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On Leibniz differences

By BRUCE EBANKS (Louisville)

Abstract. Cauchy differences, which are two-place functions of the form F(z,y) =
f(@) + f(y) — f(z + y), are characterized on abelian groups by means of the cocycle
functional equation together with symmetry. Here we introduce an analogous result for
functions of the form L(z,y) = yf(z) + zf(y) — f(zy) for functions L : K* — K where
K is a field of characteristic 0. Such functions are called Leibniz differences.

1. Introduction

In this article, we consider the question of how to characterize Leibniz differ-
ences on an integral domain R of characteristic 0. A Leibniz difference is a two-
place function L of the form

L(z,y) = yf(x) + xf(y) — f(zy)

for some function f : R — R. The reason for this terminology is that L = 0 if
and only if f satisfies the Leibniz rule for the derivative of a product. That is,
L measures how much f differs from being a solution of the Leibniz functional
equation f(zy) =zf(y) +yf(2).
A function L : R X R — R is symmetric if L(z,y) = L(y,«) for all 2,y € R.
The functional equation we use to characterize Leibniz differences is

L(zy, z) + zL(z,y) = L(z,yz) + ©L(y, z), =x,y,z € R. (1)
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Our motivation for using this functional equation comes from [4] (see also [3]),
where it was involved in a simplified proof of Sydler’s Theorem on polyhedra.

The main result of our paper is that the functional equation (1) paired with
symmetry essentially characterizes Leibniz differences on an integral domain R
of characteristic 0. To be precise, the solutions are Leibniz differences, although
the generating function f may take some of its values in the fraction field of R.
We give an example to show that the values of f need not all lie in R. As a
consequence, Leibniz differences on a field of characteristic 0 are characterized.
We also solve (1) without the symmetry condition.

Finally, we solve a Pexiderized version of (1) with four unknown functions.

The key to our results is the cocycle equation and its use in characterizing
Cauchy differences on commutative semigroups. If .S is a commutative semigroup
and H is an abelian group, the Cauchy difference of a function ¢ : S — H is the
mapping F': S x S — H defined by

F(z,y) == ¢(x) + o(y) —p(z +y), =y€eS.

(For discussions of these objects and their significance, see [2] and its references.
Cauchy differences are also known as coboundaries in homological algebra.) It is
easy to check that every Cauchy difference satisfies the cocycle functional equation

Flz,y)+ F(x+y,2) = F(z,y+2) + F(y,z), z,y,2€ 8. (2)

Under certain conditions on the semigroup S and group H, the converse is also
true for symmetric F'. Let us assume first that our semigroup S is cancellative,
that is, if ab = ac for some a, b,c € S with a # 0, then b = ¢. Second, we assume
that our group H is divisible, meaning that for any positive integer n and any
element y € H there exists an element x € H such that nz = y. A group has
2-torsion if 2z = 0 for some x # 0 in the group.

The main tool we use is the following result from [1] (cf. also [2]).

Proposition 1. Let S be a cancellative commutative semigroup, and H be
a divisible abelian group with no 2-torsion. The general solution F': S x S — H
of the cocycle equation (2) is

F(z,y) = ¢(x) + o(y) — d(x +y) + ¥(z,y), z,y€S,
foramap f: S — H and amap ¥ : S xS — H satisfying the system of equations

\IJ(may> = —\I/(y,x),
U(r+y,z) =¥(z,z2)+¥(y,2)

for all x,y,z € S.
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It follows that F' is a symmetric solution of the cocycle equation (2) if and
only if F' is a Cauchy difference.

The last displayed equation states that ¥ is a morphism in its first variable,
and by skew-symmetry (the first condition on W) it is also a morphism in its
second variable hence a bimorphism. Thus the proposition states that, under the
given conditions on .S and H, every cocycle is the sum of a Cauchy difference plus
a skew-symmetric bimorphism, and therefore every symmetric cocycle is a Cauchy
difference.

2. Characterization of Leibniz differences

For a ring R, let R* = R\ {0}. Our main result is the following.

Theorem 2. Let R be an integral domain of characteristic 0, and let K be
the fraction field of R. A function L : R x R — R is a symmetric solution of
equation (1) if and only if there exists a function f : R — K such that

L(z,y) = yf(z) +zf(y) — f(zy), z,y€R. (3)

PRrROOF. The “if” part is straightforward. For the “only if” part, we begin
by restricting z,y,z to R* in (1) and, working in K, divide equation (1) by zyz.
Defining F': R* x R* — K by

L(z,y)

Fy)==20 ayek, ()

the result is that F' is a symmetric solution of the cocycle equation (2) on R*
(into K).

Since R is an integral domain, the structure (R*,-) is a cancellative commu-
tative semigroup. Moreover, the additive group (K, +) is divisible, abelian, and
has no 2-torsion (in fact no torsion at all) since R has characteristic 0. By Propo-
sition 1, therefore, there exists a map ¢ : R* — K such that

Referring to the definition of F', we have

L(z,y) = zyo(x) + zyd(y) — zyo(xy), x,y € R™.
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Now, defining g : R* — K by g(z) = z¢(x), we arrive at

L(z,y) = yg(x) + 29(y) — g(zy), =,y € R". (5)

Finally, let us consider what happens when some of the variables in (1) are 0.
If x = 0, the equation reduces to

L(0,2) + 2L(0,y) = L(0,y2), y,z € R.
Since the right hand side is symmetric in y and z, we conclude that
L(0,2) + 2L(0,y) = L(0,yz) = L(0, zy) = L(0,y) + yL(0,2), wy,z € R,
or with z =0,
L(0,0)(1 —y) = L(0,y), ye€R.
Putting A = L(0,0), we have therefore
L(0,y) =A1-y), yeR (6)
Now put y = z =0 in (1) and use (6) to get
A1 —-=z)=L(z,0), z€R. (7)

By equations (5), (6) and (7), we have the desired form (8) for L, where the
function f: R — K is the extension of g defined by f(z) := g(x) for z € R* and
F(0) = .

This theorem has the following immediate consequence.
Corollary 3. Let K be a field of characteristic 0. A function L : K x K — K

is a symmetric solution of equation (1) if and only if there exists a function
f: K — K such that

L(z,y) = yf(z) +zf(y) — f(zy), =z,y€ K. (8)

The question remains whether the conclusion of Theorem 2 can be strength-
ened to state that the generator f takes its values in R rather than the field of
fractions of R. The next example shows that such a strengthening is not possible
in general.
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Ezxample. Define f : Z — %Z by

fRk+1):=1, keZ,  fdk):=0, keZ,

2k +1
2

fak +2) = . kez,

and define L on Z x Z by

L(z,y) =yf(z) +zf(y) — flay), =y€L
Clearly, the range of f is not contained in Z, since, for example, f(6) = % We
show nevertheless that L(z,y) always lies in the integral domain Z, by considering
three cases.

Case 1. Suppose = and y are odd. Then

L(z,y) = L(2k+1,2n+ 1)
=C2n+1)fRE+1)+2k+1)f2n+1) — f((2k+1)(2n+ 1))
=2n+1)+(2k+1)—-1€Z.

Case 2. Suppose one of x,y is even and the other is odd, say x = 2k,y =
2n + 1. Then

L(z,y) = L(2k,2n+ 1) = 2n+ 1) f(2k) + (2k) f(2n + 1) — f((2k)(2n + 1)).
We consider two sub-cases. If k = 2p, then we have
L(z,y) = L(4p,2n+ 1) = 4p € Z.
On the other hand, if £ = 2p + 1, then

L(z,y)=LM4p+2,2n+1)
=2n+1)f4p+2)+4p+2)f2n+1)— f((dp+2)(2n + 1))

SC AL A

=4dp+2€Z.
Case 3. Suppose = and y are even. Then

L(z,y) = L(2k,2n) = (2n) f(2k) + (2k) f(2n) — f(4kn)
= (2n)f(2k) + (2k) f(2n).
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We consider three sub-cases. If k = 2p, n = 2¢, then we have
L(z,y) = L(4p,4q) = 0 € Z.
If K =2p+ 1,n = 2¢, then
L(z,y) = L(4p + 2,4q) = (49)f(4p +2) + (4p + 2)f(49) = 2¢(2p + 1) € Z,

and a similar calculation works if k is even and n is odd. Finally, if k = 2p+1,n =
2q + 1, then

L(z,y) = L(4p +2,4q +2) = (4¢+2)f(4p +2) + (4p + 2) f(4q + 2)
=2(2¢q+1)(2p+1) €Z.

Therefore, L : Z X Z. — Z.

3. Extensions

Throughout this section, when referring to a bimorphism we always mean
a function that is in each variable a morphism with respect to multiplication in
the domain and addition in the range. That is, ¥ is a bimorphism if

U(zy,z) =¥(x,2) + U(y,z) and V(z,yz)=V(z,y)+ V(z,2)

for all specified values of x,y, z.
Our first extension deals with the solutions of equation (1) without assuming
symmetry.

Theorem 4. Let R be an integral domain of characteristic 0, and let K be
the fraction field of R. A function L : R x R — R satisfies equation (1) if and
only if there exists a function f : R — K and a function ¥ : R x R — K such
that

L(z,y) = yf(x) + xf(y) — foy) + 2y¥(z,y), w,y€R, (9)
where the restriction of ¥ to R* x R* is a skew-symmetric bimorphism.

PROOF. The proof follows the same outline as that of Theorem 2. The
first (and essentially the only) change is that the function F' defined by (4) is
not necessarily symmetric now. Applying Proposition 1, we have now a map
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¢ : R* —» K and a skew-symmetric bimorphism (with respect to multiplication
in R* and addition in K) ¥ : R* x R* — K such that

Retracing the steps in the proof of Theorem 2, we find that L has the form (9),
where ¥ is extended (arbitrarily) to (R x {0}) U ({0} x R).

We observe that the function ¥ cannot be extended to R x R in such a way
as to preserve the bimorphism property, unless ¥ is identically 0. ([

Finally, we consider the Pexiderized version of (1) with four unknown func-
tions.

Theorem 5. Let R be an integral domain of characteristic 0, and let K be
the fraction field of R. Functions L1, Lo, L3, Ly : RX R — R satisfy the functional
equation

L]_(l'y, Z) + ZL2($7y) = Lg(l', yz) + .Z'L4<y, Z), T,Y,% € R7 (10)

if and only if there exist functions f1, fa, f3, fa, f5, fe : R— K and ¥ : RxR — K
such that

Li(z,y) = yfo(z) + xfa(y) — filzy) + 2y¥(z,y),
La(z,y) = yfs(z) + xfo(y) — f2(zy) + 2y¥(z,y),
Ly(z,y) = yfs(x) + 2 f3(y) — filzy) + 2y¥(z,y),
La(z,y) = yfo(z) + fa(y) — f3(zy) + 2y¥(z,y),

for all x,y € R, where the restriction of ¥ to R* x R* is a skew-symmetric
bimorphism.

PRrROOF. The “if” part is a simple verification that we omit. For the “only
if” part, we begin by putting z = 1 in (10) to get

L4(y,Z) :Ll(y,z)Jrng(l,y)ng(l,yz), Y,z € R. (11)
Substituting this into (10) we have

Ll(xy7 Z) + ZLQ(xv y)
= Ls(z,y2) + z[L1(y, 2) + 2L2(1,y) — L3(1,y2)], =,y,z2 € R. (12)
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Putting z = 1 in this equation yields
L2($7y):L3($,y)+x[L1(y, 1)+L2(1,y)—Lg(l,y)]—L1(xy, 1)7 T,y € Rv (13)
which reduces (12) to
Ll(xyv Z) + Z[L3(I’7 y) - ‘TL3(15 y)] + IZLl(y7 1) - ZLl(Iya 1)
= Ls(z,yz) — xL3(1,yz) + xL1(y, 2). (14)
Next, setting y = 1 in (14) we get
Ls(z,z) —xLs3(1,2)
= Ly(z,2)+2z[Ls(x,1)—xL3(1,1)]+22zL1(1,1)—2L1(x,1)—2L1(1,2), (15)
and with this (14) simplifies to
Ll(myv Z) + Z[Ll(xv y) - xLl(la y)] + xZLl(yv 1) - ZLl(xyv 1)
= Ll (J},yZ) + J?[L1(y, Z) - Ll(Lyz)]a

for all z,y,z € R.
Defining L : R x R — R by

L(z,y) := Li(z,y) — xL1(Ly) —yLi(z,1), z,y € R,
the previous equation is exactly (1). By Theorem 4, therefore, L has the form
L(LL‘, y) = yfl(x) + xfl(y) - fl(wy) + xy\I/(m, y)7 T,y € Ra

for some function f; : R — K, with U as described above.
Referring to the definition of L, we find that Ly has the form asserted in the
theorem, where

fo(z) == fi(x) + L1(x, 1), fa(z) == fi(z) + L1(1,z), =€ R.
Next, returning to (15), we see that L3 has the asserted form with
fs(x) :== fi(z) + Ls(1,2) — xL3(1,1), f5(x) == fi(z) —xf1(1) + Ls(x,1).
With this, (13) yields the desired form for Lo if we define
fo(x) := fa() + La(L, ) — 2 f5(1).

Finally, the stated form for L, is obtained from (11), and this completes the
proof. O
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