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Isomorphic g-noncommuting graphs of finite groups

By MAHBOUBE NASIRI (Mashhad), AHMAD ERFANIAN (Mashhad),
MASOUMEH GANJALI (Mashhad) and ABBAS JAFARZADEH (Mashhad)

Abstract. Let G be a finite non-abelian group and g be a fixed element of G.

In 2014, Tolue et al. introduced the g-noncommuting graph of G (denoted by Γg
G) with

vertex set G and two distinct vertices x and y join by an edge if [x, y] 6= g and g−1.

In this paper, we consider an induced subgraph of Γg
G with vertex set G \ Z(G) which

is denoted by ∆g
G. We state some properties of ∆g

G and prove that two groups with

isomorphic g-noncommuting graphs have the same order.

1. Introduction

Recently, joining graph theory and group theory together form a topic which

is one of the most interest to some authors. There are many graphs associated

to groups, rings or some algebraic structures. We may refer to works on non-

commuting graphs [2], relative non-commuting graphs [16], Engel graphs [1] and

non-cyclic graphs [3]. One of the important graphs associated to a group is the

non-commuting graph. This graph, first introduced by Paul Erdős [12], was

denoted by ΓG and is a graph with G \ Z(G) as the vertex set and two distinct

vertices x and y join, whenever xy 6= yx. The concept of non-commuting graphs

has been generalized in some different ways. One of them is the generalized non-

commuting graph related to a subgroup H of G (see [16]) or even related to two

subgroups H and K (see [8]). Moreover, there is another generalization of non-

commuting graphs via an automorphism (see [5]). Now, we are going to consider

the new generalization of non-commuting graphs called g-noncommuting graphs,
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which is associated to a fixed element g of group G, given by Tolue et al. in [15]

as the following.

Definition 1.1. For any non-abelian group G and fixed element g in G, the g-

noncommuting graph of G is the graph with vertex set G and two distinct vertices

x and y join by an edge if [x, y] 6= g and g−1.

There are some results on g-noncommuting graphs. For instance, some graph

theoretical invariants, planarity and regularity are stated in [15]. In this paper,

we would like to consider the induced subgraph of g-noncommuting graphs on

G\Z(G) which is denoted by ∆g
G. It is obvious that if g is an identity element, then

∆g
G coincides with the known non-commuting graph of G. Recall that K(G) =

{[x, y] : x, y ∈ G} is the set of commutators of G and G′ = 〈K(G)〉. Kappe et

al. [10] concluded with a status report on what is now called the Ore Conjecture,

stating that every element in a finite non-abelian simple group is a commutator,

and so G′ = K(G) in this case. It is clear that ∆g
G is a complete graph whenever

g 6∈ K(G), and so everything is known. Thus, we always assume that e 6= g ∈
K(G).

In Sections 2 and 3, we investigate some graph theoretical properties of ∆g
G

like clique number, regularity, planarity and connectivity.

In Section 4, we prove that for any two non-abelian finite groups G and H

such that ∆g
G
∼= ∆h

H , it holds that |G| = |H| where g ∈ G and h ∈ H. More-

over, we state a conjecture about the above graph isomorphism, and some of our

attempts are also given at the end. Most of our notations and terminologies are

standard and can be found in [6].

2. Some properties of g-noncommuting graphs

In this section, we may investigate some graph theoretical properties of ∆g
G.

Let us start with mentioning some relations between the new graph ∆g
G and a

commuting graph.

Lemma 2.1. The commuting graph of group G is a spanning subgraph

of ∆g
G.

Proof. It is straightforward. �

Lemma 2.2. If K(G) = {e, g} or {e, g, g−1}, then ∆g
G is equal to a com-

muting graph.
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Proof. In the first case, if x and y are adjacent in ∆g
G, then [x, y] 6= g.

Since [x, y] ∈ K(G), [x, y] = e and x and y are adjacent in the commuting graph.

Now, suppose that K(G) = {e, g, g−1}, then, if [x, y] 6= g and g−1, we should

have [x, y] = e. Hence, the proof is completed. �

We know that the clique number of commuting graphs is equal to |A| −
|A ∩ Z(G)|, where A is an abelian subgroup of maximal order of G. So, the

clique number of commuting graphs is a lower bound for the clique number of

g-noncommuting graphs, and we have the following result:

Theorem 2.3. Let G be a non-abelian group, and A be an abelian subgroup

of maximal order of G. Then ω(∆g
G) ≥ |A| − |A ∩ Z(G)|.

In [15], the authors gave a formula for the degree of vertices in Γg
G. Now, we

can state it for ∆g
G as follows. The proof is very similar to Lemma 2.2 in [15] and

we omit here.

Lemma 2.4. Let x ∈ G \ Z(G).

(i) If g2 6= e, then deg(x) = |G| − |Z(G)| − ε|CG(x)| − 1, where ε = 1 if x is

conjugate to xg or xg−1, but not to both, and ε = 2 if x is conjugate to xg

and xg−1.

(ii) If g2 = e and g 6= e, then deg(x) = |G| − |Z(G)| − |CG(x)| − 1, whenever xg

is conjugate to x.

(iii) If xg and xg−1 are not conjugate to x, then deg(x) = |G| − |Z(G)| − 1.

Lemma 2.5. If G is a group of odd order and ∆g
G is a regular graph, then

G is nilpotent.

Proof. Since g ∈ K(G), the graph in not complete, so for every x, y ∈
G \Z(G) we have |CG(x)| = |CG(y)|. Therefore, the conjugacy classes of G have

only two sizes, and by [9, Theorem 1] G is nilpotent. �

The planarity of Γg
G has been investigated in [15]. Here we deal with the

planarity of ∆g
G, indeed, we classify all groups of which the g-noncommuting

graph is planar.

Theorem 2.6. Let G be a finite non-abelian group. Then ∆g
G is planar if

and only if G is isomorphic to one of the following groups:

(1) S3, D8, Q8, D10, D12, D8 × Z2, Q8 × Z2;

(2) < a, b : a3 = b4 = e, ab = a−1 >∼= Z3 o Z4;

(3) < a, b : a4 = b4 = e, ab = a−1 >∼= Z4 o Z4;
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(4) < a, b : a8 = b2 = e, ab = a−3 >∼= Z8 o Z2;

(5) < a, b : a4 = b2 = (ab)4 = [a2, b] = e >∼= (Z4 × Z2)o Z2;

(6) < a, b, c : a2 = b2 = c4 = [a, c] = [b, c] = e, [a, b] = c2 >∼= (Z4 × Z2)o Z2.

Proof. If |Z(G)| ≥ 5, then we have a clique of size 5. Thus, the planarity

of ∆g
G implies that |Z(G)| ≤ 4. Also, if there exists an element x ∈ G \ Z(G)

such that x2 /∈ Z(G) and z1, z2 ∈ Z(G), then there is a clique with vertices

{x, x−1, xz1, xz2, x−1z1}. So |Z(G)| ≤ 2 in this case. It is clear that if the

degree of all vertices of ∆g
G is greater than 5, then ∆g

G will not be planar. Thus,

there exists an element x ∈ G \ Z(G) such that deg(x) ≤ 5. By Lemma 2.4,

|G| − ε|CG(x)| ≤ 6 + |Z(G)|, where ε = 1 or 2. We know that deg(x) ≥ 0,

therefore,

(ε+ 1)|CG(x)| ≤ |G| =⇒ |G| − ε

ε+ 1
|G| ≤ |G| − ε|CG(x)| ≤ 10.

Thus |G| ≤ 10(ε + 1), where ε = 1 or 2. So |G| ≤ 30. Also, the commuting

graph is a spanning subgraph of ∆g
G, so it is enough to investigate groups of order

less than 30 in [4, Theorem 2.2]. By using the group theory package GAP, the

degrees of vertices of the graph associated to the above groups are computed and

the proof is completed. �

3. Connectivity of g-noncommuting graphs

In this section, we focus on the connectivity of g-noncommuting graphs. Let

us start with the following lemma:

Lemma 3.1. Let g be a non-central element of G.

(i) If g2 = e, then diam(∆g
G) = 2.

(ii) If g2 6= e and g3 6= e, then diam(∆g
G) ≤ 3.

Proof. (i) Suppose that x 6= g is a vertex of ∆g
G. It is clear that [x, g] 6= g.

If g2 = e, then [x, g] 6= g−1. Consequently, x is adjacent to g, or shortly, x ∼ g,

and so diam(∆g
G) ≤ 2. Since g = [x1, x2] for some x1, x2 ∈ G \ Z(G), we have

d(x1, x2) ≥ 2. Therefore, diam(∆g
G) = 2.

(ii) Assume that g2 6= e and g3 6= e. If [x, g] 6= g−1, then x ∼ g, and if

[x, g] = g−1, then we have

[x, g2] = [x, g][x, g]g = g−1(g−1)g = g−2.
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Since [x, g2] 6= g, g−1, it follows that x ∼ g2. Thus, every vertex x must join g or

g2. Now, for any two arbitrary vertices x and y, we can easily see that d(x, y) ≤ 2

when x and y join g or g2. If x ∼ g and y ∼ g2 or y ∼ g and x ∼ g2, then

d(x, y) ≤ 3. Hence diam(∆g
G) ≤ 3. �

Theorem 3.2. Let |Z(G)| = 1, e 6= g ∈ G and |CG(g)| 6= 3. Then ∆g
G is

connected.

Proof. If g3 6= e, then the result holds by Lemma 3.1. If g3 = e, then

we can consider g2 6= e. Since |CG(g)| 6= 3, it follows that |CG(g)| > 3. Thus,

there is an element a ∈ CG(g) such that a 6= e, g and g−1. Now, we can assume

that x0 ∈ G \ Z(G) such that [x0, g
2] = g and [x0, g] = g−1. It is easy to see

that [x0, ga] = [x0, a](g−1)a and [x0, g
2a] = [x0, a]g−1[x0, g]a = [x0, a]g−2. If

[x0, a] 6= g, g−1, then a is adjacent to x0 and g, and the graph is connected. In

the case that [x0, a] = g, it holds [x0, ga] = e. Now, if ga ∈ Z(G), then a = g−1,

a contradiction. Thus ga ∈ G \ Z(G), and so ga is adjacent to x0 and g. Hence

the graph is connected. If [x0, a] = g−1, then [x0, g
2a] = e. In the case that

g2a ∈ Z(G), it holds a = g−2 = g, a contradiction. Thus g2a is adjacent to x0
and g. So the graph is connected and the proof is completed. �

As a consequence of the above corollary, we can state that if |CG(g)| 6= 3,

then ∆g
G has no isolated vertex. First, we recall the following theorem from [13],

which will be used in Proposition 3.4. We omit the proof.

Theorem 3.3. Let G be a finite simple group, and x ∈ G be an involution.

Then CG(x) 6= G, and if |CG(x)| = m, then |G| ≤ (m(m+ 1)/2)!.

Proposition 3.4. Let G be a non-abelian simple group. Then ∆g
G has no

isolated vertices.

Proof. Let x ∈ G\Z(G). If x2 6= e, then x and x−1 are adjacent. If x is an

involution and |CG(x)| = m, then by Theorem 3.3, we must have m ≥ 3. Thus,

there is an element t ∈ CG(x) such that t 6= e, x, and so t is adjacent to x. Hence,

the proof is completed. �

4. Isomorphism between g-noncommuting graphs

It is clear that if two groups G and H are isomorphic, then, obviously, ∆g
G
∼=

∆h
H , but the converse is not true and it is interesting to find some conditions for the

groups G and H to have G ∼= H or even |G| = |H|. This section involves the above
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isomorphism between g-noncommuting graphs. First, let us state the following

important lemma which plays an important role in the proof of Theorem 4.2.

Lemma 4.1. Let x be a non-isolated vertex in ∆g
G such that deg(x) 6=

|G|−|Z(G)|−1, where g is an arbitrary fixed element inK(G). IfH is a group such

that ∆g
G
∼= ∆h

H for some h ∈ K(H), then |Z(H)| divides (|G| − |Z(G)|, |CG(x)|)
or (|G| − |Z(G)|, 2|CG(x)|).

Proof. Assume that φ is an isomorphism between graphs ∆g
G and ∆h

H , and

φ(x) = y. Then by Lemma 2.4, deg(x) = |G| − |Z(G)| − ε|CG(x)| − 1, where

ε = 1 or 2. Also, we have

|G| − |Z(G)| = |H| − |Z(H)| = |Z(H)|
(
|H|
|Z(H)|

− 1

)
.

Since deg(x) = deg(y), if deg(x) = |G| − |Z(G)| − |CG(x)| − 1, we have

|G| − |Z(G)| − |CG(x)| =


|Z(H)|

(
|H|
|Z(H)| −

|CH(y)|
|Z(H)| − 1

)
or

|Z(H)|
(
|H|
|Z(H)| − 2 |CH(y)|

|Z(H)| − 1
)
.

Thus, |Z(H)| divides (|G|−|Z(G)|, |CG(x)|). Similarly, if deg(x) = |G|−|Z(G)|−
2|CG(x)| − 1, then |Z(H)| will divide (|G| − |Z(G)|, 2|CG(x)|), and the proof is

completed. �

Now, we are in a position to prove the main theorem.

Theorem 4.2. Let G and H be two non-abelian finite groups such that

∆g
G
∼= ∆h

H , for some non-identity element h ∈ H. Then |G| = |H|.

Proof. Assume that φ is an isomorphism between graphs ∆g
G and ∆h

H .

Since ∆g
G
∼= ∆h

H , we have |G| − |Z(G)| = |H| − |Z(H)|, and it is enough

to prove |Z(G)| = |Z(H)|. Since e 6= g ∈ K(G), there are vertices x, y ∈
G \ Z(G) such that [x, y] = g. So x cannot be adjacent to y, and deg(x) 6=
|G| − |Z(G)| − 1. First, suppose that |Z(G)| 6= 1, then ∆g

G has no isolated ver-

tex because every non-central element of G, like t, is adjacent to tz for some

z ∈ Z(G). Thus |Z(H)| divides |Z(G)|((|G|/|Z(G)|) − 1, |CG(x)|/|Z(G)|) or

|Z(G)|((|G|/|Z(G)|) − 1, 2|CG(x)|/|Z(G)|), by Lemma 4.1. In the first case,

we may put d = (|G|/|Z(G)|−1, |CG(x)|/|Z(G)|), and so d divides |CG(x)|/|Z(G)|
and |G|/|Z(G)| − 1. Hence, d | (|G|/|Z(G)| − 1, |G|/|Z(G)|) = 1 and we should

have d = 1. Therefore, |Z(H)| | |Z(G)|. In the second case, we may consider
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d = (|G|/|Z(G)| − 1, 2|CG(x)|/|Z(G)|), and by a similar argument, d | 2, which

implies that |Z(H)| | 2|Z(G)|.
If φ(x) = x′, then deg(x) = deg(x′), and we have

|G| − |Z(G)| − ε|CG(x)| − 1 = |H| − |Z(H)| − ε
′
|CH(x′)| − 1, ε, ε

′
= 1 or 2

Thus, if ε = 1, then |CG(x)| = |CH(x′)| or 2|CH(x′)|, and if ε = 2, then |CG(x)| =
|CH(x′)| or 1

2 |CH(x′)|. Now, we consider the following cases:

Case 1. ε = 1.

If |CG(x)| = |CH(x′)| and |Z(G)| 6= |Z(H)|, then |Z(H)| ≤ 1
2 |Z(G)|. Hence

|CH(x′)| = |CG(x)| divides |H| = |G| − |Z(G)|+ |Z(H)|,

and |Z(G)| < |CG(x)|, so |CG(x)| | |Z(G)|− |Z(H)|. Thus 0 < |Z(G)|− |Z(H)| <
|Z(G)|, which is a contradiction. Hence, |Z(G)|= |Z(H)| in this case. If |CG(x)|=
2|CH(x′)|, then

1

2
|CG(x)| = |CH(x′)| divides |H| = |G| − |Z(G)|+ |Z(H)|.

Since |Z(G)| | |CG(x)| and Z(G) � CG(x), it follows that |Z(G)| ≤ 1
2 |CG(x)|.

Consequently, 1
2 |CG(x)| | |G| implies that 1

2 |CG(x)| | |Z(G)| − |Z(H)|, which is

impossible. Hence |Z(G)| = |Z(H)|.

Case 2. ε = 2.

We have |Z(H)| | 2|Z(G)|. If |CG(x)| = |CH(x′)| or 2|CG(x)| = |CH(x′)|,
then

|CG(x)| | |G| − |Z(G)|+ |Z(H)|.

Thus |CG(x)| | |Z(G)|−|Z(H)|. If |Z(H)| = 2|Z(G)|, then |CG(x)| divides |Z(G)|,
a contradiction. Therefore, |Z(H)| ≤ |Z(G)|, and so |CG(x)| | |Z(G)| − |Z(H)|.
Thus again we should have |Z(G)| = |Z(H)| in this case.

Now, assume that |Z(G)| = 1, then there exists a non-central element t in

G such that t2 6= 1. Thus t and t−1 are adjacent. If x or y are not isolated

vertices, then, by a similar proof as above, we again have |Z(G)| = |Z(H)|.
If x and y are isolated, then t and x are not adjacent. Therefore, deg(t) =

|G| − |Z(G)| − |CG(t)| − 1 or |G| − |Z(G)| − 2|CG(t)| − 1, and we can replace the

vertex x by t. Thus the proof is completed. �

Corollary 4.3. Let ∆g
G
∼= ∆h

H with the same condition as in Theorem 4.2.

If |G| is odd and x is a vertex in ∆g
G with deg(x) 6= |G| − |Z(G)| − 1, then

|CG(x)| = |CH(φ(x))|, where φ is an isomorphism between the above two graphs.
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Proof. Since |G| is odd, it holds deg(x) 6= 0. We have deg(x) = |G| −
|Z(G)|−ε|CG(x)|−1 and deg(y) = |H|− |Z(H)|−ε′|CH(y)|−1, where ε and ε′ =

1 or 2, and y = φ(x). If ε = ε′, then we have nothing to prove. Otherwise,

|G| = |H| is an even number, which is a contradiction. �

In the next theorem, we will state some conditions under which the isomor-

phism between two graphs ∆g
G and ∆h

H deduces that if G is nilpotent, then H is

nilpotent as well. We remind that N(G) stands for the set {n ∈ N| G has a

conjugacy class of size n}, and a group G is called an extra-special p-group if G

is a p-group and |G′| = |Z(G)| = p.

Theorem 4.4. Let G be a finite non-abelian group of odd order, and assume

that ∆g
G has no vertex adjacent to all other vertices. If ∆g

G
∼= ∆h

H , then N(G) =

N(H), and if G is nilpotent, then H is nilpotent.

Proof. Clearly, N(G) = N(H), by Corollary 4.3. By the main result of [7],

we know that if the number of conjugacy classes of size i for the nilpotent group G

is equal to the number of conjugacy classes of size i of H for each i, then H is

nilpotent. Theorem 4.2 implies that |Z(G)| = |Z(H)|. Now, if x ∈ G \ Z(G),

then by Corollary 4.3, we have |CG(x)| = |CH(φ(x))|, where φ is the isomorphism

between two graphs. Hence the proof is completed. �

Lemma 4.5. Let G be an extra-special p-group and ∆g
G
∼= ∆h

H . If H is

a nilpotent group of class 2, then H is also an extra-special p-group and N(G) =

N(H).

Proof. By Theorem 4.2, |Z(G)| = |Z(H)| = p. Since the nilpotency class

of H is 2, it follows that H/Z(H) is an abelian group, and therefore, H ′ ≤ Z(H).

So |H ′| = |Z(H)| = p. Hence H is an extra-special p-group. Now, by [11,

Theorem 3], the conjugacy classes of G and H have orders 1 or p. Thus the proof

is completed. �

Finally, it can be easily seen that if G is a p-group of order pn with |Z(G)| =
pn−2 and ∆g

G
∼= ∆h

H , then N(G) = N(H). Furthermore, if G is a non-abelian

simple group satisfying the Thompson’s conjecture, ∆g
G
∼= ∆h

H and N(G) =

N(H), then G ∼= H.
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