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Abstract. Modifying and generalizing some ideas from [1], we come to the notion

of a marginal joint of two arbitrary means given on adjacent intervals. The construction

of the joints makes use of the notion of a set-valued joiner. Also, the converse is proved:

any mean can be obtained as a marginal joint of its two restrictions, produced with

the use of a so-called reconstructing joiner having the smallest values in a sense. We

conclude the paper by answering the question when the reconstructing joiner of the

mean is a single-valued function.

1. Introduction

Let I be an interval of reals. A function M : I × I → I is called a mean on I

if

min{x, y} ≤M(x, y) ≤ max{x, y}
for all x, y ∈ I.

Take any interior point ξ of I, and put

Iξ := {x ∈ I : x ≤ ξ} , ξI := {x ∈ I : ξ ≤ x} (1)

and

I◦ξ := {x ∈ I : x < ξ} , ξI
◦ := {x ∈ I : ξ < x} . (2)
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Our main question is as follows.

Problem 1. Given two arbitrary means M and N on the intervals Iξ and ξI,

respectively, find a mean, say M⊕N , on the interval I such that

M⊕N |Iξ×Iξ = M and M⊕N |
ξI×ξI = N.

Any such mean M⊕N will be called a joint of M and N .

Observe that, given any mean K on I, the formula

(M⊕N) (x, y) =


M(x, y), if (x, y) ∈ Iξ × Iξ
K(x, y), if (x, y) ∈ I◦ξ × ξI

◦ ∪ ξI◦ × I◦ξ
N(x, y), if (x, y) ∈ ξI × ξI

defines a joint of M and N . However, its values taken in the set I◦ξ ×ξI◦∪ξI◦×I◦ξ
need not be connected with M and N at all. Such trivial joints will not be of

interest for us. In the sequel, we will focus on joints carrying information on the

means M and N .

In the paper [1], Z. Daróczy and the authors solved Problem 1, assuming

that the marginal functions h1, h2 : I → I, given by

h1(x) =

{
M(x, ξ), if x ∈ Iξ,
N(x, ξ), if x ∈ ξI,

(3)

h2(y) =

{
M(ξ, y), if y ∈ Iξ,
N(ξ, y), if y ∈ ξI,

(4)

are continuous and strictly increasing. Next, we solve Problem 1 for arbitrary

means.
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2. Joiners

The idea is to modify and generalize some ideas from [1]. The main tool

used there to produce joints M⊕N is the notion of the so-called joining function.

Now, we replace it by its set-valued analogue, called by us a joiner. Using it we

construct a set-valued joint with the selections being joints of the means M and N .

In what follows, we assume that:

• ξ is an interior point of an interval I;

• the intervals Iξ, ξI and I◦ξ ; ξI
◦ are defined by (1) and (2), respectively;

• M and N are means on Iξ and ξI, respectively;

• h1, h2 : I → I are the marginal functions given by (3) and (4), respectively.

Given any functions f : Iξ → Iξ and g : ξI → ξI satisfying f(ξ) = g(ξ), we

use the notation f ∪ g for the function mapping I into itself, defined by

(f ∪ g) (x) :=

{
f(x), if x ∈ Iξ,
g(x), if x ∈ ξI.

Moreover, we define the product h1 × h2 : I × I → I × I by the equality

(h1 × h2) (x, y) = (h1(x), h2(y)) .

ξIξ ξI

ξ

Iξ

ξI

(h1×h2)(I◦ξ×ξI
◦)−→

←−(h1×h2)(ξI
◦×I◦ξ )
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Definition 1. A multifunction

K : (h1 × h2)
(
I◦ξ × ξI

◦ ∪ ξI◦ × I◦ξ
)
→ 2I \ {∅}

is called a joiner of the pair (M,N) if(
h1|Iξ ∪ h2|ξI

)−1
(K (h1(x), h2(y))) ∩ [x, y] 6= ∅ for (x, y) ∈ I◦ξ × ξI

◦, (5)

and (
h2|Iξ ∪ h1|ξI

)−1
(K (h1(x), h2(y))) ∩ [y, x] 6= ∅ for (x, y) ∈ ξI

◦ × I◦ξ , (6)

or, equivalently, if for every (x, y) ∈ I◦ξ × ξI
◦ ∪ ξI◦× I◦ξ there is a κ(x, y) ∈ I such

that

min{x, y} ≤ κ(x, y) ≤ max{x, y},

and the function
(
h1|Iξ ∪ h2|ξI

)
◦ κ is a selection of K ◦ (h1 × h2).

Observe that if K1 is a joiner of the pair (M,N), then so is any K2 such that

K1(x, y) ⊂ K2(x, y)

for each (x, y) ∈ (h1 × h2) (I◦ξ × ξI
◦ ∪ ξI◦ × I◦ξ ).

The most trivial example of a joiner is the multifunctionK given byK(u, v) =

I : for any point (x, y) ∈ I◦ξ × ξI
◦ we have(

h1|Iξ ∪ h2|ξI
)−1

(K (h1(x), h2(y))) =
(
h1|Iξ ∪ h2|ξI

)−1
(I)

= h−11 (Iξ) ∪ h−12 (ξI) = Iξ ∪ ξI = I,

so condition (5) holds. Similarly, (6) follows directly.

Clearly, such a joiner is not of interest. It is evident that the main point is

to consider joiners and set-valued joints with relatively small values.

The following examples of joiners originated in fact in the paper [1].

Example 1. If the marginal functions h1, h2 : I → I are continuous and

strictly increasing, and

K(x, y) = h1(x) + h2(y)− ξ, (x, y) ∈ (h1 × h2)
(
I◦ξ × ξI

◦ ∪ ξI◦ × I◦ξ
)
,

then the formula

K(x, y) := {K(x, y)} (7)

defines a single-valued joiner of the pair (M,N) (cf. [1, Ex. 2.1]).
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Example 2. Let ϕ : Iξ → R and ψ : ξI → R be continuous strictly monotonic

functions vanishing at ξ, and let p, q ∈ (0, 1). Consider the quasi-arithmetic means

M = Aϕp and N = Aψq on the intervals Iξ and ξI, respectively:

M(x, y) = Aϕp (x, y) = ϕ−1 (pϕ(x) + (1− p)ϕ(y)) , x, y ∈ Iξ,

N(x, y) = Aψq (x, y) = ψ−1 (qψ(x) + (1− q)ψ(y)) , x, y ∈ ξI.

For any (x, y) ∈ (h1 × h2) (I◦ξ × ξI
◦), put

K(x, y) =

{
ϕ−1 (p (ϕ(x) + ψ(y))) , if ϕ(x) + ψ(y) < 0,

ψ−1 ((1− q) (ϕ(x) + ψ(y))) , if ϕ(x) + ψ(y) ≥ 0.

Similarly, having (x, y) ∈ (h1 × h2)
(
ξI
◦ × I◦ξ

)
, we put

K(x, y) =

{
ϕ−1 ((1− p) (ψ(x) + ϕ(y))) , if ψ(x) + ϕ(y) < 0,

ψ−1 (q (ψ(x) + ϕ(y))) , if ψ(x) + ϕ(y) ≥ 0.

Then K, defined by (7), is a joiner of the pair
(
Aϕp , A

ψ
q

)
(cf. [1, Ex. 2.2]).

More generally, one can easily check (see [1, p. 224]) that if

K : (h1 × h2) (Iξ × ξI ∪ ξI × Iξ)→ I

is any joining function for the pair (M,N) in the sense of the paper [1], and the

marginal functions h1, h2 : I → I are continuous and strictly increasing, then the

single-valued multifunction K, given on (h1 × h2) (I◦ξ × ξI
◦ ∪ ξI◦ × I◦ξ ) by (7), is

a joiner of the pair (M,N).

3. Marginal joints of means

The following result yields a pretty general procedure of joining two means.

Theorem 1. Let K be any joiner of the pair (M,N). Then the values of

the multifunction M⊕KN defined as
{M(x, y)} , if (x, y) ∈ Iξ × Iξ,(
h1|Iξ ∪ h2|ξI

)−1
(K (h1(x), h2(y))) ∩ [x, y] , if (x, y) ∈ I◦ξ × ξI

◦,(
h2|ξI ∪ h1|Iξ

)−1
(K (h1(x), h2(y))) ∩ [y, x] , if (x, y) ∈ ξI

◦ × I◦ξ ,
{N(x, y)} , if (x, y) ∈ ξI × ξI,

are non-empty, and every its selection is a mean on the interval I, extending both

the means M and N .
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Proof. It is enough to follow Definition 1. �

Definition 2. Any mean M ⊕K N constructed above is called a marginal

K-joint of the means M and N .

4. The converse problem

Now, we would like to answer the following question.

Can any mean L on the interval I be reconstructed as a K-joint M⊕KN of

the restricted means M := L|Iξ×Iξ and N := L|
ξI×ξI , with a suitable joiner K?

However, that question is not well-posed since it can be answered in the

following quite trivial way. Namely, if K is defined by K(x, y) = I, then the joint

M⊕KN is given by

(M⊕KN) (x, y) =


{L(x, y)} , if (x, y) ∈ Iξ × Iξ ∪ ξI × ξI,

[x, y] , if (x, y) ∈ I◦ξ × ξI
◦,

[y, x] , if (x, y) ∈ ξI
◦ × I◦ξ ,

and every its selection is a mean on I. Note that L is one of those selections. The

reason of that phenomenon is completely clear: the values of the used joiner are

too big. So, we will try to answer the following modified question.

Problem 2. Can any mean L on the interval I be reconstructed as a K-joint

M⊕KN of the restricted means M := L|Iξ×Iξ and N := L|
ξI×ξI , with a suitable

joiner K with relatively small values?

Fix a mean L on the interval I, and put

M := L|Iξ×Iξ and N := L|
ξI×ξI .

Define marginal functions h1, h2 : I → I by the formulas

h1(x) = L(x, ξ) and h2(y) = L(ξ, y),

respectively. Then

h1(x) =

{
M(x, ξ), if x ∈ Iξ,
N(x, ξ), if x ∈ ξI,

and

h2(x) =

{
M(ξ, y), if x ∈ Iξ,
N(ξ, y), if x ∈ ξI.
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The formula

(u, v) ∼ (x, y) :⇐⇒ h1(u) = h1(x) and h2(v) = h2(y)

defines an equivalence relation in the set I◦ξ × ξI◦∪ ξI◦×I◦ξ . Denoting by (x0,y0)

the equivalence class of the point (x0, y0) ∈ I◦ξ × ξI
◦ ∪ ξI◦ × I◦ξ , we have

(x0,y0)

=
{

(x, y) ∈ I◦ξ × ξI
◦ ∪ ξI◦ × I◦ξ : h1(x) = h1 (x0) and h2(y) = h2 (y0)

}
=
{

(x, y) ∈ I◦ξ × ξI
◦ ∪ ξI◦ × I◦ξ : (h1 × h2) (x, y) = (h1 (x0) , h2 (y0))

}
= (h1 × h2)

−1
({h1 (x0) , h2 (y0)}) ∩

(
I◦ξ × ξI

◦ ∪ ξI◦ × I◦ξ
)
.

This means that the equivalence class (x0,y0) is the level set of the point (h1 (x0) ,

h2 (y0)) under the product h1 × h2 restricted to I◦ξ × ξI
◦ ∪ ξI◦ × I◦ξ .

The next result gives a positive answer to the question posed in this section.

Theorem 2. Let K0 : (h1 × h2) (I◦ξ × ξI
◦ ∪ ξI◦× I◦ξ )→ 2I \ {∅} be given by

K0 (h1(x), h2(y)) =
(
h1|Iξ ∪ h2|ξI

)
(L ((x0,y0))) , (x, y) ∈ I◦ξ × ξI

◦, (8)

and

K0 (h1(x), h2(y)) =
(
h2|Iξ ∪ h1|ξI

)
(L ((x0,y0))) , (x, y) ∈ ξI

◦ × I◦ξ . (9)

Then

(i) K0 is a joiner of the pair
(
L|Iξ×Iξ , L|ξI×ξI

)
and satisfies the condition

L ((x0,y0)) ⊂
(
L|Iξ×Iξ⊕K0

L|
ξI×ξI

)
(x, y), (x, y) ∈ I◦ξ × ξI

◦ ∪ ξI◦ × I◦ξ ,

and

(ii) if K is a joiner of the pair
(
L|Iξ×Iξ , L|ξI×ξI

)
and satisfies

L ((x0,y0)) ⊂
(
L|Iξ×Iξ⊕K0L|ξI×ξI

)
(x, y), (x, y) ∈ I◦ξ × ξI

◦ ∪ ξI◦ × I◦ξ , (10)

then K0 ⊂ K, that is,

(i) the mean L can be reconstructed as a selection for the marginal K0-joint of

its restrictions L|Iξ×Iξ and L|
ξI×ξI ,

and

(ii) K0 is the smallest (in the sense of inclusion) joiner of the pair
(
L|Iξ×Iξ ,

L|
ξI×ξI

)
satisfying condition (10).
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Proof. (i) For every (x, y) ∈ I◦ξ × ξI
◦, we have

(
h1|Iξ ∪ h2|ξI

)−1 [(
h1|Iξ ∪ h2|ξI

)
(L((x0,y0)))

]
∩ [x, y]

⊃ L((x0,y0)) ∩ [x, y] 3 L(x, y).

Similarly, if (x, y) ∈ ξI
◦ × I◦ξ , then

(
h2|Iξ ∪ h1|ξI

)−1 [(
h2|Iξ ∪ h1|ξI

)
(L((x0,y0)))

]
∩ [y, x]

⊃ L((x0,y0)) ∩ [y, x] 3 L(x, y).

Thus K0 is a joiner of the pair
(
LIξ×Iξ , LξI×ξI

)
and(

LIξ×Iξ ⊕K0 LξI×ξI

)
⊃ L ((x0,y0)) ,

for each (x, y) ∈ I◦ξ × ξI
◦ ∪ ξI◦ × I◦ξ .

(ii) Take any joiner K of the pair
(
LIξ×Iξ , LξI×ξI

)
satisfying condition (10).

Then, for any (x, y) ∈ I◦ξ × ξI
◦, we have

K0 (h1(x), h2(y)) =
(
h1|Iξ ∪ h2|ξI

)
(L((x0,y0)))

⊂
(
h1|Iξ ∪ h2|ξI

) [(
LIξ×Iξ ⊕K LξI×ξI

)
(x, y)

]
=
(
h1|Iξ ∪ h2|ξI

) [(
h1|Iξ ∪ h2|ξI

)−1
(K (h1(x), h2(y))) ∩ [x, y]

]
⊂ K (h1(x), h2(y)) .

Repeating the calculation for an arbitrary point (x, y) ∈ ξI
◦× I◦ξ , we come to the

assertion. �

Definition 3. The multifunction K0, introduced in Theorem 2, is called ξ-

reconstructing joiner for the mean L.

5. Reconstructing joiner with singleton values

The following question arises naturally.

Problem 3. Is it possible that the reconstructing joiner is in fact a single-

valued function?

Below we give a full answer to this question, providing a simple characteri-

zation of means with single-valued reconstructing joiners.
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We say that a mean L preserves its ξ-margins if the equalities L (u1, ξ) =

L (u2, ξ) and L (ξ, v1) = L (ξ, v2) imply that

L (min{L (u1, v1) , ξ},max{L (u1, v1) , ξ})
= L (min{L (u2, v2) , ξ},max{L (u2, v2) , ξ})

for all (u1, v1) , (u2, v2) ∈ I◦ξ × ξI
◦, and

L (max{L (u1, v1) , ξ},min{L (u1, v1) , ξ})
= L (max{L (u2, v2) , ξ},min{L (u2, v2) , ξ})

for all (u1, v1) , (u2, v2) ∈ ξI
◦ × I◦ξ .

Remark 1. Observe that for symmetric means the above defining condition

becomes much simpler: the equalities L (u1, ξ) = L (u2, ξ) and L (v1, ξ) = L (v2, ξ)

imply that

L (L (u1, v1) , ξ) = L (L (u2, v2) , ξ)

for all (u1, v1) , (u2, v2) ∈ I◦ξ × ξI
◦ and (u1, v1) , (u2, v2) ∈ ξI

◦ × I◦ξ .

Remark 2. If the marginal functions L (·, ξ) and L (ξ, ·) are one-to-one, then

the mean L preserves its ξ-margins.

Example 3. Take I = R and ξ = 0, and put

L(x, y) = max{x, y}, x, y ∈ I.

Of course, the marginal function L(·, 0) is not one-to-one. Nevertheless, L pre-

serves its 0-margins. To see this, take any (u1, v1) , (u2, v2) ∈ I◦0 × 0I
◦ satisfying

L (u1, 0) = L (u2, 0) and L (v1, 0) = L (v2, 0). Then u1 < 0 < v1 and u2 < 0 < v2,

whence also L (u1, v1) = v1 and L (u2, v2) = v2. Therefore,

L (L (u1, v1) , 0) = L (v1, 0) = L (v2, 0) = L (L (u2, v2) , 0) .

A similar condition holds whenever (u1, v1) , (u2, v2) ∈ 0I
◦ × I◦0 . Thus, by Re-

mark 1, the mean L preserves its 0-margins.

Example 4. Of course, not every mean preserves its margins. To see this,

take ξ = 1 and define L as the contraharmonic mean on the interval (0,+∞) by

the equality

L(x, y) =
x2 + y2

x+ y
.
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Suppose that L preserves its 1-margins. As it is symmetric, we may use

Remark 1. Take an arbitrary v ∈ (1,+∞) and put u1 = 1
5 , u2 = 2

3 , v1 = v2 = v.

Then (u1, v1) , (u2, v2) ∈ I◦1 × 1I
◦,

L (u1, 1) = L

(
1

5
, 1

)
=

13

15
= L

(
2

3
, 1

)
= L (u2, 1) ,

and, of course, L (v1, 1) = L (v2, 1) = L (v, 1). Thus, by Remark 1,

L (L (u1, v) , 1) = L (L (u2, v) , 1) . (11)

Since

lim
v→∞

L(u, v) = lim
v→∞

u2 + v2

u+ v
= +∞, u ∈ (0,+∞),

we may choose v in such a way that L (u1, v) > 1 and L (u2, v) > 1. Then, as

the restriction of L(·, 1) to (1,+∞) is one-to-one, we have L (u1, v) = L (u2, v).

Taking into account that u1 = 1
5 and u2 = 2

3 , we see that

25v2 + 1

25v + 5
=

9v2 + 4

9v + 6
,

whence

15v2 − 13v − 2 = 0,

that is, v ∈
{
− 2

15 , 1
}

, a contradiction.

The main result of this section reads as follows.

Theorem 3. The ξ-reconstructing joiner of the mean L has only singletons

among the values if and only if L preserves its ξ-margins.

Proof. Assume that the reconstructing joiner K0 given by (8) and (9) is

single-valued. Take any points (u1, v1) , (u2, v2) ∈ I◦ξ × ξI
◦ satisfying L (u1, ξ) =

L (u2, ξ) and L (ξ, v1) = L (ξ, v2). Consider the following four possible cases:

(a) L (u1, u2) ≤ ξ and L (v1, v2) ≤ ξ;
(b) L (u1, u2) ≤ ξ < L (v1, v2);

(c) L (v1, v2) ≤ ξ < L (u1, u2);

(d) ξ < L (u1, u2) and ξ < L (v1, v2).
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According to (8), we have

K0 (h1(u1), h2(v1)) = h1 (L ((u1,v1)) ∩ Iξ) ∪ h2 (L ((u1,v1)) ∩ ξI◦) .

Therefore, as the above set is a singleton, we conclude that:

h1 (L (u1, v1)) = h1 (L (u2, v2)) ,

i.e. L (L (u1, v1) , ξ) = L (L (u2, v2) , ξ) in case (a),

h1 (L (u1, v1)) = h2 (L (u2, v2)) ,

i.e. L (L (u1, v1) , ξ) = L (ξ, L (u2, v2)) in case (b),

h2 (L (u1, v1)) = h1 (L (u2, v2)) ,

i.e. L (ξ, L (u1, v1)) = L (L (u2, v2) , ξ) in case (c),

h2 (L (u1, v1)) = h2 (L (u2, v2)) ,

i.e. L (ξ, L (u1, v1)) = L (ξ, L (u2, v2)) in case (d). In all cases (a)–(d), the ob-

tained equalities mean that

L (min{L (u1, v1) , ξ},max{L (u1, v1) , ξ})
= L (min{L (u2, v2) , ξ},max{L (u2, v2) , ξ}) .

A similar reasoning gives the second desired equality in the case when (u1, v1),

(u2, v2) ∈ ξI
◦ × I◦ξ . So L preserves its ξ-margins.

A careful analysis of the above proof shows that also the converse implication

holds true. �

Finally, we notice the following immediate consequence of Theorem 3 and

Remark 2.

Corollary 1. If the marginal functions L(·, ξ) and L(ξ, ·) are one-to-one,

then the ξ-reconstructing joiner of L is single-valued.
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