Publ. Math. Debrecen 91/1-2 (2017), 123–131 DOI: 10.5486/PMD.2017.7690

A note on $(-\beta)$ -shifts with the specification property

By HUI HU (Nanchang), ZHIHUI LI (Wuhan) and YUELI YU (Wuhan)

Abstract. We consider expansions with negative real bases and associated dynamical systems. It is proved that the set of β for which the associated $(-\beta)$ -shift has the specification property is of full Hausdorff dimension.

1. Introduction

The β -expansions of real numbers induced by the β -transformation T_{β} were introduced by RÉNYI [15]. Many combinatorial properties of β -expansions were subsequently obtained by PARRY [14]. Since then, the link between the β -expansion of 1 and the associated β -shift S_{β} has been well investigated. PARRY [14] proved that S_{β} is a subshift of finite type if and only if the β -expansion of 1 is finite. BERTRAND-MATHIS [2] obtained the necessary and sufficient conditions under which S_{β} is sofic and has the specification property, respectively (see [3] for more details on the classification of β -shifts). The size of the set of β for which the β -shift belongs to some classes was determined by SCHMELING [16].

In this note, we consider expansions with negative real bases and associated dynamical systems, i.e., $(-\beta)$ -expansions and $(-\beta)$ -transformations, $\beta > 1$. The expansions with negative non-integer bases were first introduced by ITO and

Mathematics Subject Classification: 11K55, 11A63, 28A78.

Key words and phrases: $(-\beta)$ -expansion, $(-\beta)$ -shift, specification property, Hausdorff dimension.

The first author is supported by NSF of Jiangxi Province (No. 20161BAB211004) and NCHU (No. EA201507010). The third author is supported by NSFC (No. 11401445).

SADAHIRO [12], with the map $f_{-\beta}$ defined on the interval $\left[-\frac{\beta}{\beta+1}, \frac{1}{\beta+1}\right)$ as follows:

$$f_{-\beta}(x) = -\beta x - \left[-\beta x + \frac{\beta}{\beta+1}\right],$$

where $\lfloor \xi \rfloor$ denotes the largest integer no more than ξ . For the sake of comparing with the β -transformation, we define the $(-\beta)$ -transformation $T_{-\beta}$ on (0, 1] by

$$T_{-\beta}(x) = -\beta x + \lfloor \beta x \rfloor + 1, \qquad (1.1)$$

following [13]. It was pointed out in [13] that $T_{-\beta}$ is conjugate to $f_{-\beta}$ by a linear map. Similar to the β -shift for β -expansions, the $(-\beta)$ -shift was defined in [12] (see details in Section 2 below). FROUGNY and LAI in [10], and ITO and SADAHIRO in [12] obtained the necessary and sufficient conditions under which the $(-\beta)$ -shift is a subshift of finite type and sofic, respectively. By [5, Theorem 1.5], the set of β for which the $(-\beta)$ -shift has the specification property is of Lebesgue measure 0. SCHMELING [16] obtained the Hausdorff dimension of the set of β for which the specification property (see Section 2 for the definition of the specification property). A natural question is to determine the Hausdorff dimension of the similar set of β for the $(-\beta)$ -shift. It was proved by LIAO and STEINER [13] that the $(-\beta)$ -shift is not transitive, and hence does not have the specification property for any $1 < \beta < \frac{\sqrt{5}+1}{2}$, which is different from the β -shift. The main result of this note is the following.

Theorem 1.1. The set of $\beta > 1$ for which the $(-\beta)$ -shift has the specification property is of full Hausdorff dimension.

For more dynamical properties of the $(-\beta)$ -shift, the reader is referred to [10], [11], [12], [13] and the references therein. For more results on the classification of β -shifts and the size of related sets, see [3] and [16], respectively. See [1], [17] for combinatorial properties of the $(-\beta)$ -expansions of the critical point. See [6], [7], [8] for other kinds of dynamical systems about expansions with negative bases. The paper is organized as follows. We shall introduce some definitions and properties of $(-\beta)$ -expansions and $(-\beta)$ -shifts in the next section. The main theorem will be proved by constructing a suitable Cantor set in the last section.

2. Preliminary

Let us recall the definitions and some properties of $(-\beta)$ -expansions and $(-\beta)$ -shifts. Let $\beta > 1$ be a real number, and $T_{-\beta}$ be the $(-\beta)$ -transformation

A note on
$$(-\beta)$$
-shifts... 125

defined on (0,1] by (1.1). Then each $x \in (0,1]$ can be expressed as the following series induced by $T_{-\beta}$:

$$x = \frac{\varepsilon_1(x, -\beta)}{\beta} - \frac{\varepsilon_2(x, -\beta)}{\beta^2} + \dots + (-1)^{n-1} \frac{\varepsilon_n(x, -\beta)}{\beta^n} + \dots$$

where $\varepsilon_n(x, -\beta) = \lfloor \beta T_{-\beta}^{n-1}(x) \rfloor + 1$ is called the *n*-th digit of x with base $(-\beta)$. The infinite word

$$\varepsilon_1(x,-\beta)\varepsilon_2(x,-\beta)\cdots\varepsilon_n(x,-\beta)\cdots\in\{1,2,\ldots,\lfloor\beta\rfloor+1\}^{\mathbb{N}}$$

is called the $(-\beta)$ -expansion of x. Let

$$\Sigma_{\beta}^{\mathbb{N}} = \{1, 2, \dots, \lfloor \beta \rfloor + 1\}^{\mathbb{N}},\$$

and let $\Sigma_{\beta}^{\mathbb{N}}$ be endowed with the usual product topology, and σ be the shift on $\Sigma_{\beta}^{\mathbb{N}}$, i.e.,

$$\sigma(\epsilon_1\epsilon_2\cdots)=\epsilon_2\epsilon_3\cdots$$

for any $\epsilon_1 \epsilon_2 \cdots \in \Sigma_{\beta}^{\mathbb{N}}$. Then the closure of the set of $(-\beta)$ -expansions of all $x \in (0,1]$ is defined to be the $(-\beta)$ -shift $S_{-\beta}$, which is a subshift of $\Sigma_{\beta}^{\mathbb{N}}$. The alternating lexicographic order \prec on $\Sigma_{\beta}^{\mathbb{N}}$ is defined as follows:

$$\epsilon_1 \epsilon_2 \cdots \epsilon_n \cdots \prec \epsilon'_1 \epsilon'_2 \cdots \epsilon'_n \cdots$$

if there exists an integer $k \ge 1$ such that $\epsilon_j = \epsilon'_j$ for all $1 \le j < k$ and $(-1)^k (\epsilon_k - \epsilon'_k) > 0$. It was proved by ITO and SADAHIRO [12] that

$$S_{-\beta} = \{ \epsilon_1 \epsilon_2 \cdots \in \Sigma_{\beta}^{\mathbb{N}} : \sigma^n(\epsilon_1 \epsilon_2 \cdots) \preceq \varepsilon_1(1, -\beta) \varepsilon_2(1, -\beta) \cdots \text{ for all } n \ge 0 \}$$
(2.1)

if the $(-\beta)$ -expansion of 1 is not periodic with odd period. The subshift $S_{-\beta}$ was also characterized when the $(-\beta)$ -expansion of 1 is periodic with odd period in [12], but we shall not use it in this paper. By [12], when the $(-\beta)$ -expansion of 1 is not periodic with odd period, an infinite word $\epsilon_1 \epsilon_2 \cdots \in \Sigma_{\beta}^{\mathbb{N}}$ is the $(-\beta)$ -expansion of some $x \in (0, 1]$ if and only if

$$1\varepsilon_1(1,-\beta)\varepsilon_2(1,-\beta)\cdots \prec \sigma^n(\epsilon_1\epsilon_2\cdots) \preceq \varepsilon_1(1,-\beta)\varepsilon_2(1,-\beta)\cdots$$
(2.2)

for all $n \ge 0$.

Let $F(S_{-\beta})$ be the set of factors of elements in $S_{-\beta}$, i.e., the set of finite words which appear in elements in $S_{-\beta}$. The $(-\beta)$ -shift $S_{-\beta}$ has the specification property if there exists an integer $k \ge 1$ such that for any $u, v \in F(S_{-\beta})$, we have

$$uwv \in F(S_{-\beta})$$

for some word $w \in F(S_{-\beta})$ of length k, following [3]. For the definition of the specification property on general dynamical systems, see BOWEN [4].

Let ϕ be the morphism of words with the alphabet set $\{1,2\}$ defined by $\phi(2) = 211$, $\phi(1) = 2$. For two finite words u and v, we denote by $\{u, v\}^{\infty}$ the set of all infinite words which are composed by all the possible concatenations of u and v. For a finite word u, we denote by \overline{u} the infinite word $uu \cdots$. The characterization of the $(-\beta)$ -expansion of 1 was obtained by STEINER [17] as follows.

Lemma 2.1 ([17, Theorem 2]). Let $\epsilon_1, \epsilon_2, \ldots$ be a sequence of non-negative integers. Then $\epsilon_1 \epsilon_2 \cdots$ is the $(-\beta)$ -expansion of 1 for some (unique) $\beta > 1$ if and only if the following hold:

- (1) $\epsilon_k \epsilon_{k+1} \cdots \leq \epsilon_1 \epsilon_2 \cdots$ for all $k \ge 2$;
- (2) $\epsilon_1 \epsilon_2 \cdots \succ w_1 w_2 \cdots := \lim_{n \to \infty} \phi^n(2) = 211222112112112221122 \cdots;$
- (3) $\epsilon_1 \epsilon_2 \cdots \notin \{\epsilon_1 \cdots \epsilon_k, \epsilon_1 \cdots \epsilon_{k-1} (\epsilon_k 1) 1\}^{\infty} \setminus \{\overline{\epsilon_1 \cdots \epsilon_k}\}$ for all $k \ge 1$ with $\overline{\epsilon_1 \cdots \epsilon_k} \succ w_1 w_2 \cdots$;
- (4) $\epsilon_1 \epsilon_2 \cdots \notin \{\epsilon_1 \cdots \epsilon_k 1, \epsilon_1 \cdots \epsilon_{k-1} (\epsilon_k + 1)\}^\infty$ for all $k \ge 1$ with $\overline{\epsilon_1 \cdots \epsilon_{k-1} (\epsilon_k + 1)}$ $\succ w_1 w_2 \cdots$.

Similar to β -expansions of 1, the following relation about the alternating lexicographic order of words and the usual order of real numbers was obtained by STEINER [17].

Lemma 2.2 ([17, Theorem 3]). Let $\beta, \beta' > 1$ be two real numbers. Then

 $\varepsilon_1(1,-\beta)\varepsilon_2(1,-\beta)\cdots \prec \varepsilon_1(1,-\beta')\varepsilon_2(1,-\beta')\cdots$

if and only if $\beta < \beta'$.

3. Proofs

In the rest part of this paper, we always let N be an integer with $N \ge 4$. First, we shall show that a family of infinite words are $(-\beta)$ -expansions of 1.

Lemma 3.1. Let $\epsilon_1 \epsilon_2 \cdots \in \{1, 2, \dots, N\}^{\mathbb{N}}$ be an infinite word with $\epsilon_1 = N$ and $1 \leq \epsilon_i \leq N-2$ for $i \geq 2$. Then $\epsilon_1 \epsilon_2 \cdots$ is the $(-\beta)$ -expansion of 1 for some (unique) $\beta > 1$.

PROOF. Since $\epsilon_1 = N \ge 4$ and $\epsilon_i \le N - 2$ for all $i \ge 2$, the four conditions in Lemma 2.1 are satisfied immediately.

A note on $(-\beta)$ -shifts... 127

Let

$$E_N = \{\beta > 1 : \varepsilon_1(1, -\beta) = N, \ 1 \le \varepsilon_i(1, -\beta) \le N - 2 \text{ for all } i \ge 2\}.$$
(3.1)

Note that by the definition of the $(-\beta)$ -expansion, the $(-\beta)$ -expansions of 1 for $\beta = N - 1$ and $\beta = N$ are \overline{N} and $\overline{N+1}$, respectively. Thus, by Lemma 2.2, $E_N \subseteq [N-1, N]$. Define the map $\varphi : E_N \to (0, 1)$ by

$$\varphi(\beta) = \sum_{k=1}^{\infty} \frac{\varepsilon_{k+1}(1, -\beta)}{N^k}$$

By Lemma 3.1, $\varphi(E_N)$ consists of the points whose N-ary expansions contain only the digits $1, 2, \ldots, N-2$. By [9, Theorem 9.3],

$$\dim_H \varphi(E_N) = \log(N-2)/\log N, \qquad (3.2)$$

where \dim_H denotes the Hausdorff dimension.

Next, we shall prove that for any $\beta \in E_N$, the $(-\beta)$ -shift has the specification property. BUZZI [5, Proposition 2.1] established a criterion for the specification property of a class of piecewise monotonic maps. By this criterion, one can deduce the specification property of $S_{-\beta}$ for any $\beta \in E_N$. However, we give a direct proof here.

Lemma 3.2. Let $\beta > 1$ be a real number. If $\varepsilon_1(1, -\beta) = N$ and $1 \le \varepsilon_i(1, -\beta) \le N - 2$ for all $i \ge 2$, then the $(-\beta)$ -shift has the specification property.

PROOF. For any $u, v \in F(S_{-\beta})$, we shall prove that there exists $w \in F(S_{-\beta})$ of length 2 such that $uwv \in F(S_{-\beta})$. Since $S_{-\beta}$ is a subshift and $v \in F(S_{-\beta})$, there exist integers $\delta_1, \delta_2, \ldots$ such that $v\delta_1\delta_2 \cdots \in S_{-\beta}$. By (2.1), it follows that

$$\sigma^k(v\delta_1\delta_2\cdots) \preceq \varepsilon_1(1,-\beta)\varepsilon_2(1,-\beta)\cdots$$
(3.3)

for all $k \ge 0$. Now, we distinguish two cases.

Case 1. Any suffix of u is not a prefix of $\varepsilon_1(1, -\beta)\varepsilon_2(1, -\beta)\cdots$. Let w = 11. Combing the facts that $\varepsilon_1(1, -\beta) = N$ and (3.3), it follows that for all $k \ge 0$,

$$\sigma^{k}(u11v\delta_{1}\delta_{2}\cdots) \preceq \varepsilon_{1}(1,-\beta)\varepsilon_{2}(1,-\beta)\cdots$$

in this case. Thus, $uwv\delta_1\delta_2\cdots \in S_{-\beta}$ and $uwv \in F(S_{-\beta})$.

Case 2. There exists an integer $m \geq 1$ such that the suffix of u with length m is a prefix of $\varepsilon_1(1, -\beta)\varepsilon_2(1, -\beta)\cdots$. If m is even, then we let $w = \varepsilon_{m+1}(1, -\beta)(N-1)$. Combing the facts $\varepsilon_1(1, -\beta) = N$, $\varepsilon_i(1, -\beta) \leq N-2$ for $i \geq 2$, we have $uwv\delta_1\delta_2\cdots \in S_{-\beta}$ and $uwv \in F(S_{-\beta})$. If m is odd, then we let w = (N-1)1. Similarly, we have $uwv \in F(S_{-\beta})$.

We should point out that in the proof of Lemma 3.2, w is defined independent from v. As a result, for any $\beta \in E_N$, the subshift $S_{-\beta}$ actually has the specification property defined by BOWEN [4].

In order to estimate the Hausdorff dimension of E_N , we shall prove that φ is locally Lipschitz.

Lemma 3.3. There exists a constant C_N depending only on N such that

$$|\varphi(\beta) - \varphi(\beta')| \le C_N |\beta - \beta'|$$

for any $\beta, \beta' \in E_N$.

Then, we can prove Theorem 1.1 immediately by the following lemma, and we shall postpone the proof of Lemma 3.3 to the last part of the note.

Lemma 3.4 ([9, Proposition 2.3]). Let $F \subset \mathbb{R}^n$, and suppose that $f: F \to \mathbb{R}^m$ satisfies a Hölder condition

$$|f(x) - f(y)| \le c|x - y|^{\alpha} \quad (x, y \in F).$$

Then $\dim_H f(F) \leq 1/\alpha \dim_H F$.

PROOF OF THEOREM 1.1. By Lemmas 3.3, 3.4 and (3.2), we have

$$\dim_H E_N \ge \dim_H \varphi(E_N) = \log(N-2)/\log N.$$

Since $N \ge 4$ is arbitrary, the conclusion follows.

It remains to prove Lemma 3.3. From now on, we always let $\beta, \beta' \in E_N \subset [N-1, N]$. Then, there exists an integer $n \geq 1$ such that

$$\varepsilon_i(1,-\beta) = \varepsilon_i(1,-\beta'), \quad 1 \le i \le n, \varepsilon_{n+1}(1,-\beta) \ne \varepsilon_{n+1}(1,-\beta').$$
(3.4)

Now, we give the following upper bound estimate of $|\varphi(\beta) - \varphi(\beta')|$. In the rest part of the note, the integer *n* is always defined by (3.4).

Lemma 3.5. Let $\beta, \beta' \in E_N$ and n be defined by (3.4). Then

$$|\varphi(\beta) - \varphi(\beta')| \le N^{-n+1}.$$

PROOF. Since $\varepsilon_i(1, -\beta) = \varepsilon_i(1, -\beta')$ for $1 \leq i \leq n$ and $1 \leq \varepsilon_i(1, -\beta)$, $\varepsilon_i(1, -\beta') \leq N - 2$ for all i > n, we have

A note on $(-\beta)$ -shifts...

$$\begin{aligned} |\varphi(\beta) - \varphi(\beta')| \\ &= \left| \left(\frac{\varepsilon_{n+1}(1, -\beta)}{N^n} + \frac{\varepsilon_{n+2}(1, -\beta)}{N^{n+1}} + \cdots \right) - \left(\frac{\varepsilon_{n+1}(1, -\beta')}{N^n} + \frac{\varepsilon_{n+2}(1, -\beta')}{N^{n+1}} + \cdots \right) \right| \\ &\leq \sum_{k \ge n} \frac{N-2}{N^k} - \sum_{k \ge n} \frac{1}{N^k} \le N^{-n+1}. \end{aligned}$$

Now, we are in a position to prove Lemma 3.3.

PROOF OF LEMMA 3.3. Assume that $\beta, \beta' \in E_N, \beta < \beta'$ and (3.4) holds. Let $\epsilon_i = \varepsilon_i(1, -\beta)$ for $1 \le i \le n$. We define the polynomials

$$P_1(x) = -x + \epsilon_1, P_k(x) = -xP_{k-1}(x) + \epsilon_k$$

for any $2 \leq k \leq n$. Then

$$T^{k}_{-\beta}(1) = P_{k}(\beta), \quad T^{k}_{-\beta'}(1) = P_{k}(\beta')$$

for any $1 \le k \le n$. It follows from [17, Remark 1] that

$$(-1)^n P'_n(x) = x^{n-1} \left(1 + \sum_{j=1}^{n-1} \frac{P_j(x)}{(-x)^j} \right),$$

and $P_j(x) \in [0,1]$ for any $1 \le j \le n-1$ and any $x \in (\beta, \beta')$. So,

$$0 < (-1)^n P'_n(x) < \frac{x^{n+1}}{x^2 - 1}$$

for any $x \in (\beta, \beta') \subset [N-1, N]$. Thus,

$$|T_{-\beta}^{n}(1) - T_{-\beta'}^{n}(1)| < |\beta - \beta'| \frac{\zeta^{n+1}}{\zeta^{2} - 1}$$

for some $\zeta \in (\beta, \beta')$, hence

$$|\beta - \beta'| > |T^n_{-\beta}(1) - T^n_{-\beta'}(1)| \frac{N^2 - 1}{N^{n+1}}$$
(3.5)

for $n \ge 1$. Let

$$\begin{split} \Delta_N(x,y) \\ &= \min\left\{ \left(\frac{2}{x} - \sum_{k=1}^{\infty} \frac{N-2}{x^{2k}} + \sum_{k=1}^{\infty} \frac{1}{x^{2k+1}}\right) - \left(\frac{1}{y} - \sum_{k=1}^{\infty} \frac{1}{y^{2k}} + \sum_{k=1}^{\infty} \frac{N-2}{y^{2k+1}}\right), \\ &\left(\frac{N-2}{y} - \sum_{k=1}^{\infty} \frac{N-2}{y^{2k}} + \sum_{k=1}^{\infty} \frac{1}{y^{2k+1}}\right) - \left(\frac{N-3}{x} - \sum_{k=1}^{\infty} \frac{1}{x^{2k}} + \sum_{k=1}^{\infty} \frac{N-2}{x^{2k+1}}\right) \right\} \end{split}$$

for $x, y \in [N - 1, N]$. Since

$$\Delta_N(x,x) = \frac{1}{x} - \sum_{k=2}^{\infty} \frac{N-3}{x^k} = \frac{1}{x} \left(1 - \frac{N-3}{x-1}\right) \ge \frac{1}{N} \left(1 - \frac{N-3}{N-2}\right) = \frac{1}{N(N-2)}$$

for $x \in [N-1,N]$ and Δ_N is continuous, there exist C(N) > 0 and $\delta(N) > 0$ such that

$$\Delta_N(\beta, \beta') \ge C(N) \tag{3.6}$$

if $0 < |\beta - \beta'| \le \delta(N)$. By the definition of $(-\beta)$ -transformation, we have

$$T^{n}_{-\beta}(1) = \sum_{i=1}^{\infty} \frac{\varepsilon_{n+i}(1,-\beta)}{\beta^{i}}, \quad T^{n}_{-\beta'}(1) = \sum_{i=1}^{\infty} \frac{\varepsilon_{n+i}(1,-\beta')}{\beta'^{i}}.$$

Note that

$$|T^n_{-\beta}(1) - T^n_{-\beta'}(1)| \ge \Delta_N(\beta, \beta') \tag{3.7}$$

for any $\beta, \beta' \in E_N$ with $0 < \beta' - \beta < \delta(N)$. By (3.5), (3.6) and (3.7), we have

$$|\beta - \beta'| \ge C_1(N)N^{-n}$$

for a constant $C_1(N)$ and any $\beta, \beta' \in E_N$ with $0 < |\beta' - \beta| \le \delta(N)$. Together with Lemma 3.5, this proves the lemma.

ACKNOWLEDGEMENTS. The authors thank the referee for the detailed comments which improved the presentation and the proof of the paper.

References

- M. BARNSLEY, W. STEINER and A. VINCE, Critical itineraries of maps with constant slope and one discontinuity, Math. Proc. Cambridge Philos. Soc. 157 (2014), 547–565.
- [2] A. BERTRAND-MATHIS, Développement en base θ , répartition modulo un de la suite $(x\theta^n)$, $n \ge 0$; langages codés et θ -shift, Bull. Soc. Math. France **114** (1986), 271–323.
- [3] F. BLANCHARD, β-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989), 131–141.
- [4] R. BOWEN, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397.
- [5] J. BUZZI, Specification on the interval, Trans. Amer. Math. Soc. 349 (1997), 2737–2754.
- [6] K. DAJANI and C. KALLE, Transformations generating negative β-expansions, Integers 11B (2011), 18 pp.
- [7] K. DAJANI and S. D. RAMAWADH, Symbolic dynamics of (-β)-expansions, J. Integer Seq. 15 (2012), Article 12.2.6, 21 pp.

A note on $(-\beta)$ -shifts...

131

- [8] D. DOMBEK, Z. MASÁKOVÁ and E. PELANTOVÁ, Number representation using generalized (-β)-transformation, *Theoret. Comput. Sci.* 412 (2011), 6653–6665.
- K. FALCONER, Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Hoboken, NJ, 2003.
- [10] CH. FROUGNY and A. C. LAI, On negative bases, In: Developments in Language Theory, Lecture Notes in Computer Science, Vol. 5583, Springer, Berlin, 2009, 252–263.
- [11] P. GÓRA, Invariant densities for generalized β-maps, Ergodic Theory Dynam. Systems 27 (2007), 1583–1598.
- [12] S. ITO and T. SADAHIRO, Beta-expansions with negative bases, Integers 9 (2009), 239–259.
- [13] L. LIAO and W. STEINER, Dynamical properties of the negative beta-transformation, Ergodic Theory Dynam. Systems 32 (2012), 1673–1690.
- [14] W. PARRY, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hungar. **11** (1960), 401–416.
- [15] A. RÉNYI, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477–493.
- [16] J. SCHMELING, Symbolic dynamics for β -shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997), 675–694.
- [17] W. STEINER, Digital expansions with negative real bases, Acta Math. Hungar. 139 (2013), 106–119.

HUI HU SCHOOL OF MATHEMATICS AND INFORMATION SCIENCE NANCHANG HANGKONG UNIVERSITY NANCHANG 330063 CHINA

E-mail: hh5503@126.com

ZHIHUI LI SCHOOL OF MATHEMATICS AND STATISTICS WUHAN UNIVERSITY WUHAN 430072 CHINA

E-mail: huizhili123456@126.com

YUELI YU SCHOOL OF MATHEMATICS AND STATISTICS WUHAN UNIVERSITY WUHAN 430072 CHINA

E-mail: yuyueli@whu.edu.cn

(Received April 25, 2016; revised November 2, 2016)