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Spectrum of a nonautonomous dynamics for growth rates

By LUIS BARREIRA (Lisboa) and CLAUDIA VALLS (Lisboa)

Abstract. For a nonautonomous dynamics defined by a sequence of matrices,

we consider the notion of nonuniform spectrum defined in terms of nonuniform expo-

nential dichotomies with an arbitrarily small nonuniform part. The exponential behavior

may be given by an arbitrary growth rate, thus including dynamics for which the Lya-

punov exponents are all zero or all infinite. We describe all possible nonuniform spectra

and the asymptotic behavior of the dynamics on certain invariant subspaces. In addi-

tion, we obtain results for one-sided and two-sided dynamics. Finally, we describe all

possible nonuniform spectra for a nonautonomous dynamics with continuous time.

1. Introduction

Our main aim is to describe all possible nonuniform spectra for a nonau-

tonomous dynamics, both for discrete and continuous time, and both for a one-

sided and a two-sided dynamics. More generally, we consider an exponential be-

havior given by an arbitrary growth rate eρ(m) and not only by the usual exponen-

tial rate ecm. The latter includes dynamics for which the Lyapunov exponents are

all zero or are all infinite. Arbitrary growth rates were considered in [3], although

for strong exponential dichotomies (and so none of the results in the two papers

implies results in the other). In addition, we describe the asymptotic behavior of

the dynamics on the associated invariant subspaces. This amounts to show that

the lower and upper Lyapunov exponents of a vector in a given invariant sub-

space belong to the connected component of the nonuniform spectrum associated

to that subspace.
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The notion of nonuniform spectrum is inspired on the original notion intro-

duced by Sacker and Sell in [13] for cocycles over a compact base, replacing

the uniform exponential dichotomies in their work by the nonuniform exponen-

tial dichotomies with an arbitrarily small nonuniform part, now for a single linear

nonautonomous dynamics (and not for an entire cocycle). The Sacker–Sell spec-

trum can be seen as a generalization of the spectrum of a matrix (the set of its

eigenvalues), or, equivalently, of the autonomous dynamics xm = Amx0 defined

by a matrix A, for an arbitrary nonautonomous dynamics

xm = AmAm−1 · · ·A1x0

defined by a sequence of matrices (Am)m∈N. Indeed, for a constant sequence, that

is, for a sequence of matrices Am = A for m ∈ N, a constant λ ∈ R is of the form

− log |µ| for some eigenvalue µ of A if and only if the dynamics defined by the

matrix e−λA admits a uniform exponential dichotomy. The construction of the

associated invariant subspaces corresponding to each connected component of the

spectrum follows a simple yet powerful idea apparently used first by Oseledets

in [10], in his proof of the multiplicative ergodic theorem (see [4]).

There are many other works in the literature related with the study of various

notions of spectra for a nonautonomous dynamics (note that for an autonomous

dynamics all these spectra reduce essentially to the eigenvalues), both for discrete

and continuous time, finite and infinite-dimensional systems, as well as invertible

and noninvertible dynamics. In the case of the Sacker–Sell spectrum and its gen-

eralizations, for the study of uniform exponential dichotomies and its variations

we refer the reader to [1], [2], [5], [6], [9], [14], [15] (in particular, [9] describes the

relation to ergodic theory, [15] considers nonautonomous linear equations, [1], [2]

consider systems of difference equations and [6], [14] study infinite-dimensional

systems). For references related to other notions of spectra, which are out of

the scope of our work, see [4] for the Lyapunov spectrum (which plays a role in

smooth ergodic theory), and see [7], [8], [12] for the Morse spectrum (as well as

for a discussion of the relation between the Sacker–Sell spectrum and the Morse

spectrum).

Analogously to the construction for the Sacker–Sell spectrum, the nonuni-

form spectrum of a sequence of matrices (Am)m∈N is the set of all λ ∈ R such

that the dynamics defined by the sequence e−λAm does not admit a nonuniform

exponential dichotomy with an arbitrarily small nonuniform part (see Section 2

for the definition, and see Section 3 for examples). In particular, we describe

completely the structure of the nonuniform spectrum and how the lower and up-

per Lyapunov exponents relate to the associated invariant subspaces. Namely,
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for a vector in a given invariant subspace, the Lyapunov exponents belong to the

connected component of the nonuniform spectrum associated to that subspace.

The nonuniform exponential dichotomies with an arbitrarily small nonuni-

form part are ubiquitous in the context of ergodic theory and are present in

much more dynamics than their uniform counterpart. For example, the dynam-

ics of a diffeomorphism on a Smale horseshoe with a parabolic fixed point may

have nonzero Lyapunov exponents but is not uniformly hyperbolic. In fact, al-

most all trajectories with nonzero Lyapunov exponents of a measure-preserving

flow give rise to a linear variational equation admitting a nonuniform exponen-

tial dichotomy with an arbitrarily small nonuniform part. More precisely, let

f : Rd → Rd be a diffeomorphism preserving a probability measure µ on Rd.
This means that

µ(f−1A) = µ(A)

for every measurable set A ⊂ Rd. For example, any time-1 map of a Hamilton-

ian flow preserves the Liouville measure on each energy level, and so there are

many examples already in the somewhat classical context of mechanical systems.

Consider the Lyapunov exponents

λ(x, v) = lim sup
m→∞

1

m
log‖dxfmv‖

for x, v ∈ Rd with v 6= 0. If log+‖df‖ = max{0, log‖df‖} is µ-integrable (for

example, if the measure µ has compact support, such as the Liouville measure

on any compact energy level), then for µ-almost every x with λ(x, v) 6= 0 for all

v 6= 0 the sequence of matrices

Am = dfm(x)f, m ∈ Z

admits a nonuniform exponential dichotomy with an arbitrarily small nonuniform

part. Our results can also be considered a contribution to the theory of nonuni-

form hyperbolicity, which is an important tool in the study of stochastic behavior.

We refer the reader to the book [4] for a comprehensive exposition of the theory,

which goes back to seminal works of Oseledets [10], and particularly, Pesin [11].

2. Dichotomies on the whole line

2.1. Preliminaries. Let (Am)m∈Z be a two-sided sequence of d × d matrices.

We define

A(m,n) =

{
Am−1 · · ·An if m > n,

Id if m = n.
(1)
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Moreover, let ρ : Z→ R be an increasing function such that

lim
n→−∞

ρ(n) = −∞ and lim
n→+∞

ρ(n) = +∞.

We say that (Am)m∈Z admits a ρ-nonuniform exponential dichotomy with an

arbitrarily small nonuniform part or simply a ρ-dichotomy if:

(1) there exist projections Pm : Rd → Rd for m ∈ Z satisfying

AmPm = Pm+1Am (2)

for m ∈ Z such that each map

Am|KerPm : KerPm → KerPm+1 (3)

is invertible;

(2) there exist a constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0

such that

‖A(m,n)Pn‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n, (4)

and

‖A(m,n)Qn‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n, (5)

where Qn = Id− Pn, and where

A(m,n) = (A(n,m)|KerPm)
−1

: KerPn → KerPm

for m < n.

We first show that the images of the projections Pn and Qn are uniquely deter-

mined. We make the convention that log 0 = −∞.

Proposition 1. For each n ∈ Z, we have

ImPn =

{
v ∈ Rd : lim sup

m→+∞

1

ρ(m)
log‖A(m,n)v‖ < 0

}
, (6)

and ImQn consists of all vectors v ∈ Rd for which there is a sequence (xm)m≤n
in Rd such that xn = v, xm = Am−1xm−1 for m ≤ n, and

lim sup
m→−∞

1

|ρ(m)|
log‖xm‖ < 0. (7)
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Proof. It follows from (4) that

lim sup
m→+∞

1

ρ(m)
log‖A(m,n)v‖ < 0 (8)

for v ∈ ImPn. Conversely, if v ∈ Rd satisfies (8), then it follows from (4) that

lim sup
m→+∞

1

ρ(m)
log‖A(m,n)Qnv‖ < 0. (9)

By (5), for m ≥ n we have

‖Qnv‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(m)|‖A(m,n)Qnv‖,

that is,
1

D
eλ(ρ(m)−ρ(n))−ε|ρ(m)|‖Qnv‖ ≤ ‖A(m,n)Qnv‖.

Whenever Qnv 6= 0, we obtain

0 < λ− ε ≤ lim sup
m→+∞

1

ρ(m)
log‖A(m,n)Qnv‖

for any sufficiently small ε > 0, which contradicts to (9). Therefore, Qnv = 0 and

v ∈ ImPn. This establishes identity (6).

Now, take v ∈ ImQn and define a sequence (xm)m≤n in Rd by xm = A(m,n)v

for m ≤ n. Clearly,

xn = v and xm = Am−1xm−1 for m ≤ n.

Moreover, it follows from (5) that (7) holds. For the converse, it is sufficient to

show that there exists no v ∈ ImPn \ {0} for which there is a sequence (xm)m≤n
in Rd as in the proposition. It follows from (2) and (4) that

‖v‖ = ‖A(n,m)Pmxm‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(m)|‖xm‖

for m ≤ n. Therefore,

0 < λ− ε ≤ lim sup
m→−∞

1

|ρ(m)|
log‖xm‖

for any sufficiently small ε > 0, which contradicts to (7). �
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The nonuniform spectrum of a sequence (Am)m∈Z of d × d matrices is the

set Σ of all numbers a ∈ R such that the sequence (Bm)m∈Z, where

Bm = e−a(ρ(m+1)−ρ(m))Am,

does not admit a ρ-dichotomy. For each a ∈ R and n ∈ Z, let

Sa(n) =

{
v ∈ Rd : lim sup

m→+∞

1

ρ(m)
log‖A(m,n)v‖ < a

}
, (10)

and let Ua(n) be the set of all vectors v ∈ Rd for which there is a sequence

(xm)m≤n in Rd such that xn = v, xm = Am−1xm−1 for m ≤ n and

lim sup
m→−∞

1

|ρ(m)|
log‖xm‖ < −a.

It follows from Proposition 1 that if a ∈ R \ Σ, then

Rd = Sa(n)⊕ Ua(n) for n ∈ Z, (11)

with the projections Pn and Qn associated to the sequence (Bm)m∈Z satisfying

ImPn = Sa(n) and KerPn = Ua(n) for n ∈ Z. With the convention that

S−∞(n) = U+∞(n) = {0} and S+∞(n) = U−∞(n) = Rd,

for each a ∈ [−∞,+∞] and n ∈ Z, we have

AnSa(n) ⊂ Sa(n+ 1) and AnUa(n) ⊂ Ua(n+ 1). (12)

Moreover, if a < b, then

Sa(n) ⊂ Sb(n) and Ub(n) ⊂ Ua(n) (13)

for n ∈ Z. Finally, for each a /∈ Σ, the numbers dimSa(n) and dimUa(n) are

independent of n (and thus, we shall simply denote them by dimSa and dimUa).

Indeed, it follows from the invertibility assumption in the notion of a ρ-dichotomy

that dimUa(n) = dimUa(n+1), and so also dimSa(n) = dimSa(n+1), for n ∈ Z.

Proposition 2. The set Σ ⊂ R is closed. For each a ∈ R\Σ, we have Sa(n) =

Sb(n) and Ua(n) = Ub(n) for all n ∈ Z and all b in some open neighborhood of a.
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Proof. For each a ∈ R\Σ, there exist projections Pn for n ∈ Z satisfying (2),

a constant λ > 0, and for each ε > 0 a constant D = D(ε) > 0 such that

‖e−a(ρ(m)−ρ(n))A(m,n)Pn‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n,

and

‖e−a(ρ(m)−ρ(n))A(m,n)Qn‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n.

Therefore, given b ∈ R,

‖e−b(ρ(m)−ρ(n))A(m,n)Pn‖ ≤ De−(λ−a+b)(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n,

and

‖e−b(ρ(m)−ρ(n))A(m,n)Qn‖ ≤ De−(λ+a−b)(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n.

This shows that if |a− b| < λ, then b ∈ R \ Σ. Hence, by Proposition 1, Sb(n) =

Sa(n) and Ub(n) = Ua(n) for n ∈ Z. �

2.2. Structure of the spectrum. The following is our main result. It gives

a complete description of the nonuniform spectrum of a sequence of matrices.

We write Ii = [ai, bi] for i = 2, . . . , k − 1.

Theorem 3. For a two-sided sequence (Am)m∈Z of d× d matrices:

(1) either Σ = ∅, Σ = R or

Σ = I1 ∪ [a2, b2] ∪ · · · ∪ [ak−1, bk−1] ∪ Ik, (14)

where I1 = [a1, b1] or I1 = (−∞, b1] and Ik = [ak, bk] or Ik = [ak,+∞), for

some constants

a1 ≤ b1 < a2 ≤ b2 < · · · < ak ≤ bk, k ≤ d;

(2) if Σ is given by (14), then, taking numbers

ci ∈ (bi, ai+1) for i = 1, . . . , k − 1

and

δ > 0, c0 = inf Σ− δ, ck = sup Σ + δ,

for each n ∈ Z the subspaces Wi(n) = Uci−1
(n) ∩ Sci(n) satisfy

AnWi(n) ⊂Wi(n+ 1) for i = 1, . . . , k (15)

and

Rd =

k+1⊕
i=0

Wi(n), (16)

where W0(n) = Sc0(n) and Wk+1(n) = Uck(n);
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(3) the subspaces Wi(n) are independent of the numbers δ, c1, . . . , ck−1;

(4) for each i ∈ {1, . . . , k} with Ii compact, n ∈ Z and v ∈Wi(n) \ {0}, we have[
lim inf
m→+∞

1

ρ(m)
log‖xm‖, lim sup

m→+∞

1

ρ(m)
log‖xm‖

]
⊂ Ii, (17)

where xm = A(m,n)v, and there exists a sequence (xm)m≤n ⊂ Rd such that

xn = v, xm = Am−1xm−1 for m ≤ n and[
lim inf
m→−∞

1

ρ(m)
log‖xm‖, lim sup

m→−∞

1

ρ(m)
log‖xm‖

]
⊂ Ii. (18)

Proof. We start with an auxiliary result.

Lemma 1. Take a1, a2 ∈ R \ Σ such that a1 < a2. Then [a1, a2] ∩ Σ 6= ∅ if
and only if dimSa1 < dimSa2 .

Proof of the lemma. Assume that [a1, a2]∩Σ 6= ∅. If dimSa1 = dimSa2 ,

then

Sa1(n) = Sa2(n) and Ua1(n) = Ua2(n)

for n ∈ Z. By Proposition 1, there exist projections Pn for n ∈ Z satisfying (2),

constants λ1, λ2 > 0, and for each ε > 0 constants D1 = D1(ε), D2 = D2(ε) > 0

such that for i = 1, 2 we have

‖e−ai(ρ(m)−ρ(n))A(m,n)Pn‖ ≤ Die
−λi(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n, (19)

and

‖e−ai(ρ(m)−ρ(n))A(m,n)Qn‖ ≤ Die
−λi(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n. (20)

For each a ∈ [a1, a2], by (19),

‖e−a(ρ(m)−ρ(n))A(m,n)Pn‖ ≤ D1e
−λ1(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n,

and similarly, by (20),

‖e−a(ρ(m)−ρ(n))A(m,n)Qn‖ ≤ D2e
−λ2(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n.

Thus, [a1, a2] ⊂ R\Σ, but this contradicts to the assumption that [a1, a2]∩Σ 6= ∅.
For the converse, let

b = inf
{
a ∈ R \ Σ : dimSa = dimSa2}.
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Since dimSa1 < dimSa2 , it follows from Proposition 2 that a1 < b < a2. If

b 6∈ Σ, then either dimSb = dimSa2 or dimSb 6= dimSa2 . In the first case, by

Proposition 2 we have dimSb′ = dimSa2 and b′ ∈ R \Σ, for all b′ ∈ (b− ε, b] and

some ε > 0. In the second case, by Proposition 2 we have dimSb′ 6= dimSa2 and

b′ ∈ R \Σ, for all b′ ∈ [b, b+ ε) and some ε > 0. Both properties contradict to the

definition of b. Hence, b ∈ Σ, and so [a1, a2] ∩ Σ 6= ∅. �

Now, assume that Σ contains d+1 disjoint closed intervals, and take numbers

c1, . . . , cd ∈ R \ Σ such that all the intervals

(−∞, c1), (c1, c2), . . . , (cd,+∞)

intersect Σ. By Lemma 1, we have

0 ≤ dimSc1 < dimSc2 < · · · < dimScd ≤ d. (21)

If dimSc1 = 0, then Sc1(n) = {0} for n ∈ Z. Since c1 ∈ R \ Σ, there exist

a constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0 such that

‖e−c1(ρ(m)−ρ(n))A(m,n)‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n.

Hence, for b < c1 we have

‖e−b(ρ(m)−ρ(n))A(m,n)‖ ≤ De−λ(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n.

Thus, (−∞, c1) ⊂ R \ Σ, which is impossible since (−∞, c1) intersects Σ. This

shows that dimSc1 > 0. Now we assume that dimScd = d. Then Scd(n) = Rd

for n ∈ Z. Since cd ∈ R \ Σ, there exist a constant λ > 0 and for each ε > 0

a constant D = D(ε) > 0 such that

‖e−cd(ρ(m)−ρ(n))A(m,n)‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n.

Hence, for b > cd we have

‖e−b(ρ(m)−ρ(n))A(m,n)‖ ≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n.

Thus, (cd,+∞) ⊂ R \ Σ, which is impossible since (cd,+∞) intersects Σ. This

shows that dimScd < d. Therefore, (21) cannot hold, and so Σ is composed of at

most d disjoint closed intervals. This establishes the first property in the theorem.

Property (15) follows readily from (12). Moreover, by (13), we have

Wi(n) ∩Wj(n) = {0} for i 6= j and n ∈ Z.
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Indeed, for i < j we have

Wi(n) ⊂ Sci(n) ⊂ Scj−1
(n) and Wj(n) ⊂ Ucj−1

(n).

Finally, since

(A+B) ∩ C = A+ (B ∩ C)

for any subspaces A,B and C with A ⊂ C, taking A = Sck−1
(n), B = Uck−1

(n)

and C = Sck(n), it follows from (11) that

Rd = Sck(n)⊕Wk+1(n) =
(
(Sck−1

(n)⊕ Uck−1
(n)) ∩ Sck(n)

)
⊕Wk+1(n)

= Sck−1
(n)⊕ (Sck(n) ∩ Uck−1

(n))⊕Wk+1(n) = Sck−1
(n)⊕Wk(n)⊕Wk+1(n)

for each n ∈ Z. Identity (16) can now be obtained in finitely many steps. The

independence of the spaces Wi(n) on the choice of constants δ, c1, . . . , ck−1 follows

readily from Lemma 1.

For the last statement in the theorem, we note that since ci /∈ Σ, the sequence

e−ci(ρ(m+1)−ρ(m))Am admits a ρ-dichotomy, and so there exist projections Pn for

n ∈ Z satisfying (2), a constant λ > 0, and for each ε > 0 a constantD = D(ε) > 0

such that

‖A(m,n)Pn‖ ≤ De(ci−λ)(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n, (22)

and

‖A(m,n)Qn‖ ≤ De−(λ+ci)(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n.

It follows from Proposition 1 that ImPn = Sci(n) for n ∈ Z. Hence, Wi(n) ⊂
ImPn, and it follows from (22) that

lim sup
m→+∞

1

ρ(m)
log‖A(m,n)v‖ ≤ ci − λ < ci. (23)

Letting ci ↘ bi, we obtain

lim sup
m→+∞

1

ρ(m)
log‖A(m,n)v‖ ≤ bi (24)

for i ∈ {1, . . . , k − 1} and i = k unless ck = +∞. Similarly, since ci−1 /∈ Σ,

the sequence e−ci−1(ρ(m+1)−ρ(m))Am admits a ρ-dichotomy, and so there exist

projections P ′n for n ∈ Z satisfying (2), a constant µ > 0, and for each ε > 0 a

constant D = D(ε) > 0 such that

‖A(m,n)P ′n‖ ≤ De(ci−1−µ)(ρ(m)−ρ(n))+ε|ρ(n)| for m ≥ n,
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and

‖A(m,n)Q′n‖ ≤ De−(µ+ci−1)(ρ(n)−ρ(m))+ε|ρ(n)| for m ≤ n, (25)

where Q′n = Id − P ′n. It follows from Proposition 1 that ImQ′n = Uci−1
(n) for

n ∈ Z. Hence, Wi(n) ⊂ ImQ′n, and it follows from (22) that

‖v‖ ≤ De−(µ+ci−1)(ρ(m)−ρ(n))+ε|ρ(m)|‖A(m,n)v‖ for m ≥ n,

and thus,

lim inf
m→+∞

1

ρ(m)
log‖A(m,n)v‖ ≥ µ+ ci−1 − ε > ci−1,

taking ε sufficiently small. Letting ci−1 ↗ ai, we obtain

lim inf
m→+∞

1

ρ(m)
log‖A(m,n)v‖ ≥ ai (26)

for i ∈ {2, . . . , k} and i = 1 unless c0 = −∞. Property (17) follows from (24)

and (26).

Now, take v ∈ Wi(n) \ {0}, and let (xm)m≤n be a sequence such that xm ∈
ImQ′m and v = A(n,m)xm for m ≤ n. By (25), we have

lim sup
m→−∞

1

|ρ(m)|
log‖xm‖ ≤ −µ− ci−1 < −ci−1,

and thus,

lim inf
m→−∞

1

ρ(m)
log‖xm‖ > ci−1.

Letting ci−1 ↗ ai, we obtain

lim inf
m→−∞

1

ρ(m)
log‖xm‖ ≥ ai, (27)

for i ∈ {2, . . . , k} and i = 1 unless c0 = −∞. Moreover, since v ∈ Sci(n) = ImPn,

we have v = A(n,m)Pmxm for m ≤ n. By (22), we obtain

lim inf
m→−∞

1

|ρ(m)|
log‖xm‖ ≥ λ− ci − ε > −ci,

taking ε sufficiently small. Hence,

lim sup
m→−∞

1

ρ(m)
log‖xm‖ < ci,

and letting ci ↘ bi, we find that

lim sup
m→−∞

1

ρ(m)
log‖xm‖ ≤ bi (28)

for i ∈ {1, . . . , k− 1} and i = k unless ck = +∞. Property (18) follows from (27)

and (28). �
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3. Examples

In this section, we give some examples of sequences of matrices and of their

nonuniform spectra.

Example 1. Take w > b > 0. For each n ∈ Z, let

An =

{
e(−w+b)(2n+1)+(n+1) cos(n+1)−n cosn if n ≥ 0,

e−(w+b)(2n+1)+(|n|+1) cos(n+1)−|n| cosn if n < 0.

We have

A(m,n) =


e−(w−b)(m

2−n2)+m cosm−n cosn if m,n ≥ 0,

e−w(m2−n2)+b(m2+n2)+m cosm−|n| cosn if m ≥ 0, n < 0,

e−(w+b)(m2−n2)+|m| cosm−|n| cosn if m,n < 0,

for m ≥ n. First, we show that Σ ⊂ [e−w−b, e−w+b]. Take a > −w + b. Then

e−a(m
2−n2)A(m,n) ≤ e−(a+w−b)(m

2−n2)+|m|+|n| for m ≥ n. (29)

Given δ > 0, take D = D(δ) > 0 such that

e|n| ≤ Deδn
2

for n ∈ Z. (30)

It follows from (29) that

e−a(m
2−n2)A(m,n) ≤ D2e−(a+w−b)(m

2−n2)+δm2+δn2

≤ D2e−(a+w−b−δ)(m
2−n2)+2δn2

for m ≥ n. Since a + w − b > 0 and δ is arbitrary, this shows that (e−aAm)m∈Z
admits a ρ-dichotomy with ρ(n) = n2 and Pm = Id.

Similarly, for a < −w − b the sequence (e−aAm)m∈Z admits a ρ-dichotomy

with ρ(n) = n2 and Pm = 0. Indeed, by (30), for m ≤ n we obtain

e−a(n
2−m2)A(n,m) ≥ e−(a+w+b)(n2−m2)−|m|−|n|

≥ D−2e−(a+w+δ)(n2−m2)−2δn2

.

Since a+w+ b < 0 and δ is arbitrary, we obtain the desired property. Therefore,

Σ ⊂ [e−w−b, e−w+b].
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For the reverse inclusion, assume that the sequence (ew−bAm)m∈Z admits

a ρ-dichotomy with ρ(n) = n2 and Pm = Id. Then there exists λ > 0, and for

each ε > 0 there exists D = D(ε) > 0 such that

e(w−b)(m
2−n2)A(m,n) ≤ De−λ(m

2−n2)+εn2

for m ≥ n.

For n = (2l − 1)π and m = 2lπ with l ∈ N, we obtain

e(w−b)(m
2−n2)A(m,n) = em

2+n2

≤ De−λ(m
2−n2)+εn2

.

But this is impossible for ε sufficiently small. One can also show that the se-

quence (ew−bAm)m∈Z does not admit a ρ-dichotomy with ρ(n) = n2 and Pm = 0.

Therefore, −w + b ∈ Σ. One can show in a similar manner that −w − b ∈ Σ.

Since Σ 6= ∅ and Σ 6= R, it follows from Theorem 3 that Σ is a closed interval.

Therefore, Σ = [e−w−b, e−w+b].

Example 2. Take w > b > 0. For each n ∈ Z, let

An =

{
e(−w+b)(2n+1)+(n+1) cos(n+1)−n cosn if n ≥ 0,

0 if n < 0.

We have

A(m,n) =

{
e−(w−b)(m

2−n2)+m cosm−n cosn if m,n ≥ 0,

0 otherwise,

for m ≥ n. First, we show that Σ ⊂ (−∞, e−w+b]. Take a > −w + b. Then

e−a(m
2−n2)A(m,n) ≤ e−(a+w−b)(m

2−n2)+|m|+|n| (31)

for m ≥ n ≥ 0. By (30), it follows from (31) that

e−a(m
2−n2)A(m,n) ≤ D2e−(a+w−b)(m

2−n2)+δm2+δn2

≤ D2e−(a+w−b−δ)(m
2−n2)+2δn2

for m ≥ n. Since a + w − b > 0 and δ is arbitrary, this shows that (e−aAm)m∈Z
admits a ρ-dichotomy with ρ(n) = n2 and Pm = Id. Hence, Σ ⊂ (−∞,−w + b].

For the reverse inclusion, take a ≤ −w + b, and assume that (eaAm)m∈Z
admits a ρ-dichotomy with ρ(n) = n2 and Pm = Id. Then there exists λ > 0, and

for each ε > 0 there exists D = D(ε) > 0 such that

ea(m
2−n2)A(m,n) ≤ De−λ(m

2−n2)+εn2

for m ≥ n.
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For n = (2l − 1)π and m = 2lπ with l ∈ N, we obtain

e−a(m
2−n2)A(m,n) = e−(a+w−b)(m

2−n2)e|m|+|n| ≤ De−λ(m
2−n2)+εn2

.

But this is impossible for ε sufficiently small since a + w − b ≤ 0. On the other

hand, (e−aAm)m∈Z does not admit a ρ-dichotomy with ρ(n) = n2 and Pm = 0

since Am vanishes for m < 0. Therefore, a ∈ Σ for any a ≤ −w + b, and so

Σ = (−∞,−w + b].

4. Dichotomies on the half-line

In this section, we obtain corresponding results for a nonautonomous dynam-

ics on the half-line. Let (Am)m∈N be a one-sided sequence of d× d matrices. We

continue to define A(m,n) by (1). Let ρ : N → R be an increasing function such

that

lim
n→+∞

ρ(n) = +∞.

We say that the sequence (Am)m∈N admits a ρ-dichotomy if there exist projections

Pm for m ∈ N, satisfying (2) for m ∈ N such that each map in (3) is invertible,

a constant λ > 0, and for each ε > 0 a constant D = D(ε) > 0 such that (4)

and (5) hold.

The following result can be obtained repeating arguments in the proof of

Proposition 1.

Proposition 4. For each n ∈ N, we have

ImPn =

{
v ∈ Rd : lim sup

m→+∞

1

ρ(m)
log‖A(m,n)v‖ < 0

}
.

In the one-sided case, the images of the projections Qn = Id − Pn need not

be uniquely determined.

Proposition 5. Assume that the sequence (Am)m∈N admits a ρ-dichotomy

with respect to projections Pm. Moreover, let P ′m, for m ∈ N, be projections such
that:

(1) ImPm = ImP ′m and P ′m+1Am = AmP
′
m for m ∈ N;

(2) the map Am| kerP ′m : kerP ′m → kerP ′m+1 is invertible for m ∈ N;
(3) for each ε > 0 there exists C = C(ε) such that

‖P ′m‖ ≤ Ceε|ρ(m)|, m ∈ N. (32)
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Then (Am)m∈N admits a ρ-dichotomy with respect to the projections P ′m.

Proof. It follows from the assumptions that

Pm(Pm − P ′m) = Pm − P ′m for m ∈ N.

Hence, by (4) and (32), we have

‖A(m,n)P ′n‖ ≤ ‖A(m,n)Pnx‖+ ‖A(m,n)(Pn − P ′n)‖

≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)| + ‖A(m,n)Pn(Pn − P ′n)‖

= De−λ(ρ(m)−ρ(n))+ε|ρ(n)| +De−λ(ρ(m)−ρ(n))+ε|ρ(n)|‖Pn − P ′n‖

≤ De−λ(ρ(m)−ρ(n))+ε|ρ(n)| +De−λ(ρ(m)−ρ(n))+ε|ρ(n)|(D + C)eε|ρ(n)|

≤ (D +D2 + CD)e−λ(ρ(m)−ρ(n))+2ε|ρ(n)|

for m ≥ n. Similarly, since

Pm − P ′m = (Pm − P ′m)(Id− Pm),

it follows from (32) that

‖(Id− P ′n)v‖ ≤ ‖(Id− Pn)v‖+ ‖(Pn − P ′n)v‖
≤ ‖(Id− Pn)v‖+ ‖Pn − P ′n‖ · ‖(Id− Pn)v‖
≤ (1 + ‖Pn − P ′n‖) · ‖(Id− Pn)v‖

≤ (1 + ‖Pn − P ′n‖)e−λ(ρ(m)−ρ(n))+ε|ρ(m)|‖A(m,n)(Id− Pn)v‖

for m ≥ n. Using again (32), we conclude that

‖(Id− P ′n)v‖ ≤ K ′e−λ(ρ(m)−ρ(n))+2ε|ρ(m)|‖A(m,n)(Id− Pn)v‖ (33)

for m ≥ n and some constant K ′ = K ′(ε) > 0. On the other hand,

‖A(m,n)(Id− Pn)v‖ ≤ ‖A(m,n)(Id− P ′n)v‖+ ‖A(m,n)(Pn − P ′n)v‖
= ‖A(m,n)(Id− P ′n)v‖+ ‖(Pm − P ′m)A(m,n)(Id− P ′n)v‖
≤ (1 + ‖Pm − P ′m‖)‖A(m,n)(Id− P ′n)v‖.

Using (32), we conclude that

‖A(m,n)(Id− Pn)v‖ ≤ K ′′eε|ρ(m)|‖A(m,n)(Id− P ′n)v‖ (34)
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for m ≥ n and some constant K ′′ = K ′′(ε) > 0. Inequalities (33) and (34) imply

that

‖(Id− P ′n)v‖ ≤ K ′K ′′e−λ(ρ(m)−ρ(n))+3ε|ρ(m)|‖A(m,n)(Id− P ′n)v‖,

and thus,

‖A(n,m)(Id− P ′m)v‖ ≤ K ′K ′′e−λ(ρ(m)−ρ(n))+3ε|ρ(m)|‖(Id− P ′m)v‖

≤ (1 + C)K ′K ′′e−λ(ρ(m)−ρ(n))+3ε|ρ(m)|‖v‖

for m ≥ n. This completes the proof of the lemma. �

The nonuniform spectrum of a sequence (Am)m∈N of d × d matrices is the

set Σ of all a ∈ R such that the sequence (Bm)m∈N, where

Bm = e−a(ρ(m+1)−ρ(m))Am,

does not admit a ρ-dichotomy. For each a ∈ R and n ∈ N, we continue to define

Sa(n) as in (10). For a < b, the first inclusion in (13) holds. Moreover, repeating

the proof of Proposition 2, one can show that the set Σ ⊂ R is closed, and that

for each a ∈ R \ Σ we have Sa(n) = Sb(n) for all n ∈ N and all b in some open

neighborhood of a.

The following result is a version of Theorem 3 for exponential dichotomies

on the half-line. The main difference is that the direct sum in (16) is replaced by

a filtration of subspaces. We write Ii = [ai, bi] for i = 2, . . . , k − 1.

Theorem 6. For a one-sided sequence (Am)m∈N of d× d matrices:

(1) statement 1 in Theorem 3 holds;

(2) when (14) holds, taking numbers as in Theorem 3, we have

Sc0(n) ⊂ Sc1(n) ⊂ · · · ⊂ Sck(n);

(3) for each i ∈ {1, . . . , k} with Ii compact, n ∈ N and v ∈ Sci(n) \ Sci−1
(n), we

have

lim sup
m→+∞

1

ρ(m)
log‖A(m, 1)v‖ ≤ bi.

Proof. We first show that Lemma 1 holds in the present setting. Indeed,

assume that [a1, a2]∩Σ 6= ∅ and dimSa1 = dimSa2 . It follows from Propositions 4

and 5 that the sequences

Bm = e−a1(ρ(m+1)−ρ(m))Am and Cm = e−a2(ρ(m+1)−ρ(m))Am



Spectrum of a nonautonomous dynamics for growth rates 59

admit ρ-dichotomies with respect to the same sequence of projections Pm. Pro-

ceeding as in the proof of Lemma 1, we obtain a contradiction. The converse can

also be obtained as in the proof of Lemma 1.

Proceeding as in the proof of Theorem 3, one can show that Σ consists of at

most d disjoint closed intervals. Since ci /∈ Σ, the sequence e−ci(ρ(m+1)−ρ(m))Am
admits a ρ-dichotomy, and so there exist projections Pn for n ∈ N satisfying (2),

a constant λ > 0, and for each ε > 0 a constant D = D(ε) > 0 such that

‖A(m,n)Pn‖ ≤ De(ci−λ)(ρ(m)−ρ(n))+ερ(n) for m ≥ n, (35)

and

‖A(m,n)Qn‖ ≤ De−(λ+ci)(ρ(n)−ρ(m))+ερ(n) for m ≤ n.

It follows from Proposition 4 that ImPn = Sci(n) for n ∈ N. Hence, Sci(1) ⊂
ImP1, and it follows from (35) that (23) and (24) hold. �

5. The case of continuous time

In this section, we describe briefly versions of our results for continuous time.

We first consider exponential dichotomies on the whole line. Let T (t, s) be an

evolution family for t, s ∈ R with t ≥ s, and let ρ : R → R be an increasing

function such that

lim
t→−∞

ρ(t) = −∞ and lim
t→+∞

ρ(t) = +∞.

We say that T (t, s) admits a ρ-nonuniform exponential dichotomy with an arbi-

trarily small nonuniform part or simply a ρ-dichotomy if:

(1) there exist projections P (t) for t ∈ R satisfying

P (t)T (t, s) = T (t, s)P (s) (36)

for t ≥ s such that each map

T (t, s)|KerP (s) : KerP (s)→ KerP (t) (37)

is invertible;
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(2) there exist a constant λ > 0 and for each ε > 0 a constant D = D(ε) > 0

such that

‖T (t, s)P (s)‖ ≤ De−λ(ρ(t)−ρ(s))+ε|ρ(s)| for t ≥ s, (38)

and

‖T (t, s)Q(s)‖ ≤ Deµ(ρ(t)−ρ(s))+ε|ρ(s)| for t ≤ s, (39)

where Q(t) = Id− P (t), and where

T (t, s) =
(
T (s, t)|KerP (t)

)−1
: KerP (s)→ KerP (t) for t ≤ s

The nonuniform spectrum of T (t, s) is the set Σ of all numbers a ∈ R for

which the evolution family

Ta(t, s) = e−a(ρ(t)−ρ(s))T (t, s)

does not admit a ρ-dichotomy.

The following result is a version of Theorem 3 for continuous time. The proof

is analogous, and so we omit it. We write Ii = [ai, bi] for i = 2, . . . , k − 1.

Theorem 7. For an evolution family T (t, s) for t, s ∈ R with t ≥ s, the

following properties hold:

(1) statement 1 in Theorem 3 holds;

(2) when (14) holds, taking numbers as in Theorem 3, for each t ∈ R the sub-

spaces Wi(t) = Uci−1
(t) ∩ Sci(t) satisfy

T (t, s)Wi(s) ⊂Wi(t) for i = 1, . . . , k, t ≥ s,

and Rd =
⊕k+1

i=0 Wi(t), where W0(t) = Sc0(t) and Wk+1(t) = Uck(t);

(3) the subspaces Wi(t) are independent of the numbers δ, c1, . . . , ck−1;

(4) for each i ∈ {1, . . . , k} with Ii compact, s ∈ R and v ∈Wi(s) \ {0}, we have[
lim inf
t→+∞

1

ρ(t)
log‖x(t)‖, lim sup

t→+∞

1

ρ(t)
log‖x(t)‖

]
⊂ Ii,

where x(t) = T (t, s)v, and there exists a function x(t) such that x(s) = v,

x(t) = T (t, r)x(r) for r ≤ t ≤ s and[
lim inf
t→−∞

1

ρ(t)
log‖x(t)‖, lim sup

t→−∞

1

ρ(t)
log‖x(t)‖

]
⊂ Ii.
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Now, we consider exponential dichotomies on the half-line. Let T (t, s) be an

evolution family for t ≥ s ≥ 0, and let ρ : R+
0 → R be an increasing function such

that

lim
t→+∞

ρ(t) = +∞.

We say that T (t, s) admits a ρ-dichotomy if there exist projections P (t) for t ∈ R
satisfying (36) such that each map in (37) is invertible, a constant λ > 0, and

for each ε > 0 a constant D = D(ε) > 0 such that (38) and (39) hold. The

nonuniform spectrum of T (t, s) is the set Σ of all numbers a ∈ R for which the

evolution family Ta(t, s) does not admit a ρ-dichotomy.

The following result is a version of Theorem 6 for continuous time.

Theorem 8. For an evolution family T (t, s) for t ≥ s ≥ 0 the following

properties hold:

(1) statement 1 of Theorem 3 holds;

(2) when (14) holds, taking numbers as in Theorem 3, we have

Sc0(t) ⊂ Sc1(t) ⊂ · · · ⊂ Sck(t);

(3) for each i ∈ {1, . . . , k} with Ii compact, s ∈ R and v ∈ Sci(s) \ Sci−1
(s), we

have

lim sup
t→+∞

1

ρ(t)
log‖T (t, s)v‖ ≤ bi.
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