An application of the transversality theorem

By CSABA VARGA (Cluj-Napoca)

Introduction: Let H be an infinite dimensional real Hilbert space and $L(H)$ the Banach space of the linear continuous maps $A: H \rightarrow H$.

We consider the following set:

$$
G L(H)=\left\{A \in L(H) \mid A \text { is bijective and } A^{-1} \in L(H)\right\}
$$

It is well-known that $G L(H)$ is an open set in $L(H)$ (see ([3], vol. 1, pp. 26), and the mapping $G L(X) \times G L(H) \rightarrow G L(H),(A, B) \rightarrow A B$, respectively $G L(H) \rightarrow G L(H), A \rightarrow A^{-1}$ are of the C^{∞}-class ([2], vol. 2, pp. 27). Consequently, $G L(H)$ is an infinite dimensional Lie group.

Now, we consider the following subsets of $L(H)$:

$$
\begin{aligned}
& S(H)=\left\{A \in L(H) \mid A=A^{*}\right\} \\
& A S(H)=\left\{A \in L(H) \mid A=-A^{*}\right\} \\
& G S(H)=\left\{A \in L(H) \mid A=A^{*}, A^{2}=1_{H}\right\} \\
& U(H)=\left\{A \in L(H) \mid A A^{*}=A^{*} A=1_{H}\right\}
\end{aligned}
$$

where $A^{*} \in L(H)$ is the adjoint operator of $A \in L(H), S(H)$ and $A S(H)$ represent the sets of symmetric respectively skew-symmetric operators in $L(H)$ and they are closed linear subspaces of $L(H)$. Moreover, $L(H)=$ $S(H) \oplus A S(H)$, where \oplus denotes the algebraic-topological sum. The set $U(H)$ is an infinite dimensional Lie group, called the unitary group of H.

Let M, N be two Banach manifolds, and $N_{1} \subset N$ a submanifold of N. Let $F: M \rightarrow N$ be a differentiable function. The function F is called transverval to N_{1} at $p \in M$ if either $q=F(p) \notin N_{1}$ or else the following two conditions hold:
i) $T_{p} F^{-1}\left(T_{q} N_{1}\right)$ splits $T_{p} M$;
ii) the image $T_{p} F\left(T_{p} M\right)$ contains a closed complement of $T_{q} N_{1}$ in $T_{q} N$.

Notation: $F \pitchfork_{p} N_{1}$. If $F \pitchfork_{p} N_{1}$ for all $p \in M$, then F is called transversal to N_{1}. Notation: $F \pitchfork N_{1}$.

In what follows we need the following
Transversality Theorem. Let N_{1} be a submanifold of N and F : $M \rightarrow N$ be transversal to N_{1}. If $M_{1}=F^{-1}\left(N_{1}\right) \neq \emptyset$, then M_{1} is a submanifold of M with codim $M_{1}=\operatorname{codim} N_{1}$ and $T_{p}\left(M_{1}\right)=T_{p} F^{-1}\left(T_{q} N_{1}\right)$ for $q=F(p)$.

For the proof and diverse applications and extensions of this result see ([1], §3.5) or ([4], Capitulos VI, VII).

Lemma 1. Let $A \in G L(H) \cap S(H)$. The following assertions are equivalent:

1. $\langle A x, x\rangle>0$ for each $x \in H \backslash\{0\}$.
2. There is a unique $B \in G L(H) \cap S(H)$ such that $\langle B x, x\rangle>0$ for each $x \in H \backslash\{0\}$ and $B^{2}=A$.
3. There exists a $C \in G L(H)$ such that $C^{*} C=A$.

Proof. 1) $\Longrightarrow 2)$: We consider the operator $B=A^{\frac{1}{2}}$, see ([2], vol.1, pp. 119) which satisfies 2).
$2) \Longrightarrow 3$): We set $C=B$ and observe that $C^{*}=C=B$.
The implication 3$) \Longrightarrow 1$) is obvious.
Lemma 2. For $A \in G L(H)$ consider the function $\psi_{A}: L(H) \rightarrow L(H)$, $\psi_{A}(X)=A X$. Then we have:

1) $\psi_{A} \in G L(L(H))$.
2) $L(H)=\psi_{A}(S(H)) \oplus \psi_{A}(A S(H))$.

Proof. 1) Evidently ψ_{A} is linear and bijective. If $X, Y \in L(H)$, then we have $\left\|\psi_{A}(X)-\psi_{A}(Y)\right\|=\|A X-A Y\|=\|A(X-Y)\| \leq\|A\|\|X-Y\|$, i.e. ψ_{A} is continuous. By the open mapping theorem we have that $\psi_{A} \in$ $G L(L(H))$.
2) The relation $L(H)=\psi_{A}(S(H)) \oplus \psi_{A}(A S(H))$ is a direct consequence of 1) and of the decomposition $L(H)=S(H) \oplus A S(H)$.

Lemma 3. Let $B \in G S(H)$ and $A \in L(H)$ be such that $A^{*} A=B$. Consider the function $\varphi_{A}: L(H) \rightarrow L(H), \varphi_{A}(X)=A^{*} X+X^{*} A$. Then we have:

$$
\begin{equation*}
\operatorname{Ker} \varphi_{A}=\varphi_{A B}(A S(H)) \tag{1}
\end{equation*}
$$

Proof. By Lemma 2, we have $L(H)=\psi_{A}(S(H)) \oplus \psi_{A}(A S(H))$, therefore for every $X \in L(H)$ there exists $C \in S(H), D \in A S(H)$, uniquely determined, such that $X=\psi_{A B}(C)+\psi_{A B}(D)=A B C+A B D$.

If $x \in \operatorname{Ker} \varphi_{A}$, we have $A^{*} X+X^{*} A=0$, and consequently $A^{*}(A B C+$ $A B D)+\left(C^{*} B^{*} A^{*}+D^{*} B^{*} A^{*}\right) A=0$. We obtain $C+D+C^{*}+D^{*}=0$. Since $C \in S(H), D \in A S(H)$, it follows that $C=0$, which proves the inclusion $\operatorname{Ker} \varphi_{A} \subset \psi_{A B}(A S(H))$. If $X \in \psi_{A B}(A S(H))$, there exists $Y \in$ $A S(H)$ such that $X=A B Y$. Then $\varphi_{A}(X)=A^{*} X+X^{*} A=A^{*} A B Y+$ $Y^{*} B^{*} A^{*} A=Y+Y^{*}=0$ and, in conclusion, $\psi_{A B}(A S(H))=\operatorname{Ker} \varphi_{A}$.

Now we consider the mapping $F: L(H) \rightarrow S(H), F(X)=X^{*} X$.
This mapping is of C^{∞}-class, and for each $A \in L(H)$ we have the relation:

$$
\begin{equation*}
\left(T_{A} F\right)(X)=A^{*} X+X^{*} A \tag{2}
\end{equation*}
$$

Consider now the submanifold $G S(H)$ of $S(H)$. If $B \in G S(H)$, then the tangent space to $G S(H)$ at B is the real subspace $T_{B}(G S(H))$ of $L(H)$ defined by

$$
T_{B}(G S(H))=\left\{X \in L(H) \mid X^{*}=X \text { and } B X=-X B\right\}
$$

Each element $B \in G S(H)$ determines a splitting of $S(H)$ as a direct sum $S(H)=T_{B}(G S(H)) \oplus N_{B}(G S(H))$, where $N_{B}(G S(H))=\{X \in S(H)) \mid$ $X B=B X\}$, see [5].

Theorem. The mapping $F: L(H) \rightarrow S(H), F(X)=X^{*} X$ is transversal to $G S(H)$, i.e. $F \pitchfork G S(H)$.

Proof. We have to verify the conditions i) and ii) from the definition of transversality.
i) We prove that $T_{A} F^{-1}\left(T_{B}(G S(H))\right)$ splits in $L(H)$ for every $A \in$ $L(H)$ and $B \in G S(H)$ such that $A^{*} A=B$. We have $T_{A} F(X)=A^{*} X+$ $X^{*} A$ for every $X \in L(H)$. But using Lemma 3 it follows that $\operatorname{Ker} T_{A} F=$ $\psi_{A B}(A S(H))$ and hence

$$
\begin{equation*}
L(H)=\operatorname{Ker} T_{A} F \oplus \psi_{A B}(S(H)) \tag{3}
\end{equation*}
$$

Therefore, for every $X \in L(H)$, there exist $X^{\prime} \in \operatorname{Ker} T_{A} F$ and $S \in$ $S(H)$ such that $X=X^{\prime}+A B S$, implying $\left(T_{A} F\right)(X)=T_{A} F(A B S)=$ $A^{*} A B S+S^{*} B^{*} A^{*} A=2 S$.

Hence
$T_{A} F^{-1}\left(T_{B}(G S(H))\right)=\left\{X=X^{\prime}+A B S \mid B T_{A} F(X)+T_{A} F(X) B\right\}=0=$ $\left\{X=X^{\prime}+A B S \mid B S+S B=0\right\}=\operatorname{Ker} T_{A} F \oplus \psi_{A B}\left(T_{B}(G S(H))\right.$.
But $S(H)=T_{B}(G S(H) \oplus\{X \in S(H) \mid B X=X B\}$, i.e.
$L(H)=\operatorname{Ker} T_{A} F \oplus \psi_{A B}\left(T_{B}(G S(H)) \oplus \psi_{A B}(\{X \in S(H) \mid B X=X B\})=\right.$ $T_{A} F^{-1}\left(T_{B}(G S(H))\right) \oplus \psi_{A B}(\{X \in S(H) \mid B X=X B\})$, and $T_{A} F^{-1}\left(T_{B}(G S(H))\right.$ splits in $L(H)$.
ii) The second condition is obvious, because $T_{A} F(L(H))=S(H)$.

Indeed, for every $X \in L(H)$ there exist $X^{\prime} \in \operatorname{Ker} T_{A} F, S \in S(H)$ such that $X=X^{\prime}+A B S$ and $\left(T_{A} F\right)(X)=2 S$.

Remark. Let $B \in G S(H)$ be a positively defined operator and consider the mapping $F: G L(H) \rightarrow S(H), F(X)=X^{*} X$. Then the fiber $f^{-1}(B)$ is a nonvoid submanifold of $G L(H)$, which is diffeomorphic to $U(H)$.

References

[1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis and Application, Springer-Verlag, 1988.
[2] M. Craioveanu and T. Ratiu, Elements of Local Analysis, Monografii Matematice 6,7 , vol. 1,2 , Universitatea Timişoara, 1976. (in Romanian)
[3] H. N. Kuiper, Varietés Hilbertiennes, Les Presses de l'Univ. de Montreal, 1971.
[4] R. J. Margalef and D. E. Outerelo, Topologia diferencial, Madrid, 1988.
[5] D. R. Wilkins, The Grassmann manifold of a C^{*}-algebra, Proceesings of the Royal Irish Academy, vol. 90 A No. 1, pp. 99-117.

```
CSABA VARGA
,,BABEŞ-BOLYAI" UNIVERSITY
CLUJ-NAPOCA
STR. M. KOGĂLNİCEANU. NR. 1.
```

(Received February 28, 1994)

