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On Leibniz differences

By BRUCE EBANKS (Louisville)

Abstract. Cauchy differences, which are two-place functions of the form F (x, y) =

f(x) + f(y) − f(x + y), are characterized on abelian groups by means of the cocycle

functional equation together with symmetry. Here we introduce an analogous result for

functions of the form L(x, y) = yf(x) + xf(y)− f(xy) for functions L : K2 → K where

K is a field of characteristic 0. Such functions are called Leibniz differences.

1. Introduction

In this article, we consider the question of how to characterize Leibniz differ-

ences on an integral domain R of characteristic 0. A Leibniz difference is a two-

place function L of the form

L(x, y) = yf(x) + xf(y)− f(xy)

for some function f : R → R. The reason for this terminology is that L = 0 if

and only if f satisfies the Leibniz rule for the derivative of a product. That is,

L measures how much f differs from being a solution of the Leibniz functional

equation f(xy) = xf(y) + yf(x).

A function L : R×R→ R is symmetric if L(x, y) = L(y, x) for all x, y ∈ R.

The functional equation we use to characterize Leibniz differences is

L(xy, z) + zL(x, y) = L(x, yz) + xL(y, z), x, y, z ∈ R. (1)
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Our motivation for using this functional equation comes from [4] (see also [3]),

where it was involved in a simplified proof of Sydler’s Theorem on polyhedra.

The main result of our paper is that the functional equation (1) paired with

symmetry essentially characterizes Leibniz differences on an integral domain R

of characteristic 0. To be precise, the solutions are Leibniz differences, although

the generating function f may take some of its values in the fraction field of R.

We give an example to show that the values of f need not all lie in R. As a

consequence, Leibniz differences on a field of characteristic 0 are characterized.

We also solve (1) without the symmetry condition.

Finally, we solve a Pexiderized version of (1) with four unknown functions.

The key to our results is the cocycle equation and its use in characterizing

Cauchy differences on commutative semigroups. If S is a commutative semigroup

and H is an abelian group, the Cauchy difference of a function φ : S → H is the

mapping F : S × S → H defined by

F (x, y) := φ(x) + φ(y)− φ(x+ y), x, y ∈ S.

(For discussions of these objects and their significance, see [2] and its references.

Cauchy differences are also known as coboundaries in homological algebra.) It is

easy to check that every Cauchy difference satisfies the cocycle functional equation

F (x, y) + F (x+ y, z) = F (x, y + z) + F (y, z), x, y, z ∈ S. (2)

Under certain conditions on the semigroup S and group H, the converse is also

true for symmetric F . Let us assume first that our semigroup S is cancellative,

that is, if ab = ac for some a, b, c ∈ S with a 6= 0, then b = c. Second, we assume

that our group H is divisible, meaning that for any positive integer n and any

element y ∈ H there exists an element x ∈ H such that nx = y. A group has

2-torsion if 2x = 0 for some x 6= 0 in the group.

The main tool we use is the following result from [1] (cf. also [2]).

Proposition 1. Let S be a cancellative commutative semigroup, and H be

a divisible abelian group with no 2-torsion. The general solution F : S × S → H

of the cocycle equation (2) is

F (x, y) = φ(x) + φ(y)− φ(x+ y) + Ψ(x, y), x, y ∈ S,

for a map f : S → H and a map Ψ : S×S → H satisfying the system of equations

Ψ(x, y) = −Ψ(y, x),

Ψ(x+ y, z) = Ψ(x, z) + Ψ(y, z)

for all x, y, z ∈ S.
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It follows that F is a symmetric solution of the cocycle equation (2) if and

only if F is a Cauchy difference.

The last displayed equation states that Ψ is a morphism in its first variable,

and by skew-symmetry (the first condition on Ψ) it is also a morphism in its

second variable hence a bimorphism. Thus the proposition states that, under the

given conditions on S and H, every cocycle is the sum of a Cauchy difference plus

a skew-symmetric bimorphism, and therefore every symmetric cocycle is a Cauchy

difference.

2. Characterization of Leibniz differences

For a ring R, let R∗ = R \ {0}. Our main result is the following.

Theorem 2. Let R be an integral domain of characteristic 0, and let K be

the fraction field of R. A function L : R × R → R is a symmetric solution of

equation (1) if and only if there exists a function f : R→ K such that

L(x, y) = yf(x) + xf(y)− f(xy), x, y ∈ R. (3)

Proof. The “if” part is straightforward. For the “only if” part, we begin

by restricting x, y, z to R∗ in (1) and, working in K, divide equation (1) by xyz.

Defining F : R∗ ×R∗ → K by

F (x, y) :=
L(x, y)

xy
, x, y ∈ R∗, (4)

the result is that F is a symmetric solution of the cocycle equation (2) on R∗

(into K).

Since R is an integral domain, the structure (R∗, ·) is a cancellative commu-

tative semigroup. Moreover, the additive group (K,+) is divisible, abelian, and

has no 2-torsion (in fact no torsion at all) since R has characteristic 0. By Propo-

sition 1, therefore, there exists a map φ : R∗ → K such that

F (x, y) = φ(x) + φ(y)− φ(xy), x, y ∈ R∗.

Referring to the definition of F , we have

L(x, y) = xyφ(x) + xyφ(y)− xyφ(xy), x, y ∈ R∗.
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Now, defining g : R∗ → K by g(x) = xφ(x), we arrive at

L(x, y) = yg(x) + xg(y)− g(xy), x, y ∈ R∗. (5)

Finally, let us consider what happens when some of the variables in (1) are 0.

If x = 0, the equation reduces to

L(0, z) + zL(0, y) = L(0, yz), y, z ∈ R.

Since the right hand side is symmetric in y and z, we conclude that

L(0, z) + zL(0, y) = L(0, yz) = L(0, zy) = L(0, y) + yL(0, z), y, z ∈ R,

or with z = 0,

L(0, 0)(1− y) = L(0, y), y ∈ R.

Putting λ = L(0, 0), we have therefore

L(0, y) = λ(1− y), y ∈ R. (6)

Now put y = z = 0 in (1) and use (6) to get

λ(1− x) = L(x, 0), x ∈ R. (7)

By equations (5), (6) and (7), we have the desired form (8) for L, where the

function f : R→ K is the extension of g defined by f(x) := g(x) for x ∈ R∗ and

f(0) := −λ. �

This theorem has the following immediate consequence.

Corollary 3. Let K be a field of characteristic 0. A function L : K×K → K

is a symmetric solution of equation (1) if and only if there exists a function

f : K → K such that

L(x, y) = yf(x) + xf(y)− f(xy), x, y ∈ K. (8)

The question remains whether the conclusion of Theorem 2 can be strength-

ened to state that the generator f takes its values in R rather than the field of

fractions of R. The next example shows that such a strengthening is not possible

in general.
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Example. Define f : Z→ 1
2Z by

f(2k + 1) := 1, k ∈ Z, f(4k) := 0, k ∈ Z,

f(4k + 2) :=
2k + 1

2
, k ∈ Z,

and define L on Z× Z by

L(x, y) = yf(x) + xf(y)− f(xy), x, y ∈ Z.

Clearly, the range of f is not contained in Z, since, for example, f(6) = 3
2 . We

show nevertheless that L(x, y) always lies in the integral domain Z, by considering

three cases.

Case 1. Suppose x and y are odd. Then

L(x, y) = L(2k + 1, 2n+ 1)

= (2n+ 1)f(2k + 1) + (2k + 1)f(2n+ 1)− f((2k + 1)(2n+ 1))

= (2n+ 1) + (2k + 1)− 1 ∈ Z.

Case 2. Suppose one of x, y is even and the other is odd, say x = 2k, y =

2n+ 1. Then

L(x, y) = L(2k, 2n+ 1) = (2n+ 1)f(2k) + (2k)f(2n+ 1)− f((2k)(2n+ 1)).

We consider two sub-cases. If k = 2p, then we have

L(x, y) = L(4p, 2n+ 1) = 4p ∈ Z.

On the other hand, if k = 2p+ 1, then

L(x, y) = L(4p+ 2, 2n+ 1)

= (2n+ 1)f(4p+ 2) + (4p+ 2)f(2n+ 1)− f((4p+ 2)(2n+ 1))

= (2n+ 1)
2p+ 1

2
+ (4p+ 2)− (2p+ 1)(2n+ 1)

2
= 4p+ 2 ∈ Z.

Case 3. Suppose x and y are even. Then

L(x, y) = L(2k, 2n) = (2n)f(2k) + (2k)f(2n)− f(4kn)

= (2n)f(2k) + (2k)f(2n).



148 Bruce Ebanks

We consider three sub-cases. If k = 2p, n = 2q, then we have

L(x, y) = L(4p, 4q) = 0 ∈ Z.

If k = 2p+ 1, n = 2q, then

L(x, y) = L(4p+ 2, 4q) = (4q)f(4p+ 2) + (4p+ 2)f(4q) = 2q(2p+ 1) ∈ Z,

and a similar calculation works if k is even and n is odd. Finally, if k = 2p+1, n =

2q + 1, then

L(x, y) = L(4p+ 2, 4q + 2) = (4q + 2)f(4p+ 2) + (4p+ 2)f(4q + 2)

= 2(2q + 1)(2p+ 1) ∈ Z.

Therefore, L : Z× Z→ Z.

3. Extensions

Throughout this section, when referring to a bimorphism we always mean

a function that is in each variable a morphism with respect to multiplication in

the domain and addition in the range. That is, Ψ is a bimorphism if

Ψ(xy, z) = Ψ(x, z) + Ψ(y, z) and Ψ(x, yz) = Ψ(x, y) + Ψ(x, z)

for all specified values of x, y, z.

Our first extension deals with the solutions of equation (1) without assuming

symmetry.

Theorem 4. Let R be an integral domain of characteristic 0, and let K be

the fraction field of R. A function L : R × R → R satisfies equation (1) if and

only if there exists a function f : R → K and a function Ψ : R × R → K such

that

L(x, y) = yf(x) + xf(y)− f(xy) + xyΨ(x, y), x, y ∈ R, (9)

where the restriction of Ψ to R∗ ×R∗ is a skew-symmetric bimorphism.

Proof. The proof follows the same outline as that of Theorem 2. The

first (and essentially the only) change is that the function F defined by (4) is

not necessarily symmetric now. Applying Proposition 1, we have now a map
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φ : R∗ → K and a skew-symmetric bimorphism (with respect to multiplication

in R∗ and addition in K) Ψ : R∗ ×R∗ → K such that

F (x, y) = φ(x) + φ(y)− φ(xy) + Ψ(x, y), x, y ∈ R∗.

Retracing the steps in the proof of Theorem 2, we find that L has the form (9),

where Ψ is extended (arbitrarily) to (R× {0}) ∪ ({0} ×R).

We observe that the function Ψ cannot be extended to R×R in such a way

as to preserve the bimorphism property, unless Ψ is identically 0. �

Finally, we consider the Pexiderized version of (1) with four unknown func-

tions.

Theorem 5. Let R be an integral domain of characteristic 0, and let K be

the fraction field of R. Functions L1, L2, L3, L4 : R×R→ R satisfy the functional

equation

L1(xy, z) + zL2(x, y) = L3(x, yz) + xL4(y, z), x, y, z ∈ R, (10)

if and only if there exist functions f1, f2, f3, f4, f5, f6 : R→ K and Ψ : R×R→ K

such that

L1(x, y) = yf2(x) + xf4(y)− f1(xy) + xyΨ(x, y),

L2(x, y) = yf5(x) + xf6(y)− f2(xy) + xyΨ(x, y),

L3(x, y) = yf5(x) + xf3(y)− f1(xy) + xyΨ(x, y),

L4(x, y) = yf6(x) + xf4(y)− f3(xy) + xyΨ(x, y),

for all x, y ∈ R, where the restriction of Ψ to R∗ × R∗ is a skew-symmetric

bimorphism.

Proof. The “if” part is a simple verification that we omit. For the “only

if” part, we begin by putting x = 1 in (10) to get

L4(y, z) = L1(y, z) + zL2(1, y)− L3(1, yz), y, z ∈ R. (11)

Substituting this into (10) we have

L1(xy, z) + zL2(x, y)

= L3(x, yz) + x[L1(y, z) + zL2(1, y)− L3(1, yz)], x, y, z ∈ R. (12)
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Putting z = 1 in this equation yields

L2(x, y)=L3(x, y)+x[L1(y, 1)+L2(1, y)−L3(1, y)]−L1(xy, 1), x, y ∈ R, (13)

which reduces (12) to

L1(xy, z) + z[L3(x, y)− xL3(1, y)] + xzL1(y, 1)− zL1(xy, 1)

= L3(x, yz)− xL3(1, yz) + xL1(y, z). (14)

Next, setting y = 1 in (14) we get

L3(x, z)− xL3(1, z)

= L1(x, z)+z[L3(x, 1)−xL3(1, 1)]+xzL1(1, 1)−zL1(x, 1)−xL1(1, z), (15)

and with this (14) simplifies to

L1(xy, z) + z[L1(x, y)− xL1(1, y)] + xzL1(y, 1)− zL1(xy, 1)

= L1(x, yz) + x[L1(y, z)− L1(1, yz)],

for all x, y, z ∈ R.

Defining L : R×R→ R by

L(x, y) := L1(x, y)− xL1(1, y)− yL1(x, 1), x, y ∈ R,

the previous equation is exactly (1). By Theorem 4, therefore, L has the form

L(x, y) = yf1(x) + xf1(y)− f1(xy) + xyΨ(x, y), x, y ∈ R,

for some function f1 : R→ K, with Ψ as described above.

Referring to the definition of L, we find that L1 has the form asserted in the

theorem, where

f2(x) := f1(x) + L1(x, 1), f4(x) := f1(x) + L1(1, x), x ∈ R.

Next, returning to (15), we see that L3 has the asserted form with

f3(x) := f1(x) + L3(1, x)− xL3(1, 1), f5(x) := f1(x)− xf1(1) + L3(x, 1).

With this, (13) yields the desired form for L2 if we define

f6(x) := f2(x) + L2(1, x)− xf5(1).

Finally, the stated form for L4 is obtained from (11), and this completes the

proof. �
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