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A note on (−β)-shifts with the specification property

By HUI HU (Nanchang), ZHIHUI LI (Wuhan) and YUELI YU (Wuhan)

Abstract. We consider expansions with negative real bases and associated dy-

namical systems. It is proved that the set of β for which the associated (−β)-shift has

the specification property is of full Hausdorff dimension.

1. Introduction

The β-expansions of real numbers induced by the β-transformation Tβ were

introduced by Rényi [15]. Many combinatorial properties of β-expansions were

subsequently obtained by Parry [14]. Since then, the link between the β-expan-

sion of 1 and the associated β-shift Sβ has been well investigated. Parry [14]

proved that Sβ is a subshift of finite type if and only if the β-expansion of 1

is finite. Bertrand-Mathis [2] obtained the necessary and sufficient conditions

under which Sβ is sofic and has the specification property, respectively (see [3] for

more details on the classification of β-shifts). The size of the set of β for which

the β-shift belongs to some classes was determined by Schmeling [16].

In this note, we consider expansions with negative real bases and associ-

ated dynamical systems, i.e., (−β)-expansions and (−β)-transformations, β > 1.

The expansions with negative non-integer bases were first introduced by Ito and
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Sadahiro [12], with the map f−β defined on the interval [− β
β+1 ,

1
β+1 ) as follows:

f−β(x) = −βx−
⌊
−βx+

β

β + 1

⌋
,

where bξc denotes the largest integer no more than ξ. For the sake of comparing

with the β-transformation, we define the (−β)-transformation T−β on (0, 1] by

T−β(x) = −βx+ bβxc+ 1, (1.1)

following [13]. It was pointed out in [13] that T−β is conjugate to f−β by a

linear map. Similar to the β-shift for β-expansions, the (−β)-shift was defined

in [12] (see details in Section 2 below). Frougny and Lai in [10], and Ito and

Sadahiro in [12] obtained the necessary and sufficient conditions under which the

(−β)-shift is a subshift of finite type and sofic, respectively. By [5, Theorem 1.5],

the set of β for which the (−β)-shift has the specification property is of Lebesgue

measure 0. Schmeling [16] obtained the Hausdorff dimension of the set of β for

which the β-shift has the specification property (see Section 2 for the definition

of the specification property). A natural question is to determine the Hausdorff

dimension of the similar set of β for the (−β)-shift. It was proved by Liao and

Steiner [13] that the (−β)-shift is not transitive, and hence does not have the

specification property for any 1 < β <
√
5+1
2 , which is different from the β-shift.

The main result of this note is the following.

Theorem 1.1. The set of β > 1 for which the (−β)-shift has the specification

property is of full Hausdorff dimension.

For more dynamical properties of the (−β)-shift, the reader is referred to [10],

[11], [12], [13] and the references therein. For more results on the classification

of β-shifts and the size of related sets, see [3] and [16], respectively. See [1], [17]

for combinatorial properties of the (−β)-expansions of the critical point. See

[6], [7], [8] for other kinds of dynamical systems about expansions with negative

bases. The paper is organized as follows. We shall introduce some definitions

and properties of (−β)-expansions and (−β)-shifts in the next section. The main

theorem will be proved by constructing a suitable Cantor set in the last section.

2. Preliminary

Let us recall the definitions and some properties of (−β)-expansions and

(−β)-shifts. Let β > 1 be a real number, and T−β be the (−β)-transformation
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defined on (0, 1] by (1.1). Then each x ∈ (0, 1] can be expressed as the following

series induced by T−β :

x =
ε1(x,−β)

β
− ε2(x,−β)

β2
+ · · ·+ (−1)n−1

εn(x,−β)

βn
+ · · · ,

where εn(x,−β) = bβTn−1−β (x)c + 1 is called the n-th digit of x with base (−β).

The infinite word

ε1(x,−β)ε2(x,−β) · · · εn(x,−β) · · · ∈ {1, 2, . . . , bβc+ 1}N

is called the (−β)-expansion of x. Let

ΣN
β = {1, 2, . . . , bβc+ 1}N,

and let ΣN
β be endowed with the usual product topology, and σ be the shift on

ΣN
β , i.e.,

σ(ε1ε2 · · · ) = ε2ε3 · · ·

for any ε1ε2 · · · ∈ ΣN
β . Then the closure of the set of (−β)-expansions of all

x ∈ (0, 1] is defined to be the (−β)-shift S−β , which is a subshift of ΣN
β . The

alternating lexicographic order ≺ on ΣN
β is defined as follows:

ε1ε2 · · · εn · · · ≺ ε′1ε′2 · · · ε′n · · ·

if there exists an integer k ≥ 1 such that εj = ε′j for all 1 ≤ j < k and (−1)k(εk −
ε′k) > 0. It was proved by Ito and Sadahiro [12] that

S−β={ε1ε2 · · · ∈ ΣN
β : σn(ε1ε2 · · · )�ε1(1,−β)ε2(1,−β) · · · for all n≥0} (2.1)

if the (−β)-expansion of 1 is not periodic with odd period. The subshift S−β
was also characterized when the (−β)-expansion of 1 is periodic with odd period

in [12], but we shall not use it in this paper. By [12], when the (−β)-expansion

of 1 is not periodic with odd period, an infinite word ε1ε2 · · · ∈ ΣN
β is the (−β)-

expansion of some x ∈ (0, 1] if and only if

1ε1(1,−β)ε2(1,−β) · · · ≺ σn(ε1ε2 · · · ) � ε1(1,−β)ε2(1,−β) · · · (2.2)

for all n ≥ 0.

Let F (S−β) be the set of factors of elements in S−β , i.e., the set of finite

words which appear in elements in S−β . The (−β)-shift S−β has the specification

property if there exists an integer k ≥ 1 such that for any u, v ∈ F (S−β), we have

uwv ∈ F (S−β)
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for some word w ∈ F (S−β) of length k, following [3]. For the definition of the

specification property on general dynamical systems, see Bowen [4].

Let φ be the morphism of words with the alphabet set {1, 2} defined by

φ(2) = 211, φ(1) = 2. For two finite words u and v, we denote by {u, v}∞ the

set of all infinite words which are composed by all the possible concatenations

of u and v. For a finite word u, we denote by u the infinite word uu · · · . The

characterization of the (−β)-expansion of 1 was obtained by Steiner [17] as

follows.

Lemma 2.1 ([17, Theorem 2]). Let ε1, ε2, . . . be a sequence of non-negative

integers. Then ε1ε2 · · · is the (−β)-expansion of 1 for some (unique) β > 1 if and

only if the following hold:

(1) εkεk+1 · · · � ε1ε2 · · · for all k > 2;

(2) ε1ε2 · · · � w1w2 · · · := lim
n→∞

φn(2) = 211222112112112221122 · · · ;

(3) ε1ε2 · · · /∈ {ε1 · · · εk, ε1 · · · εk−1(εk − 1)1}∞ \ {ε1 · · · εk} for all k ≥ 1 with

ε1 · · · εk � w1w2 · · · ;
(4) ε1ε2 · · · /∈ {ε1 · · · εk1, ε1 · · · εk−1(εk+1)}∞ for all k ≥ 1 with ε1 · · · εk−1(εk + 1)

� w1w2 · · · .

Similar to β-expansions of 1, the following relation about the alternating

lexicographic order of words and the usual order of real numbers was obtained by

Steiner [17].

Lemma 2.2 ([17, Theorem 3]). Let β, β′ > 1 be two real numbers. Then

ε1(1,−β)ε2(1,−β) · · · ≺ ε1(1,−β′)ε2(1,−β′) · · ·

if and only if β < β′.

3. Proofs

In the rest part of this paper, we always let N be an integer with N ≥ 4.

First, we shall show that a family of infinite words are (−β)-expansions of 1.

Lemma 3.1. Let ε1ε2 · · · ∈ {1, 2, . . . , N}N be an infinite word with ε1 = N

and 1 ≤ εi ≤ N − 2 for i ≥ 2. Then ε1ε2 · · · is the (−β)-expansion of 1 for some

(unique) β > 1.

Proof. Since ε1 = N ≥ 4 and εi ≤ N − 2 for all i ≥ 2, the four conditions

in Lemma 2.1 are satisfied immediately. �
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Let

EN = {β > 1 : ε1(1,−β) = N, 1 ≤ εi(1,−β) ≤ N − 2 for all i ≥ 2} . (3.1)

Note that by the definition of the (−β)-expansion, the (−β)-expansions of 1 for

β = N − 1 and β = N are N and N + 1, respectively. Thus, by Lemma 2.2,

EN ⊆ [N − 1, N ]. Define the map ϕ : EN → (0, 1) by

ϕ(β) =
∞∑
k=1

εk+1(1,−β)

Nk
.

By Lemma 3.1, ϕ(EN ) consists of the points whose N -ary expansions contain

only the digits 1, 2, . . . , N − 2. By [9, Theorem 9.3],

dimH ϕ(EN ) = log(N − 2)/ logN, (3.2)

where dimH denotes the Hausdorff dimension.

Next, we shall prove that for any β ∈ EN , the (−β)-shift has the specification

property. Buzzi [5, Proposition 2.1] established a criterion for the specification

property of a class of piecewise monotonic maps. By this criterion, one can deduce

the specification property of S−β for any β ∈ EN . However, we give a direct proof

here.

Lemma 3.2. Let β > 1 be a real number. If ε1(1,−β) = N and 1 ≤
εi(1,−β) ≤ N −2 for all i ≥ 2, then the (−β)-shift has the specification property.

Proof. For any u, v ∈ F (S−β), we shall prove that there exists w ∈ F (S−β)

of length 2 such that uwv ∈ F (S−β). Since S−β is a subshift and v ∈ F (S−β),

there exist integers δ1, δ2, . . . such that vδ1δ2 · · · ∈ S−β . By (2.1), it follows that

σk(vδ1δ2 · · · ) � ε1(1,−β)ε2(1,−β) · · · (3.3)

for all k ≥ 0. Now, we distinguish two cases.

Case 1. Any suffix of u is not a prefix of ε1(1,−β)ε2(1,−β) · · · . Let w = 11.

Combing the facts that ε1(1,−β) = N and (3.3), it follows that for all k ≥ 0,

σk(u11vδ1δ2 · · · ) � ε1(1,−β)ε2(1,−β) · · ·

in this case. Thus, uwvδ1δ2 · · · ∈ S−β and uwv ∈ F (S−β).

Case 2. There exists an integer m ≥ 1 such that the suffix of u with

length m is a prefix of ε1(1,−β)ε2(1,−β) · · · . If m is even, then we let w =

εm+1(1,−β)(N − 1). Combing the facts ε1(1,−β) = N , εi(1,−β) ≤ N − 2 for

i ≥ 2, we have uwvδ1δ2 · · · ∈ S−β and uwv ∈ F (S−β). If m is odd, then we let

w = (N − 1)1. Similarly, we have uwv ∈ F (S−β). �
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We should point out that in the proof of Lemma 3.2, w is defined independent

from v. As a result, for any β ∈ EN , the subshift S−β actually has the specification

property defined by Bowen [4].

In order to estimate the Hausdorff dimension of EN , we shall prove that ϕ is

locally Lipschitz.

Lemma 3.3. There exists a constant CN depending only on N such that

|ϕ(β)− ϕ(β′)| ≤ CN |β − β′|

for any β, β′ ∈ EN .

Then, we can prove Theorem 1.1 immediately by the following lemma, and

we shall postpone the proof of Lemma 3.3 to the last part of the note.

Lemma 3.4 ([9, Proposition 2.3]). Let F ⊂ Rn, and suppose that f : F →
Rm satisfies a Hölder condition

|f(x)− f(y)| ≤ c|x− y|α (x, y ∈ F ).

Then dimH f(F ) ≤ 1/α dimH F .

Proof of Theorem 1.1. By Lemmas 3.3, 3.4 and (3.2), we have

dimH EN ≥ dimH ϕ(EN ) = log(N − 2)/ logN.

Since N ≥ 4 is arbitrary, the conclusion follows. �

It remains to prove Lemma 3.3. From now on, we always let β, β′ ∈ EN ⊂
[N − 1, N ]. Then, there exists an integer n ≥ 1 such that

εi(1,−β) = εi(1,−β′), 1 ≤ i ≤ n, εn+1(1,−β) 6= εn+1(1,−β′). (3.4)

Now, we give the following upper bound estimate of |ϕ(β) − ϕ(β′)|. In the rest

part of the note, the integer n is always defined by (3.4).

Lemma 3.5. Let β, β′ ∈ EN and n be defined by (3.4). Then

|ϕ(β)− ϕ(β′)| ≤ N−n+1.

Proof. Since εi(1,−β) = εi(1,−β′) for 1 ≤ i ≤ n and 1 ≤ εi(1,−β),

εi(1,−β′) ≤ N − 2 for all i > n, we have
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|ϕ(β)− ϕ(β′)|

=

∣∣∣∣(εn+1(1,−β)

Nn
+
εn+2(1,−β)

Nn+1
+ · · ·

)
−
(
εn+1(1,−β′)

Nn
+
εn+2(1,−β′)

Nn+1
+ · · ·

)∣∣∣∣
≤
∑
k≥n

N − 2

Nk
−
∑
k≥n

1

Nk
≤ N−n+1. �

Now, we are in a position to prove Lemma 3.3.

Proof of Lemma 3.3. Assume that β, β′ ∈ EN , β < β′ and (3.4) holds.

Let εi = εi(1,−β) for 1 ≤ i ≤ n. We define the polynomials

P1(x) = −x+ ε1, Pk(x) = −xPk−1(x) + εk

for any 2 ≤ k ≤ n. Then

T k−β(1) = Pk(β), T k−β′(1) = Pk(β′)

for any 1 ≤ k ≤ n. It follows from [17, Remark 1] that

(−1)nP ′n(x) = xn−1

1 +

n−1∑
j=1

Pj(x)

(−x)j

 ,

and Pj(x) ∈ [0, 1] for any 1 ≤ j ≤ n− 1 and any x ∈ (β, β′). So,

0 < (−1)nP ′n(x) <
xn+1

x2 − 1

for any x ∈ (β, β′) ⊂ [N − 1, N ]. Thus,

|Tn−β(1)− Tn−β′(1)| < |β − β′| ζ
n+1

ζ2 − 1

for some ζ ∈ (β, β′), hence

|β − β′| > |Tn−β(1)− Tn−β′(1)|N
2 − 1

Nn+1
(3.5)

for n ≥ 1. Let

∆N (x, y)

= min

{(
2

x
−
∞∑
k=1

N − 2

x2k
+

∞∑
k=1

1

x2k+1

)
−

(
1

y
−
∞∑
k=1

1

y2k
+

∞∑
k=1

N − 2

y2k+1

)
,(

N − 2

y
−
∞∑
k=1

N − 2

y2k
+

∞∑
k=1

1

y2k+1

)
−

(
N − 3

x
−
∞∑
k=1

1

x2k
+

∞∑
k=1

N − 2

x2k+1

)}
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for x, y ∈ [N − 1, N ]. Since

∆N (x, x) =
1

x
−
∞∑
k=2

N − 3

xk
=

1

x
(1− N − 3

x− 1
) ≥ 1

N
(1− N − 3

N − 2
) =

1

N(N − 2)

for x ∈ [N − 1, N ] and ∆N is continuous, there exist C(N) > 0 and δ(N) > 0

such that

∆N (β, β′) ≥ C(N) (3.6)

if 0 < |β − β′| ≤ δ(N). By the definition of (−β)-transformation, we have

Tn−β(1) =

∞∑
i=1

εn+i(1,−β)

βi
, Tn−β′(1) =

∞∑
i=1

εn+i(1,−β′)
β′i

.

Note that

|Tn−β(1)− Tn−β′(1)| ≥ ∆N (β, β′) (3.7)

for any β, β′ ∈ EN with 0 < β′ − β < δ(N). By (3.5), (3.6) and (3.7), we have

|β − β′| ≥ C1(N)N−n

for a constant C1(N) and any β, β′ ∈ EN with 0 < |β′ − β| ≤ δ(N). Together

with Lemma 3.5, this proves the lemma. �
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n ≥ 0; langages codés et θ-shift, Bull. Soc. Math. France 114 (1986), 271–323.

[3] F. Blanchard, β-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989),

131–141.

[4] R. Bowen, Periodic points and measures for Axiom A diffeomorphisms, Trans. Amer.
Math. Soc. 154 (1971), 377–397.

[5] J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc. 349 (1997), 2737–2754.

[6] K. Dajani and C. Kalle, Transformations generating negative β-expansions, Integers 11B
(2011), 18 pp.

[7] K. Dajani and S. D. Ramawadh, Symbolic dynamics of (−β)-expansions, J. Integer Seq.
15 (2012), Article 12.2.6, 21 pp.



A note on (−β)-shifts. . . 131
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