\widetilde{C}[2]|+\left|\widetilde{C}^{2}[2]\right|\right)-r\left(\widetilde{C}^{2}\right)+ \\
(t-2)\left(|\widetilde{C}[2]|-\left|\widetilde{C}^{2}[2]\right|\right)+2^{t-1}|\widetilde{C}|-1-(t-1)\left(|\widetilde{C}|-\left|\widetilde{C}^{2}\right|\right)- \\
2^{t-2}\left|\widetilde{C}^{2}\right|=2^{t-1}|\widetilde{C}|-2^{t-2}\left|\widetilde{C}^{2}\right|-|\widetilde{C}[2]|+\left|\widetilde{C}^{2}[2]\right|-r\left(\widetilde{C}^{2}\right)
\end{gathered}
$$

and since

$$
\mu(C)=\frac{1}{2}\left(2^{t}|\widetilde{C}|-2^{t-1}\left|\widetilde{C}^{2}\right|-2|\widetilde{C}[2]|+2\left|\widetilde{C}^{2}[2]\right|\right)-r\left(C^{2}\right)
$$

it follows that property a_{4}) is proved.
Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in L_{*}(C)$ and $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}=k$. Suppose that $\widetilde{\alpha}=\left(\alpha_{2}, \ldots, \alpha_{n}\right) \in L_{*}(\widetilde{C})$. Then, by the induction hypothesis,

$$
\begin{equation*}
x_{\tilde{\alpha}}^{*} x_{\tilde{\alpha}}^{-1}=x_{\left(\bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right)}\left(\prod_{\tilde{\tau} \in Q} x_{\tilde{\tau}}\right)\left(\prod_{\tilde{\nu} \in R} x_{\tilde{\nu}}\right)(1+\widetilde{y}) \tag{4.5}
\end{equation*}
$$

where $Q \subset L_{*}(\widetilde{C}), R \subset L_{1}(\widetilde{C}), \widetilde{y} \in A^{k-\alpha_{1}+2}$ and $\tau_{2}+\cdots+\tau_{n}=$ $\nu_{2}+\cdots+\nu_{n}=\alpha_{2}+\cdots+\alpha_{n}+1$. If $\alpha_{1}=0$, then $x_{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)}=x_{\left(\alpha_{2}, \ldots, \alpha_{n}\right)}$ and a_{5}) follows from (4.5). If $\alpha_{1}=2^{i}(1<i<t)$, then, by Lemma 4.2,

$$
x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1}=x_{\left(\alpha_{1}, \bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right)}\left(\prod_{\tau} x_{\left(\alpha_{1}, \tau_{2}, \ldots, \tau_{n}\right)}\right)\left(\prod_{\nu} x_{\left(\alpha_{1}, \nu_{2}, \ldots, \nu_{n}\right)}\right)(1+y)
$$

where $y \in A^{k+2}$. Since $\left(\alpha_{1}, \bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right)=\psi(\alpha) \in L_{8}^{0}, \tau \in L_{8}^{*}$ and $\nu \in$ $L_{1}(C)$, it follows that a_{5}) is proved for the elements from L_{8}^{*}. If $\alpha_{1}=2^{i}-1$
$(1<i \leq t)$, then, according to Lemma 4.2,

$$
\begin{aligned}
x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1} & =x_{\left(\alpha_{1}, \bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right)} x_{\left(\alpha_{1}+1, \alpha_{2}, \ldots, \alpha_{n}\right)} \\
\cdot\left(\prod_{\tau} x_{\left(\alpha_{1}, \tau_{2}, \ldots, \tau_{n}\right)}\right) & \left(\prod_{\nu} x_{\left(\alpha_{1}, \nu_{2}, \ldots, \nu_{n}\right)}\right)(1+y), \quad\left(y \in A^{k+2}\right)
\end{aligned}
$$

where $\left(\alpha_{1}, \bar{\alpha}_{2}, \ldots, \bar{\alpha}_{n}\right) \in L_{4}^{0},\left(\alpha_{1}+1, \alpha_{2}, \ldots, \alpha_{n}\right) \in L_{8}^{*}, \tau \in L_{4}^{*}$ and $\nu \in$ $L_{1}(C)$. Therefore a_{5}) is proved for the elements from L_{4}^{*}. Suppose now that $\alpha \in L_{2}^{*} \cup L_{3}^{*} \cup L_{5}^{*} \cup L_{7}^{*}$. Then, by Lemma 4.2,

$$
x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1}=x_{\left(\alpha_{1}+1, \alpha_{2}, \ldots, \alpha_{n}\right)}\left(\prod_{\tau \in Q} x_{\left(\alpha_{1}, \tau_{2}, \ldots, \tau_{n}\right)}\right) \quad(1+y) \quad\left(y \in A^{k+2}\right)
$$

where the product is taken over those $\tau=\left(\alpha_{1}, \tau_{2}, \ldots, \tau_{n}\right)$ for which $\alpha_{1}+$ $\tau_{2}+\cdots+\tau_{n}=k+1$ and

$$
\tau_{i}= \begin{cases}\alpha_{i}, & \text { when } \alpha_{i} \text { is divisible by } 2 \text { or } \alpha_{i}=q_{i}-1 \\ \alpha_{i}+1, & \text { when } \alpha_{i} \text { is an odd number and } \alpha_{i}<q_{i}-1\end{cases}
$$

Obviously, the element $\left(\alpha_{1}+1, \alpha_{2}, \ldots, \alpha_{n}\right)$ coincides with $\psi(\alpha)$ and $Q=\emptyset$ whenever every $\alpha_{i}(i=2, \ldots, n)$ is even or equals $q_{i}-1$. It is easy to see also that

$$
Q \subset \begin{cases}L_{*}(C), & \text { when } \alpha \in L_{2}^{*} \cup L_{3}^{*}, \\ L_{1}(C), & \text { when } \alpha \in L_{7}^{*}\end{cases}
$$

So a_{5}) is proved for the elements from $L_{2}^{*} \cup L_{3}^{*} \cup L_{5}^{*} \cup L_{7}^{*}$. If α has the form $\left(2^{i}, 0, \ldots, 0,1,0, \ldots, 0\right)$ or $\left(2^{i}-1,0, \ldots, 0,1,0, \ldots, 0\right)$, then, by Lemma 4.2 , there exists $y \in A^{k+2}$ such that the equations

$$
x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1}=x_{\left(2^{2}, 0, \ldots, 0,2,0, \ldots, 0\right)}(1+y)
$$

and

$$
x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1}=x_{\left(2^{i}-1,0, \ldots, 0,2,0, \ldots, 0\right)} x_{\left(2^{i}, 0, \ldots, 0,1,0, \ldots, 0\right)}(1+y)
$$

hold respectively. Obviously $\left(2^{i}, 0, \ldots, 0,2,0, \ldots, 0\right) \in L_{9}^{0}$,
$\left(2^{i}-1,0, \ldots, 0,2,0, \ldots, 0\right) \in L_{6}^{0}$ and $\left(2^{i}, 0, \ldots, 0,1,0, \ldots, 0\right) \in L_{9}^{*}$. Therefore condition a_{5}) is fully proved and the lemma is true.

Theorem 4.7. Let K be the field of 2 elements, $C=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ a finite abelian 2-group, $a_{1}, \ldots, a_{s}(s \leq n)$ all basic elements of the group C whith orders greater than $2, L_{*}(C)$ is the set constructed above,
$B_{0}(C)=\left\{z_{\alpha}=x_{\alpha}{ }^{*} x_{\alpha}{ }^{-1} \mid x_{\alpha}=1+\left(a_{1}+1\right)^{\alpha_{1}} \cdots\left(a_{n}+1\right)^{\alpha_{n}}, \alpha \in L_{*}(C)\right\}$
and $B_{T}(C)=\left\{x_{\alpha} \mid \alpha \in N(C)\right\}$. Then the elements of the set

$$
B_{*}(C)=\left\{a_{i} \mid{a_{i}}^{2} \neq 1, i=1, \ldots, n\right\} \cup B_{T}(C) \cup B_{0}(C)
$$

form a basis of the group $V_{*}(K C)$.
Proof. Let $T(C)$ denote the subgroup

$$
T(C)=\left\{1+\sum_{\alpha \in N(C)} \lambda_{\alpha}\left(1+a_{1}\right)^{\alpha_{1}} \cdots\left(1+a_{n}\right)^{\alpha_{n}} \mid \lambda_{\alpha} \in K\right\}
$$

It is easy to see that $T(C) \subset V_{*}(K C), B_{T}(C)$ is a basis of the group $T(C)$ and $T(C) \cap C=\left\{a_{i} \mid a_{i}^{2}=1, i=1, \ldots, n\right\}$. According to Proposition 1.2,

$$
V_{*}(K C)=\left\langle a_{1}, \ldots, a_{s}\right\rangle \times T(C) \times D(C)
$$

where, by [1], $D(C) \subset\left\{x^{*} x^{-1} \mid x \in V(K C)\right\}$. Therefore it suffices to prove that $B_{0}(C)$ is a basis of $D(C)$.

Let $L_{*}(C), L_{0}(C)$ and $L_{1}(C)$ be the sets defined by Lemmas 4.3-4.6. Then, according to Lemmas 4.3-4.6, the sets $L_{*}(C), L_{0}(C)$ and $L_{1}(C)$ have properties $\left.a_{1}\right)-a_{5}$). It is easy to see that the set $B_{0}(C)$ consists of pairwise distinct unitary elements, not equal to one.

We shall prove by induction on the exponent of C that the number of elements of order 2^{i} of the set $B_{0}(C)$ coincides with $f_{i}(D(C))$. If C is a group of exponent 4 , then $\left|C^{2}\right|=\left|C^{2}[2]\right|$ and, according to property a_{4}), we have that $\left|B_{0}(C)\right|=\left|L_{*}(C)\right|=\mu(C)=\frac{1}{2}(|C|-|C[2]|)-r\left(C^{2}\right)$ which, by Proposition 1.2, equals $f_{1}(D(C))$. Suppose now that C is a group of exponent greater than 4 and the number of elements of order 2^{i} of the set $B_{0}\left(C^{2}\right)$ equals $f_{i}\left(D\left(C^{2}\right)\right)(i=1,2,3 \ldots)$. It is easy to prove that $(D(C))^{2}=D\left(C^{2}\right)$ (see [1]) and hence the number of elements of order 2^{i} of the set $B_{0}(C)$ coincides with $f_{i-1}\left(D\left(C^{2}\right)\right)=f_{i}(D(C))(i=$ $2,3, \ldots)$. Therefore $f_{1}(D(C))=\left|B_{0}(C)\right|-\left|B_{0}\left(C^{2}\right)\right|$ and, by property $\left.a_{4}\right), f_{1}(D(C))=\mu(C)-\mu\left(C^{2}\right)$ which coincides with the number defined by Proposition 1.2. The statement is proved.

Let us prove the independence of $B_{0}(C)$. We shall use again induction on the exponent of C. Let C be a group of exponent 4 . Then every element from $B_{0}(C)$ has order 2. Suppose that

$$
\begin{equation*}
z_{\alpha^{(1)}} \cdots z_{\alpha^{(r)}}=1 \tag{4.6}
\end{equation*}
$$

for the distinct elements $\alpha^{(i)}=\left(\alpha_{1}^{(i)}, \ldots, \alpha_{n}^{(i)}\right)(i=1, \ldots, r)$ from $L_{*}(C)$. Let $k=\min _{1 \leq i \leq r}\left\{\alpha_{1}^{(i)}+\cdots+\alpha_{n}^{(i)}\right\}$. Without loss of generality we can assume that $k=\alpha_{1}^{(1)}+\cdots+\alpha_{n}^{(1)}=\cdots=\alpha_{1}^{(s)}+\cdots+\alpha_{n}^{(s)}$ for some $s \leq r$. Then,
according to property a_{5}), we have that for every $i=1, \ldots, s$

$$
z_{\alpha^{(i)}}=x_{\bar{\alpha}^{(i)}} v_{i} w_{i}\left(1+y_{i}\right) \quad\left(y_{i} \in A^{k+2}\right)
$$

where $\bar{\alpha}^{(i)} \in L_{0}(C), v_{i}=\prod_{\tau \in Q_{i} \subset L_{*}(C)} x_{\tau}$ and $w_{i}=\prod_{\nu \in R_{i} \subset L_{1}(C)} x_{\nu}$. Hence

$$
u=z_{\alpha^{(1)}} \cdots z_{\alpha^{(r)}}=\left(x_{\bar{\alpha}^{(1)}} \cdots x_{\bar{\alpha}^{(s)}}\right)\left(v_{1} \cdots v_{s}\right)\left(w_{1} \cdots w_{s}\right)(1+y)
$$

where $y \in A^{k+2}, \bar{\alpha}^{(1)}, \ldots, \bar{\alpha}^{(s)} \in L_{0}(C), v_{1} \cdots v_{s}=\prod_{\tau \in Q \subset L_{*}(C)} x_{\tau}$ and

$$
\begin{aligned}
& w_{1} \cdots w_{s}=\prod_{\nu \in R \subset L_{1}(C)} x_{\nu} . \operatorname{According} \text { to }(4.1), u+A^{k+2}= \\
& =1+\sum_{i=1}^{s}\left(x_{\bar{\alpha}^{(i)}}+1\right)+\sum_{\tau \in Q \subset L_{*}(C)}\left(x_{\tau}+1\right)+\sum_{\nu \in R \subset L_{1}(C)}\left(x_{\nu}+1\right)+A^{k+2} .
\end{aligned}
$$

Since, by properties a_{2}) and a_{3}), the sets $L_{*}(C) \cup L_{1}(C)$ and $L_{0}(C)$ are disjoint, it follows that $\left\{\bar{\alpha}^{(1)}, \ldots, \bar{\alpha}^{(s)}\right\} \cap(Q \cup R)=\emptyset$. Obviously the set $\left\{\bar{\alpha}^{(1)}, \ldots, \bar{\alpha}^{(s)}\right\}$ is not empty and, by Lemma 2.1, the elements $\left(x_{\bar{\alpha}^{(i)}}+1\right)$, $\left(x_{\tau}+1\right),\left(x_{\nu}+1\right)$ are the distinct basic elements of the additive group of the factor-ring A^{k+1} / A^{k+2}. Then $u+A^{k+2} \neq 1+A^{k+2}$, which contradicts (4.6). The independence of the set $B_{0}(C)$ is proved for the group C of exponent 4.

Let C be a group of exponent greater than 4 . Suppose that for some distinct elements $\alpha^{(1)}, \ldots, \alpha^{(r)}$ from $L_{*}(C)$ the equation

$$
\begin{equation*}
u=\left(z_{\alpha^{(1)}}\right)^{j_{1}} \cdots\left(z_{\alpha(r)}\right)^{j_{r}}=1 \tag{4.7}
\end{equation*}
$$

holds. If every $j_{i}=2 t_{i}(i=1, \ldots, r)$, then the elements $z_{\tau^{(i)}}=\left(z_{\alpha^{(i)}}\right)^{2}$ belong to the set $B_{0}\left(C^{2}\right)$ and, according to (4.7), the equation

$$
\left(z_{\tau^{(1)}}\right)^{t_{1}} \cdots\left(z_{\tau^{(r)}}\right)^{t_{r}}=1
$$

holds, which contradicts the induction hypothesis. If $j_{i}=2 t_{i}+1(i=$ $1, \ldots, s)$ are all the odd ones among the numbers j_{1}, \ldots, j_{r}, then equation (4.7) has the form

$$
\begin{equation*}
u=z_{\alpha^{(1)}} \cdots z_{\alpha^{(s)}} v^{2}=1 \tag{4.8}
\end{equation*}
$$

and $v^{2} \in D\left(C^{2}\right)$. It is easy to see that $y=z_{\alpha^{(1)}} \cdots z_{\alpha^{(s)}} \notin D\left(C^{2}\right)$. Indeed, as in above we can assume that

$$
k=\min _{1 \leq i \leq s}\left\{\alpha_{1}^{(i)}+\cdots+\alpha_{n}^{(i)}\right\}=\alpha_{1}^{(1)}+\cdots+\alpha_{n}^{(1)}=\cdots=\alpha_{1}^{(s)}+\cdots+\alpha_{n}^{(s)}
$$

So, according to Lemmas 4.3-4.6,

$$
z_{\alpha^{(i)}}=x_{\bar{\alpha}^{(i)}} v_{i} w_{i}\left(1+y_{i}\right) \quad\left(y_{i} \in A^{k+2}\right)
$$

where $\bar{\alpha}^{(i)} \in L_{0}(C), \quad v_{i}=\prod_{\tau \in Q_{i} \subset L_{*}(C)} x_{\tau}$ and $w_{i}=\prod_{\nu \in R_{i} \subset L_{1}(C)} x_{\nu}$. Using (4.1) we have

$$
y+A^{k+2}=1+\sum_{i=1}^{s}\left(x_{\bar{\alpha}^{(i)}}+1\right)+\sum_{\tau \in Q}\left(x_{\tau}+1\right)+\sum_{\nu \in R}\left(x_{\nu}+1\right)+A^{k+2}
$$

where $Q=Q_{1} \cup \cdots \cup Q_{s} \subset L_{*}(C)$ and $R=R_{1} \cup \cdots \cup R_{s} \subset L_{1}(C)$. By Lemma 2.1, the elements $x_{\bar{\alpha}^{(i)}}+1(i=1, \ldots, s), x_{\tau}+1(\tau \in Q), x_{\nu}+1(\nu \in$ $R)$ are the distinct basic elements of the additive group of the factor-ring A^{k+1} / A^{k+2}. According to properties $\left.\left.a_{1}\right)-a_{3}\right),\left\{\bar{\alpha}^{(1)}, \ldots, \bar{\alpha}^{(s)}\right\} \cap(Q \cup$ $R)=\emptyset$. Therefore, if among the elements $\bar{\alpha}^{(1)}, \ldots, \bar{\alpha}^{(s)}$ exists at least one $\bar{\alpha}^{(j)}$ which belongs to the set $L(C)$, then obviously $y \notin D\left(C^{2}\right)$. Suppose now that every $\bar{\alpha}^{(1)}, \ldots, \bar{\alpha}^{(s)}$ belongs to the set $L_{2}(C)$. According to Lemma 4.2, it can may be only in case when every $\bar{\alpha}^{(i)}$ consists only one odd component which, by the construction of the set $L_{*}(C)$, is congruent with one modulo 4 . Without loss of generality we can assume that $\bar{\alpha}_{1}^{(i)}$ is the only one odd number among the the components of the element $\bar{\alpha}^{(i)}=\tau$. Then Lemma 4.2 gives that

$$
z_{\tau}=x_{\left(\tau_{1}+1, \tau_{2}, \ldots, \tau_{n}\right)} x_{\left(\tau_{1}+2, \tau_{2}, \ldots, \tau_{n}\right)} \prod_{\nu \in S_{i}} x_{\left(\tau_{1}, \nu_{2}, \ldots, \nu_{n}\right)}(1+y)
$$

where $y \in A^{k+3}, S_{i} \subset L_{*}(C)$ (see the construction of the set $L_{*}(C)$) and the product is taken over all $\nu=\left(\tau_{1}, \nu_{2}, \ldots, \nu_{n}\right)$ such that $\tau_{1}+\nu_{2}+\cdots+$ $\nu_{n}=k+2$ and

$$
\nu_{j}= \begin{cases}\tau_{j}, & \text { when } \tau_{j} \equiv 0(\bmod 4) \text { or } \tau_{j}=q_{j}-2 \\ \tau_{j}+2, & \text { when } \tau_{j} \equiv 2(\bmod 4) \text { and } \tau_{j}<q_{j}-2\end{cases}
$$

Since $\tau_{1} \equiv 1(\bmod 4)$, it follows that the element $\widetilde{\alpha}^{(i)}=\left(\tau_{1}+2, \tau_{2}, \ldots, \tau_{n}\right)$ belongs to the set $L(C) \backslash L_{*}(C)$. Therefore $\left\{\widetilde{\alpha}^{(1)}, \ldots, \widetilde{\alpha}^{(s)}\right\}$ and $S_{1} \cup \cdots \cup S_{s}$ are the disjoint subsets of the set $L(C)$. Hence, in the expression $y+A^{k+3}$ we can write the element y using (4.1), and, as in above, we can prove that $z_{\alpha^{(1)}} \cdots z_{\alpha^{(s)}} \notin D\left(C^{2}\right)$.

So it follows from (4.8) that $z_{\alpha^{(1)}} \cdots z_{\alpha^{(s)}}=1$. This equation can not hold in the group $V(K C)$ for the distinct elements $\alpha^{(i)}=\left(\alpha_{1}^{(i)}, \ldots, \alpha_{n}^{(i)}\right)$
$(i=1, \ldots, s)$ from $L_{*}(C)$. Really, let $k=\min _{1 \leq i \leq s}\left\{\alpha_{1}^{(i)}+\cdots+\alpha_{n}^{(i)}\right\}$. Without loss of generality we can assume that $k=\alpha_{1}^{(1)}+\cdots+\alpha_{n}^{(1)}=\cdots=$ $\alpha_{1}^{(s)}+\cdots+\alpha_{n}^{(s)}$. Then, according to property a_{5}), we have that for every $i=1, \ldots, s$

$$
z_{\alpha^{(i)}}=x_{\bar{\alpha}^{(i)}} v_{i} w_{i}\left(1+y_{i}\right) \quad\left(y_{i} \in A^{k+2}\right)
$$

where $\bar{\alpha}^{(i)} \in L_{0}(C), v_{i}=\prod_{\tau \in Q_{i} \subset L_{*}(C)} x_{\tau}$ and $w_{i}=\prod_{\nu \in R_{i} \subset L_{1}(C)} x_{\nu}$. Hence

$$
u=z_{\alpha^{(1)}} \cdots z_{\alpha^{(s)}}=\left(x_{\bar{\alpha}^{(1)}} \cdots x_{\bar{\alpha}^{(s)}}\right)\left(v_{1} \cdots v_{s}\right)\left(w_{1} \cdots w_{s}\right)(1+y)
$$

where $y \in A^{k+2}, \bar{\alpha}^{(1)}, \ldots, \bar{\alpha}^{(s)} \in L_{0}(C), v_{1} \cdots v_{s}=\prod_{\tau \in Q \subset L_{*}(C)} x_{\tau}$ and
$w_{1} \cdots w_{s}=\prod_{\nu \in R \subset L_{1}(C)} x_{\nu}$. According to (4.1), $u+A^{k+2}=$

$$
=1+\sum_{i=1}^{s}\left(x_{\bar{\alpha}^{(i)}}+1\right)+\sum_{\tau \in Q \subset L_{*}(C)}\left(x_{\tau}+1\right)+\sum_{\nu \in R \subset L_{1}(C)}\left(x_{\nu}+1\right)+A^{k+2} .
$$

Since, by properties a_{2}) and a_{3}), the sets $L_{*}(C) \cup L_{1}(C)$ and $L_{0}(C)$ are disjoint, it follows that $\left\{\bar{\alpha}^{(1)}, \ldots, \bar{\alpha}^{(s)}\right\} \cap(Q \cup R)=\emptyset$. Obviously the set $\left\{\bar{\alpha}^{(1)}, \ldots, \bar{\alpha}^{(s)}\right\}$ is not empty and, by Lemma 2.1, the elements $\left(x_{\bar{\alpha}^{(i)}}+\right.$ $1),\left(x_{\tau}+1\right),\left(x_{\nu}+1\right)$ are the distinct basic elements of the additive group of the factor-ring A^{k+1} / A^{k+2}. Then $u+A^{k+2} \neq 1+A^{k+2}$, so we get a contradiction. The independence of the set $B_{0}(C)$ is proved. The proof of the theorem is complete.

Theorem 4.8. Let K be the field of $2^{m}(m>1)$ elements, $\varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{2^{m-1}}$ a basis of K over $G F(2), C$ a finite abelian 2-group, $x(i, \alpha)=1+\varepsilon^{2^{i}}\left(a_{1}-1\right)^{\alpha_{1}} \cdots\left(a_{n}-1\right)^{\alpha_{n}}$,

$$
\begin{gathered}
B_{1}(C)=\left\{x(i, \alpha)^{*} x(i, \alpha)^{-1} \mid 0 \leq i<m, \alpha \in L_{*}(C)\right\} \\
B_{2}(C)=\left\{\left(1+\varepsilon^{2^{i}}\left(1+a_{j}\right)\right)^{*}\left(1+\varepsilon^{2^{i}}\left(1+a_{j}\right)\right)^{-1} \mid 0 \leq i<m-1,\right. \\
\left.a_{j}^{2} \neq 1\right\}
\end{gathered}
$$

and $B_{T}(C)=\{x(i, \alpha) \mid 0 \leq i<m, \alpha \in N(C)\}$. Then

$$
B_{*}(C)=\left\{a_{i} \mid a_{i}^{2} \neq 1, i=1, \ldots, n\right\} \cup B_{T}(C) \cup B_{1}(C) \cup B_{2}(C)
$$

is a basis for $V_{*}(K C)$.
Proof. Let us write the identity element of K in the form

$$
1=\gamma_{0} \varepsilon+\gamma_{1} \varepsilon^{2}+\cdots+\gamma_{m-1} \varepsilon^{2^{m-1}}
$$

Raising this equation to the powers $2,4,8, \ldots$ we get that $\gamma_{0}=\gamma_{1}=$ $\cdots=\gamma_{m-1}=1$. Therefore the elements $1, \varepsilon, \varepsilon^{2}, \ldots, \varepsilon^{2^{m-2}}$ of the field K are independent over $G F(2)$. From this the independence of the set $C \cup B_{2}(C)$ follows by Lemma 2.2 and as in the proof of Theorem 4.7 we can prove this theorem too.

Theorem 4.9. Let K be the field of 2^{m} elements, C a Sylow 2subgroup of a finite abelian group $G=C \times F, E$ a subset of the set $F \backslash\{1\}$, that has a unique representative in every subset of the form $\left\{g, g^{-1}\right\}$,

$$
\widetilde{B}(G)=\left\{x(i, g, \alpha)^{*} x(i, g, \alpha)^{-1} \mid x(i, g, \alpha) \in B(G), g \in E\right\}
$$

and $B_{*}(C)$ is a basis of $V_{*}(K C)$. Then the elements of the set

$$
B_{*}(G)=\widetilde{B}(G) \cup B_{*}(C)
$$

form a basis of the Sylow 2-subgroup $W_{2}(K G)$ of the group $V_{*}(K G)$.
Proof. Let $k=\alpha_{1}+\cdots+\alpha_{n}$ and

$$
z\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\left(a_{1}-1\right)^{\alpha_{1}} \cdots\left(a_{n}-1\right)^{\alpha_{n}} .
$$

Using equation (3.1) it is easy to prove that

$$
x(i, g, \alpha)^{*}=1+\varepsilon^{2^{i}} g^{-1} z\left(\alpha_{1}, \ldots, \alpha_{n}\right)+v_{1}
$$

and

$$
x(i, g, \alpha)^{-1}=1+\varepsilon^{2^{i}} g z\left(\alpha_{1}, \ldots, \alpha_{n}\right)+v_{2}
$$

where the elements v_{1} and v_{2} belong to the $(k+1)$-th power of the ideal $J=J(C)$ of the group algebra $K G$. Hence

$$
x(i, g, \alpha)^{*} x(i, g, \alpha)^{-1}=1+\varepsilon^{2^{i}}\left(g+g^{-1}\right) z\left(\alpha_{1}, \ldots, \alpha_{n}\right)+v \quad\left(v \in J^{k+1}\right)
$$

and as in the proof of theorem 4.7 we can prove that the elements of the set $\widetilde{B}(G)$ are independent and belong to the basis of the group $W_{2}(K G)$. According to Lemma 2.2, the elements of the set $\widetilde{B}(G) \cup B_{*}(C)$ are independent and form a basis of $W_{2}(K G)$. Indeed, since
$|\widetilde{B}(G)|=m \frac{|F|-1}{2}\left(|C|-\left|C^{2}\right|\right)$ and
$\left|B_{*}(C)\right|=\frac{m}{2}\left(|C|-\left|C^{2}\right|+|C[2]|+\left|C^{2}[2]\right|-2\right)$, it follows that the cardinality of the set $\widetilde{B}(G) \cup B_{*}(C)$ coincides with the 2-rank of the group $W_{2}(K G)$. This completes the proof of the theorem.

120 A. A. Bovdi and A. Szakács : A basis for the unitary subgroup of the group ...

References

[1] A. A. Bovdi and A. A. SzakÁcs, The unitary subgroup of the group of units in a modular group algebra of a finite abelian p-group,, Math. Zametki. (6) 45 (1989), 23-29, (in Russian) (see English translation in Math. Notes, (5-6) 45 (1989), 445-450.).
[2] R. Sandling, Units in the modular group algebra of a finite abelian p-group, J. Pure Appl. Algebra. 33 (1984), 337-346.
[3] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley Publishing Company, London-Amsterdam-Don Mills, Ontario-Sydney-Tokyo, 1983.
[4] D. S. Passman, The algebraic structure of group rings, New York: Interscience, 1977.

ADALBERT BOVDI
INSTITUTE OF MATHEMATICS,
KOSSUTH LAJOS UNIVERSITY,
H-4010 DEBRECEN, PF. 12,
HUNGARY

ATTILA SZAKÁCS
DEPARTMENT OF MATHEMATICS,
ESZTERHÁZY KÁROLY UNIVERSITY,
LEÁNYKA U. 4,
3301 EGER,
HUNGARY
(Received February 23, 1994)

[^0]: Research supported (partially) by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. 4265 and T014279.

