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A new characterization of Clifford torus

By FÁBIO R. DOS SANTOS (Paráıba), HENRIQUE F. DE LIMA (Paráıba)

and MARCO A. L. VELÁSQUEZ (Paráıba)

Abstract. We extend a previous sharp upper bound of the first strong stability

eigenvalue due to Aĺıas et al. [1], for the context of a closed submanifold immersed with

nonzero parallel mean curvature vector field in the Euclidean sphere, and through this

result, we obtain a new characterization for the Clifford torus.

1. Introduction

Given a closed submanifold Mn immersed in the unit Euclidean sphere Sn+p

with parallel mean curvature vector field h (which means that h is parallel as

a section of the normal bundle of Mn), its strong stability operator is defined by

J = −∆− |Φ|2 − n(1 +H2), (1)

where ∆ stands for the Laplacian operator on Mn, |Φ| denotes the length of the

traceless second fundamental Φ, and H = |h| is the mean curvature of Mn. We

observe that, when p = 1, J arises to the classical Jacobi operator established

in [2].

We note that J belongs to a class of operators which are usually referred

to as Schrödinger operators, that is, operators of the form ∆ + q, where q is

any continuous function on Mn. The first strong stability eigenvalue λJ1 of Mn is

defined as being the smallest real number λ which satisfies the equation Jf−λf =
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0 in Mn, for some nonzero f ∈ C∞(M). As it is well known, λJ1 has the following

min–max characterization:

λJ1 = inf


∫
M

fJf dM∫
M

f 2 dM

; f ∈ C∞(M), f 6= 0

 , (2)

where dM stands for the volume element with respect to the metric induced ofMn.

In his seminal work [9], Simons studied the first strong stability eigenvalue of

a minimal closed hypersurface Mn immersed in Sn+1. In this setting, he proved

that either λJ1 = −n, and Mn is a totally geodesic sphere, or λJ1 ≤ −2n, otherwise.

Later on, Wu in [10] characterized the equality λJ1 = −2n by showing that it holds

only for the minimal Clifford torus. Shortly thereafter, Perdomo [7] provides

a new proof of this spectral characterization by the value of λJ1 . Afterwards,

Aĺıas, Barros and Brasil Jr. [1] extended these results to the case of constant

mean curvature hypersurfaces in Sn+1, characterizing Clifford torus via the value

of λJ1 .

Proceeding with this picture, we obtain the following extension of the main

result of [1] for the context of higher codimension.

Theorem 1.1. Let Mn be a closed submanifold immersed in Sn+p, n ≥ 4,

with nonzero parallel mean curvature vector field. If the normalized scalar cur-

vature of Mn satisfies R ≥ 1, then

(i) either λJ1 = −n(1 +H2) (and Mn is totally umbilical),

(ii) or

λJ1 ≤ −2n(1 +H2) +
n(n− 2)√
n(n− 1)

H max
M
|Φ|.

Moreover, the equality occurs if and only if Mn is a Clifford torus Sn−1(r) ×
S1(
√

1− r2), with r2 ≤ n− 2

n
.

The proof of Theorem 1.1 is given in Section 3.

2. Some preliminaries and key lemmas

Let Mn be an n-dimensional connected submanifold immersed in a unit Eu-

clidean sphere Sn+p. Let {ωB} be the corresponding dual coframe, and {ωBC}
the connection 1-forms on Sn+p. We choose a local field of orthonormal frame

{e1, . . . , en+p} in Sn+p, with dual coframe {ω1, . . . , ωn+p}, such that, at each point
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of Mn, e1, . . . , en are tangent to Mn, and en+1, . . . , en+p are normal to Mn. We

will use the following convection for indices

1 ≤ A,B,C, . . . ≤ n+ p, 1 ≤ i, j, k, . . . ≤ n and n+ 1 ≤ α, β, γ, . . . n+ p.

With restricting on Mn, the second fundamental form A, the curvature ten-

sor R and the normal curvature tensor R⊥ of Mn are given by

ωiα =
∑
j

hαijωj , A =
∑
i,j,α

hαijωi ⊗ ωj ⊗ eα,

dωij =
∑
k

ωik ∧ ωkj −
1

2

∑
k,l

Rijklωk ∧ ωl,

dωαβ =
∑
γ

ωαγ ∧ ωγα −
1

2

∑
k,l

R⊥αβklωk ∧ ωl.

The Gauss equation is

Rijkl = (δikδjl − δilδjk) +
∑
α

(hαikh
α
jl − hαilhαjk).

In particular, the components of the Ricci tensor Rik and the normalized scalar

curvature R are given, respectively, by

Rik = (n− 1)δik + n
∑
α

Hαhαik −
∑
α,j

hαijh
α
jk (3)

and

R =
1

(n− 1)

∑
i

Rii. (4)

From (3) and (4), we get the following relation

n(n− 1)R = n(n− 1) + n2H2 − S, (5)

where S =
∑
α,i,j(h

α
ij)

2 is the squared norm of the second fundamental form,

and, being h =
∑
αH

αeα = 1
n

∑
α (
∑
k h

α
kk) eα the mean curvature vector field,

H = |h| is the mean curvature function of Mn.

The Ricci equation is given by

R⊥αβij =
∑
k

(hαikh
β
kj − h

α
jkh

β
ki). (6)
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From now on, we will deal with submanifolds Mn of Sn+p having nonzero

parallel mean curvature vector field, which means that the mean curvature func-

tion H is, in fact, a positive constant, and that the corresponding mean curvature

vector field h is parallel as a section of the normal bundle. In this context, we

can choose a local orthonormal frame {e1, . . . , en+p} such that en+1 =
h

H
. Thus,

Hn+1 =
1

n
tr(hn+1) = H and Hα =

1

n
tr(hα) = 0, α ≥ n+ 2. (7)

We will also consider the following symmetric tensor

Φ =
∑
α,i,j

Φαijωi ⊗ ωj ⊗ eα, (8)

where Φαij = hαij −Hαδij . Consequently, we have that

Φn+1
ij = hn+1

ij −Hδij and Φαij = hαij , n+ 2 ≤ α ≤ n+ p. (9)

Let |Φ|2 =
∑
α,i,j(Φ

α
ij)

2 be the square of the length of Φ. From (5), it is not

difficult to verify that Φ is traceless with

|Φ|2 = S − nH2. (10)

From [5, Lemma 4.1] we obtain the following Simons type formula:

Lemma 1. Let Mn be an n-dimensional (n ≥ 2) submanifold immersed

with nonzero parallel mean curvature vector field in the Euclidean sphere Sn+p.

Then, we have

1

2
∆|Φ|2 = |∇Φ|2+n|Φ|2+n

∑
β,i,j,k

Hhn+1
ij hβjkh

β
ki−

∑
i,j,k,l

(∑
α

hαijh
α
kl

)2

−
∑
i,j,α,β

(R⊥αβij)
2.

The next key lemma is due to Barros et al. (see [3, Lemma 1]).

Lemma 2. Let Mn be a Riemannian manifold isometrically immersed into

a Riemannian manifold Nn+p. Consider Ψ =
∑
α,i,j

Ψα
ijωi⊗ωj⊗eα a traceless sym-

metric tensor satisfying Codazzi equation. Then the following inequality holds:

|∇|Ψ|2|2 ≤ 4n

n+ 2
|Ψ|2|∇Ψ|2,

where |Ψ|2 =
∑
α,i,j

(Ψα
ij)

2 and |∇Ψ|2 =
∑
α,i,j,k

(Ψα
ijk)2. In particular, the conclusion

holds for the tensor Φ defined in (8).
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In order to prove Theorem 1.1, we will also need two algebraic lemmas. The

proof of them can be found in [8] and [6], respectively.

Lemma 3. Let B,C : Rn −→ Rn be symmetric linear maps such that

BC − CB = 0 and trB = trC = 0, then

− n− 2√
n(n− 1)

|B|2|C| ≤ tr(B2C) ≤ n− 2√
n(n− 1)

|B|2|C|.

Lemma 4. Let B1, B2, . . . , Bn be symmetric (n × n)-matrices. Set Sαβ =

tr(BαBβ), Sα = Sαα, S =
∑
α Sα, then

∑
α,β

|BαBβ −BβBα|2 +
∑
α,β

S2
αβ ≤

3

2

(∑
α

Sα

)2

.

3. Proof of Theorem 1.1

From Lemma 1 we have that

1

2
∆|Φ|2 = |∇Φ|2 + n|Φ|2 + n

∑
β,i,j,k

Hhn+1
ij hβjkh

β
ki

−
∑
i,j,k,l

(∑
α

hαijh
α
kl

)2

−
∑
i,j,α,β

(R⊥αβij)
2. (11)

From (7) and (9) we get

∑
i,j,k,β

Hhn+1
ij hβjkh

β
ki =

∑
i,j,k

Hhn+1
ij hn+1

jk hn+1
ki +

n+p∑
β=n+2

∑
i,j,k

Hhn+1
ij ΦβjkΦβki

= Htr(Φn+1+HI)3+

n+p∑
β=n+2

∑
i,j,k

HΦn+1
ij ΦβjkΦβki+

n+p∑
β=n+2

H2|Φβ |2

= Htr(Φn+1)3 + 3H2|Φn+1|2 + nH4 +

n+p∑
β=n+2

H2|Φβ |2

+

n+p∑
β=n+2

∑
i,j,k

HΦn+1
ij ΦβjkΦβki. (12)
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Since tr Φα = 0 and Φn+1Φβ−ΦβΦn+1 = 0, n+2 ≤ β ≤ n+p, from Lemma 3

we obtain

Htr(Φn+1)3 + 3H2|Φn+1|2 + nH4 +

n+p∑
β=n+2

H2|Φβ |2 +

n+p∑
β=n+2

∑
i,j,k

HΦn+1
ij ΦβjkΦβki

≥ − n− 2√
n(n− 1)

H|Φn+1|3 + 2H2|Φn+1|2 +H2|Φ|2 + nH4

− n− 2√
n(n− 1)

n+p∑
β=n+2

H|Φn+1||Φβ |2

= 2H2|Φn+1|2 +H2|Φ|2 + nH4 − n− 2√
n(n− 1)

H|Φn+1||Φ|2. (13)

Hence, from (12) and (13) we have∑
β,i,j,k

Hhn+1
ij hβjkh

β
ki ≥ 2H2|Φn+1|2+H2|Φ|2+nH4− n−2√

n(n−1)
H|Φn+1||Φ|2. (14)

From Ricci equation (6) we get

∑
i,j,k,l

(∑
α

hαijh
α
kl

)2

+
∑
α,β,i,j

(R⊥αβij)
2

=
∑
α,β

(tr(AαAβ))2 +
∑

α 6=n+1,β 6=n+1,i,j

(R⊥αβij)
2

= [tr(An+1An+1)]2 + 2
∑

β 6=n+1

[tr(An+1Aβ)]2

+
∑

α 6=n+1,β 6=n+1

|AαAβ −AβAα|2 +
∑

α6=n+1,β 6=n+1

(tr(AαAβ))2. (15)

But, using (9) and Lemma 4, we obtain

3

2

 ∑
β 6=n+1

|Φβ |

2

≥ 3

2

 ∑
β 6=n+1

tr(AβAα)

2

≥
∑

α 6=n+1,β 6=n+1

[tr(AαAβ)]2+
∑

α6=n+1,β 6=n+1

|AαAβ−AβAα|2. (16)

Hence, from (15) and (16) we have

∑
i,j,k,l

(∑
α

hαijh
α
kl

)2

+
∑
α,β,i,j

(R⊥
αβij)

2
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≤ [tr(An+1An+1)]2 + 2
∑

β 6=n+1

[tr(An+1Aβ)]2 +
3

2

 ∑
β 6=n+1

|Φβ |2
2

= |Φn+1|4 + 2nH2|Φn+1|2 + n2H4 + 2
∑

β 6=n+1

[tr(Φn+1Φβ)]2 +
3

2
(|Φ|2 − |Φn+1|2)2

≤ 5

2
|Φn+1|4+2nH2|Φn+1|2+n2H4+

3

2
|Φ|4+2|Φn+1|2(|Φ|2−|Φn+1|2)−3|Φ|2|Φn+1|2

=
1

2
|Φn+1|4 + 2nH2|Φn+1|2 + n2H4 − |Φ|2|Φn+1|2 +

3

2
|Φ|4. (17)

Therefore, from (11), (14) and (17) we get

1

2
∆|Φ|2

≥ n|Φ|2− n(n−2)√
n(n−1)

H|Φn+1||Φ|2+nH2|Φ|2− 1

2
|Φn+1|4+|Φ|2|Φn+1|2− 3

2
|Φ|4

= (|Φ| − |Φn+1|)

(
n(n− 2)√
n(n− 1)

H|Φ|2 − 1

2
(|Φ| − |Φn+1|)(|Φ|+ |Φn+1|)2

)

+ |Φ|2
(
−|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ|+ n(1 +H2)

)
. (18)

On the other hand, we note that the following algebraic inequality (3.5) of [4]

also holds:

(|Φ| − |Φn+1|)(|Φ|+ |Φn+1|)2 ≤ 32

27
|Φ|3. (19)

Moreover, since R ≥ 1, we use (5) and (10), in order to obtain

n2H2 = S + n(n− 1)(R− 1) ≥ S = |Φ|2 + nH2,

which gives us

H ≥ 1√
n(n− 1)

|Φ|. (20)

Thus, from (19) and (20) we conclude that

n(n− 2)√
n(n− 1)

H|Φ|2 − 1

2
(|Φ| − |Φn+1|)(|Φ|+ |Φn+1|)2 ≥

(
n− 2

n− 1
− 16

27

)
|Φ|3. (21)

But, taking into account our assumption that n ≥ 4, we have that

n− 2

n− 1
− 16

27
> 0. (22)
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Consequently, inserting (13), (21) and (22) in (18), we get that

1

2
∆|Φ|2 ≥ |∇Φ|2 − |Φ|2PH (|Φ|) + (|Φ| − |Φn+1|)

(
n− 2

n− 1
− 16

27

)
|Φ|3

≥ |∇Φ|2 − |Φ|2PH (|Φ|) , (23)

where

PH(x) = |Φ|2 +
n(n− 2)√
n(n− 1)

H|Φ| − n(1 +H2).

If Mn is totally umbilical, then |Φ|2 = 0 and J = −∆ − n(1 + H2), where

H is constant, so λJ1 = λ−∆
1 − n(1 + H2) = −n(1 + H2), whose corresponding

eigenfunctions are the constant functions. On the other hand, following the ideas

of [1], when Mn is not umbilical, for an arbitrary ε > 0, we consider the positive

smooth function fε ∈ C∞(M) given by

fε =
√
ε+ |Φ|2. (24)

With a straightforward computation, from (24) we have that

fε∆fε =
1

2
∆|Φ|2 − 1

4(ε+ |Φ|2)
|∇|Φ|2|2. (25)

Thus, from (25) and (23) we get

fε∆fε ≥ |∇Φ|2 − |Φ|2PH(|Φ|)− 1

4(ε+ |Φ|2)
|∇|Φ|2|2. (26)

Hence, applying Lemma 2 to Φ, from (26) we obtain

fε∆fε ≥ −|Φ|2PH(|Φ|) + |∇Φ|2 − n

(n+ 2)

|Φ|2

(ε+ |Φ|2)
|∇Φ|2

= −|Φ|2PH(|Φ|) +

(
1− n

(n+ 2)

|Φ|2

(ε+ |Φ|2)

)
|∇Φ|2

≥ −|Φ|2PH(|Φ|)+

(
1− n

n+2

)
|∇Φ|2 ≥ −|Φ|2PH(|Φ|)+

2

n+2
|∇Φ|2. (27)

Then, from (27) we have that

fεJ(fε)= −fε∆fε −
(
|Φ|2 + n(1 +H2)

)(
ε+ |Φ|2

)
≤ |Φ|2PH(|Φ|)− 2

n+ 2
|∇Φ|2−

(
ε+|Φ|2

)(
|Φ|2+n(1+H2)

)(
ε+|Φ|2

)
. (28)
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From (2) and (28) we obtain

λJ1

∫
M

f 2
ε dM = λJ1

∫
M

(
ε+ |Φ|2

)
dM ≤

∫
M

fεJ(fε) dM

≤
∫
M

|Φ|2PH(|Φ|) dM − 2

n+ 2

∫
M

|∇Φ|2dM

−
∫
M

(
ε+ |Φ|2

) (
|Φ|2 + n(1 +H2)

)
dM.

Finally, letting ε→ 0 in this last inequality, we have

λJ1

∫
M

|Φ|2dM ≤
∫
M

(
|Φ|2PH(|Φ|)−|Φ|4−n(H2+1)|Φ|2

)
dM− 2

n+ 2

∫
M

|∇Φ|2dM

≤ −2n(H2 + 1)

∫
M

|Φ|2dM +
n(n− 2)√
n(n− 1)

H

∫
M

|Φ|3dM. (29)

Hence, from (29) we get

λJ1 ≤ −2n(H2 + 1) +
n(n− 2)√
n(n− 1)

H max
M
|Φ|.

Now, suppose λJ1 = −2n(1 + H2) + n(n−2)√
n(n−1)

H maxM |Φ|. Thus, from (29)

we get that |∇Φ| ≡ 0, and using once more Lemma 2, we conclude that |Φ| must

be a positive constant.

On the other hand, from equation (1) it follows that

λ−∆
1 − (|Φ|2 + n(1 +H2)) = λJ1 = −2n(1 +H2) +

n(n− 2)√
n(n− 1)

H|Φ|.

Thus, since Mn is closed, we obtain

0 = λ−∆
1 = |Φ|2 +

n(n− 2)√
n(n− 1)

H|Φ| − n(1 +H2) = PH(|Φ|).

Hence, all the inequalities along this proof must be equalities. In particular,

taking into account (22), from (23) we conclude that |Φ| = |Φn+1|, and conse-

quently, Φα = 0, for all n + 2 ≤ α ≤ n + p. Thus, since en+1 is parallel in the

normal bundle of Mn, we are in position to apply [11, Theorem 1] to conclude

that Mn is, in fact, isometrically immersed in a (n+ 1)-dimensional totally geo-

desic submanifold Sn+1 of Sn+p. Therefore, we can use [1, Theorem 2.2] to finish

our proof.
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