Publ. Math. Debrecen 46 / 1-2 (1995), 121–124

An application of the transversality theorem

By CSABA VARGA (Cluj-Napoca)

Introduction: Let H be an infinite dimensional real Hilbert space and L(H) the Banach space of the linear continuous maps $A: H \to H$.

We consider the following set:

$$GL(H) = \{A \in L(H) \mid A \text{ is bijective and } A^{-1} \in L(H)\}.$$

It is well-known that GL(H) is an open set in L(H) (see ([3], vol. 1, pp. 26), and the mapping $GL(X) \times GL(H) \to GL(H)$, $(A, B) \to AB$, respectively $GL(H) \to GL(H)$, $A \to A^{-1}$ are of the C^{∞} -class ([2], vol. 2, pp. 27). Consequently, GL(H) is an infinite dimensional Lie group.

Now, we consider the following subsets of L(H):

$$S(H) = \{A \in L(H) \mid A = A^*\};$$

$$AS(H) = \{A \in L(H) \mid A = -A^*\};$$

$$GS(H) = \{A \in L(H) \mid A = A^*, \ A^2 = 1_H\};$$

$$U(H) = \{A \in L(H) \mid AA^* = A^*A = 1_H\}.$$

where $A^* \in L(H)$ is the adjoint operator of $A \in L(H)$, S(H) and AS(H)represent the sets of symmetric respectively skew-symmetric operators in L(H) and they are closed linear subspaces of L(H). Moreover, L(H) = $S(H) \oplus AS(H)$, where \oplus denotes the algebraic-topological sum. The set U(H) is an infinite dimensional Lie group, called the unitary group of H.

Let M, N be two Banach manifolds, and $N_1 \subset N$ a submanifold of N. Let $F: M \to N$ be a differentiable function. The function F is called transverval to N_1 at $p \in M$ if either $q = F(p) \notin N_1$ or else the following two conditions hold:

- i) $T_p F^{-1}(T_q N_1)$ splits $T_p M$;
- ii) the image $T_pF(T_pM)$ contains a closed complement of T_qN_1 in T_qN .

Notation: $F \oplus_p N_1$. If $F \oplus_p N_1$ for all $p \in M$, then F is called transversal to N_1 . Notation: $F \oplus N_1$.

In what follows we need the following

Transversality Theorem. Let N_1 be a submanifold of N and F: $M \to N$ be transversal to N_1 . If $M_1 = F^{-1}(N_1) \neq \emptyset$, then M_1 is a submanifold of M with codim M_1 = codim N_1 and $T_p(M_1) = T_p F^{-1}(T_q N_1)$ for q = F(p).

For the proof and diverse applications and extensions of this result see $([1], \S 3.5)$ or ([4], Capitulos VI, VII).

Lemma 1. Let $A \in GL(H) \cap S(H)$. The following assertions are equivalent:

1. $\langle Ax, x \rangle > 0$ for each $x \in H \setminus \{0\}$.

2. There is a unique $B \in GL(H) \cap S(H)$ such that $\langle Bx, x \rangle > 0$ for each $x \in H \setminus \{0\}$ and $B^2 = A$.

3. There exists a $C \in GL(H)$ such that $C^*C = A$.

PROOF. 1) \implies 2): We consider the operator $B = A^{\frac{1}{2}}$, see ([2], vol.1, pp. 119) which satisfies 2).

2) \implies 3): We set C = B and observe that $C^* = C = B$.

The implication $3) \implies 1$ is obvious.

Lemma 2. For $A \in GL(H)$ consider the function $\psi_A : L(H) \to L(H)$, $\psi_A(X) = AX$. Then we have:

- 1) $\psi_A \in GL(L(H)).$
- 2) $L(H) = \psi_A(S(H)) \oplus \psi_A(AS(H)).$

PROOF. 1) Evidently ψ_A is linear and bijective. If $X, Y \in L(H)$, then we have $\|\psi_A(X) - \psi_A(Y)\| = \|AX - AY\| = \|A(X - Y)\| \le \|A\| \|X - Y\|$, i.e. ψ_A is continuous. By the open mapping theorem we have that $\psi_A \in GL(L(H))$.

2) The relation $L(H) = \psi_A(S(H)) \oplus \psi_A(AS(H))$ is a direct consequence of 1) and of the decomposition $L(H) = S(H) \oplus AS(H)$.

Lemma 3. Let $B \in GS(H)$ and $A \in L(H)$ be such that $A^*A = B$. Consider the function $\varphi_A : L(H) \to L(H), \ \varphi_A(X) = A^*X + X^*A$. Then we have:

(1)
$$\operatorname{Ker} \varphi_A = \varphi_{AB}(AS(H)).$$

PROOF. By Lemma 2, we have $L(H) = \psi_A(S(H)) \oplus \psi_A(AS(H))$, therefore for every $X \in L(H)$ there exists $C \in S(H)$, $D \in AS(H)$, uniquely determined, such that $X = \psi_{AB}(C) + \psi_{AB}(D) = ABC + ABD$.

122

If $x \in \operatorname{Ker} \varphi_A$, we have $A^*X + X^*A = 0$, and consequently $A^*(ABC + ABD) + (C^*B^*A^* + D^*B^*A^*)A = 0$. We obtain $C + D + C^* + D^* = 0$. Since $C \in S(H)$, $D \in AS(H)$, it follows that C = 0, which proves the inclusion $\operatorname{Ker} \varphi_A \subset \psi_{AB}(AS(H))$. If $X \in \psi_{AB}(AS(H))$, there exists $Y \in AS(H)$ such that X = ABY. Then $\varphi_A(X) = A^*X + X^*A = A^*ABY + Y^*B^*A^*A = Y + Y^* = 0$ and, in conclusion, $\psi_{AB}(AS(H)) = \operatorname{Ker} \varphi_A$.

Now we consider the mapping $F: L(H) \to S(H), F(X) = X^*X$.

This mapping is of C^{∞} -class, and for each $A \in L(H)$ we have the relation:

(2)
$$(T_A F)(X) = A^* X + X^* A.$$

Consider now the submanifold GS(H) of S(H). If $B \in GS(H)$, then the tangent space to GS(H) at B is the real subspace $T_B(GS(H))$ of L(H)defined by

$$T_B(GS(H)) = \{ X \in L(H) \mid X^* = X \text{ and } BX = -XB \}.$$

Each element $B \in GS(H)$ determines a splitting of S(H) as a direct sum $S(H) = T_B(GS(H)) \oplus N_B(GS(H))$, where $N_B(GS(H)) = \{X \in S(H)) \mid XB = BX\}$, see [5].

Theorem. The mapping $F : L(H) \to S(H)$, $F(X) = X^*X$ is transversal to GS(H), i.e. $F \pitchfork GS(H)$.

PROOF. We have to verify the conditions i) and ii) from the definition of transversality.

i) We prove that $T_A F^{-1}(T_B(GS(H)))$ splits in L(H) for every $A \in L(H)$ and $B \in GS(H)$ such that $A^*A = B$. We have $T_A F(X) = A^*X + X^*A$ for every $X \in L(H)$. But using Lemma 3 it follows that Ker $T_A F = \psi_{AB}(AS(H))$ and hence

(3)
$$L(H) = \operatorname{Ker} T_A F \oplus \psi_{AB}(S(H)).$$

Therefore, for every $X \in L(H)$, there exist $X' \in \text{Ker } T_A F$ and $S \in S(H)$ such that X = X' + ABS, implying $(T_A F)(X) = T_A F(ABS) = A^*ABS + S^*B^*A^*A = 2S$.

Hence $T_A F^{-1}(T_B(GS(H))) = \{X = X' + ABS | BT_A F(X) + T_A F(X)B\} = 0 =$ $\{X = X' + ABS | BS + SB = 0\} = \text{Ker } T_A F \oplus \psi_{AB}(T_B(GS(H))).$ But $S(H) = T_B(GS(H) \oplus \{X \in S(H) | BX = XB\}, \text{ i.e.}$ $L(H) = \text{Ker } T_A F \oplus \psi_{AB}(T_B(GS(H)) \oplus \psi_{AB}(\{X \in S(H) | BX = XB\})) =$ $T_A F^{-1}(T_B(GS(H))) \oplus \psi_{AB}(\{X \in S(H) | BX = XB\}), \text{ and}$ $T_A F^{-1}(T_B(GS(H))) \text{ splits in } L(H).$ ii) The second condition is obvious, because $T_A F(L(H)) = S(H)$.

Indeed, for every $X \in L(H)$ there exist $X' \in \text{Ker} T_A F$, $S \in S(H)$ such that X = X' + ABS and $(T_A F)(X) = 2S$.

Remark. Let $B \in GS(H)$ be a positively defined operator and consider the mapping $F : GL(H) \to S(H), F(X) = X^*X$. Then the fiber $f^{-1}(B)$ is a nonvoid submanifold of GL(H), which is diffeomorphic to U(H).

References

- R. ABRAHAM, J. E. MARSDEN and T. RATIU, Manifolds, Tensor Analysis and Application, Springer-Verlag, 1988.
- [2] M. CRAIOVEANU and T. RATIU, Elements of Local Analysis, Monografii Matematice 6,7, vol. 1,2, Universitatea Timişoara, 1976. (in Romanian)
- [3] H. N. KUIPER, Varietés Hilbertiennes, Les Presses de l'Univ. de Montreal, 1971.
- [4] R. J. MARGALEF and D. E. OUTERELO, Topologia diferencial, Madrid, 1988.
- [5] D. R. WILKINS, The Grassmann manifold of a C^* -algebra, Proceesings of the Royal Irish Academy, vol. 90 A No. 1 , pp. 99–117.

CSABA VARGA ,,BABEŞ-BOLYAI" UNIVERSITY CLUJ-NAPOCA STR. M. KOGĂLNICEANU. NR. 1.

(Received February 28, 1994)

124