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Almost periodic functions valued in a convex bornological space

By VINCENT VALMORIN (Pointe-à-Pitre)

Abstract. This paper deals for the first time with the theory of almost periodicity

for functions valued in a vector space endowed with a convex bornology (i.e., a convex

bornological space). New results in the topological setting are then obtained. A new

extension of Bochner’s Criterion is given. It is shown that the space of almost periodic

functions valued in a complete convex bornological space inherits the same structure for

a natural bornology. Finally, integration, derivation and nonlinear operations in spaces

of almost periodic functions are introduced in the perspective of the study of differential

problems in this new setting of almost periodicity.

1. Introduction

Almost periodic functions valued in a Banach space were widely studied.

Since the original work of H. Bohr in 1925 (see [5]), the concept was introduced

by Bochner in [3]. Actually, Bochner extended the Favard theory of almost-

periodic functions (see [12]) to Banach spaces. Later, Levitan (see [18]) extended

in turn the result due to Favard to functions taking values in a Banach space.

We may also cite Kadets [16] and Zaidman [22] who extended the Bohl–Bohr

Theorem on the integration of almost periodic functions. We can also mention

[1], [11], [19], [22] for more details on this matter.

Almost periodicity in the setting of topological vector spaces (TVS) was

introduced by Bochner and von Neumann in [4]. Among mathematicians

who contributed to this field, with emphasis on Fréchet spaces, we may cite
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N’Guérékata [20], Bugajewski and N’Guérékata [9]. Almost periodic func-

tions and representation theory with range in barreled spaces were studied by

Shtern in [21]. The theory of almost periodicity without local convexity can be

found in the paper of Gal and N’Guérékata [13], where p-Fréchet spaces are

considered, and in the more recent paper of Khan and Alsulami (see [17]).

The purpose of this paper is to extend the concept of almost periodicity to

real variable functions with range in a bornological vector space and to investi-

gate their properties. By a bornological space we mean a space endowed with

a bornology; here we are concerned especially with convex bornological spaces

(CBS). Details can be found in [14], [15]. This work comes originally from the

idea that bornologies should play a role in the study of almost periodic func-

tions since their ranges in a TVS are totally bounded. More precisely, this paper

presents a twofold interest: not only it brings to light the topological aspect of

almost periodicity, but also enlarges its range of applications. It is subdivided in

five sections as follows:

In Section 2, we recall basic properties of disks and Minkowski functionals.

Elements on the theory of CBS are presented with usual notations, and some

results on almost periodic functions valued in a TVS are also given. Section 3 is

devoted to the statement and the proof of a new extension of Bochner’s Criterion

which is valid in non-locally convex spaces, too. Section 4 is concerned with our

main subject: the bornological almost periodicity. This concept leads to the no-

tion of bornologically almost periodic functions valued in a locally convex space

(LCS). It is shown that in a large class of LCS which contains Fréchet spaces,

the two notions of almost periodicity coincide. Similarly, the notion of topolog-

ically almost periodic functions valued in a CBS is defined. A last section deals

with integration, derivation and nonlinear operations of Nemetskii type on almost

periodic functions valued in a CBS. It provides the basic tools for the study of

differential equations in our new setting.

2. Preliminaries and notations

2.1. Disks and Minkowski functionals. Throughout this section, E denotes

a K-vector space with K = R or C. We recall some basic properties of Minkowski

functionals and disks. We refer to [8] and [15].

Definition 2.1. A subset A of E is called a disk if it is absolutely convex, that

is, balanced and convex. Its absolutely convex envelope, denoted by Γ(A), is the

smaller disk of E which contains it.
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Proposition 2.2.

(i) A subset A ⊂ E is a disk if and only if: ∀λ, µ ∈ K, |λ|+ |µ| ≤ 1, λA+µA ⊂ A.

(ii) An intersection of disks is a disk, and the direct or inverse image of a disk

by a linear map is a disk.

The balanced envelope of A is equal to
⋃
|λ|≤1 λA. Hence, the convex envelope

of a balanced subset is a disk. The closed or open unit ball of a semi-norm is

an absorbent disk. Recall that the Minkowski functional ‖ · ‖A of an absorbent

disk A in E is defined by

‖x‖A = inf{α ∈ R+, x ∈ αA}, ∀x ∈ E.

Let A ⊂ E be a disk. It is absorbent in the spanned subspace EA =
∑
λ>0 λA,

and EA can be endowed with the semi-norm ‖ · ‖A. The disk A is called norming

(resp. completing or Banach) if (EA, ‖ · ‖A) is a normed (resp. Banach) space.

If A and B are two disks in E, then we have:

Proposition 2.3. Let A and B denote two disks in E.

(i) EA+B = EA+EB = EΓ(A∪B) ( Γ(·) denoting the absolutely convex envelope).

Furthermore, the norms ‖ · ‖A+B and ‖ · ‖Γ(A∪B) are equivalent.

(ii) For every x ∈ EA+B , we have

‖x‖A+B = inf{max(‖y‖A, ‖z‖B), x = y + z, (y, z) ∈ EA × EB}.

The image of a disk under a linear map is a disk. Moreover, we have:

Proposition 2.4. Let F denote a K-vector space, and u : E −→ F a linear

map. For every disk A of E, u(A) is a disk in F ; moreover, Fu(A) and EA/N are

isometric, where N = EA ∩ keru.

2.2. Convex bornological vector spaces. For the materials developed in this

section, we refer to [8], [14], [15].

2.2.1. Generalities on bornological spaces.

Definition 2.5. A bornology on a set X is a family B of subsets which is

a covering of X, stable under finite union and hereditary with respect to the

inclusion. The couple (X,B) is called a bornological set; the elements of B are

then called bounded sets. A basis of B is any subfamily B0 such that every element

of B is in some element of B0.
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The bornology B is said to be finer than the bornology B′ if B′ ⊂ B. A map

between two bornological spaces is said to be bounded if it transforms bounded

sets into bounded sets. If (Xi,Bi)i∈I is a family of bornological sets, the product

bornology on X =
∏
i∈I Xi is given by the sets

∏
i∈I Bi, where Bi ∈ Bi, i ∈ I.

The field K will be endowed with the bornology given by its natural topology.

Definition 2.6. A bornology B on X is a vector space bornology if the maps

(x, y) 7→ x + y from X2 to X, and (λ, x) 7→ λx from K ×X to X are bounded.

Then (X,B) is called a bornological vector space (BVS). It is said to be separated

if {0} is the only bounded subspace of X.

Definition 2.7. A vector bornology B on X is convex if it admits a basis

consisting of convex sets, which may be chosen to be absolutely convex. Then

(X,B) is called a convex bornological vector space (CBS).

A product of CBS is a CBS. If A and B are two bounded disks in X, πBA :

XA −→ XB denotes the canonical injection. It it shown thatX can be represented

as the bornological inductive limit X = lim
−→

(XA, πAB). Moreover, X is separated

if and only if the spaces (XA, ‖ · ‖A) are normed.

Definition 2.8. A convex bornology on a vector space is said to be complete

if it admits a basis consisting of completing disks. A convex bornological vector

space (CBS) is said to be complete if its bornology is complete.

Definition 2.9. A sequence (xn) of elements of the CBS X converges in the

sense of Mackey or converges bornologically to x ∈ X if there exists a bounded

disk B such that XB contains x and (xn), and xn → x in XB , which is denoted by

xn
M→ x. A subset F of X is said to be b-closed (or M -closed) if x ∈ F , whenever

(xn) ⊂ E and xn
M→ x in X.

Definition 2.10. Let X and Y denote two convex bornological spaces. An ap-

plication f : X −→ Y is said to be sequentially M -continuous if for any sequence

(xn) in X, xn
M→ x implies f(xn)

M→ f(x).

2.2.2. Bornological dual, t-topology and canonical bornology. We denote by X×

the bornological dual of X, that is, the vector space of bounded linear forms

on X. This means that for every bounded set B in X and every ϕ ∈ X×, ϕ(B)

is a bounded subset of R for its usual topology.

We call t-topology on X the locally convex topology defined by the borniv-

orous disks in X. Endowed with this topology, X is denoted by tX and (tX)∗

stands for its topological dual. Algebraically, we have X× = (tX)∗, then the
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t-topology is separated if and only if for any x ∈ X \ {0} there exists ϕ ∈ X×
such that ϕ(x) 6= 0. In this case, X is said to be regular, and the CBS X is also

separated.

The canonical bornology on an LCS E is the one defined by its topology;

endowed with this bornology, E is denoted by bE. If X = btX = b(tX), then X

is called a topological CBS; similarly, E is said to be a bornological LCS (this is

the classical sense) if E = tbE = t(bE).

2.3. Almost periodic functions valued in a separated TVS. We assume

known the basic results on almost periodic functions valued in a Banach space.

More account can be found in [1], [11], [19], [20], [22].

Definition 2.11 ([22], p. 20). Let P ⊂ R, and l be a positive real number.

Then P is said to be l-dense in R if P ∩ [a, a+ l] 6= ∅ for every a ∈ R. The set P

is said to be relatively dense in R if it is l-dense for some l > 0.

Theorem 2.12 ([22], Proposition 2, p. 73). A set P ⊂ R is relatively dense

if and only if there exists a compact set K ⊂ R such that R = K + P .

Definition 2.13. Let E denote a separated topological vector space. A con-

tinuous map f : R −→ E is said to be almost periodic if for any neighborhood U

of the origin in E there exists a relatively dense set P in R such that

f(t+ τ)− f(t) ∈ U, ∀τ ∈ P, ∀t ∈ R.

Theorem 2.14 ([20], Theorems 3.1.4, p. 52). Let E denote a separated

locally convex vector space.

(i) If f : R −→ E is an almost periodic function, then f is uniformly continuous

and its range {f(t) : t ∈ R} is totally bounded.

(ii) If (fn) is a sequence of almost periodic functions, fn : R −→ E such that

(fn) converges uniformly to f on R, then f is almost periodic.

Theorem 2.15 ([20], Theorems 3.1.5, p. 52). Let E denote a separated

locally convex vector space. If f : R −→ E is an almost periodic function, then

its range {f(t) : t ∈ R} is totally bounded.

Theorems 2.14 and 2.15 enable to prove Bochner’s Criterion:

Theorem 2.16 (Bochner’s Criterion [20], Theorem 3.1.8, p. 55). Let E

be a Fréchet space. Then f : R −→ E is almost periodic if and only if for every

sequence of real numbers (s′n), there exists a subsequence (sn) such that (f(·+sn))

converges uniformly.
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3. An extension of Bochner’s Criterion

The analysis of the proof of Theorem 2.15 ([20], Theorem 3.1.5) shows that it

is valid even if E is not complete nor locally convex. In the following, we extend

Bochner’s Criterion to a class of TVS not necessarily locally convex.

Theorem 3.1. Let E be a separated topological vector space in which every

totally bounded closed set is a metrizable compact set. A continuous function

f : R −→ E is almost periodic if and only if for every sequence (s′n) of real numbers

there exists a subsequence (sn) such that (f(·+ sn)) converges uniformly.

Proof. Assume that f satisfies the sequential property of the theorem. We

have to show that it is almost periodic.

Step 1. From Theorem 2.15, the set K = f(R) is totally bounded and

closed, it follows from the hypothesis that it is a metrizable compact set. Let

(ξn) denote a dense sequence in R, and (s′n) an arbitrary real sequence. For each

k ∈ N∗, (f(ξk + s′n)) is a sequence in K which is metrizable, hence we may

apply the diagonal sequence technique to get a subsequence (sn) of (s′n) for which

(f(ξk + sn)) converges in K for every k ∈ N∗.
Step 2. We show that for each fixed t ∈ R, (f(t+ sn)) is a Cauchy sequence

in K. From the density of (ξn), there exists a subsequence (ξk,t) such that ξk,t → t

as k → ∞. Let U be a neighborhood of zero; since f is uniformly continuous,

there exists a balanced neighborhood V of zero such that V + V + V ⊂ U , and

∃η > 0, ∀t, t′ ∈ R, |t− t′| < η, f(t)− f(t′) ∈ V.

Since ξk,t converges to t, there exists l ∈ N∗ such that |ξl,t− t| < η for k ≥ l. The

convergent sequence (f(ξl,t + sn)) is a Cauchy sequence, and then

∃n0 ∈ N∗, ∀m,n ≥ n0 : f(ξl,t + sn)− f(ξl,t + sm) ∈ V.

Writing

f(t+ sn)− f(t+ sm) = [f(t+ sn)− f(ξl,t + sm)] + [f(ξl,t + sn)− f(ξl,t + sm)]

+ [f(ξl,t + sn)− f(t+ sm)],

we find that f(t+sn)−f(t+sm) ∈ U for m,n ≥ n0, which shows that (f(t+sn))

is a Cauchy sequence in K. Since K is sequentially complete, (f(t + sn)) is

convergent; we set g(t) = limn→∞ f(t + sn). From the uniform continuity of f ,

it follows that g is also uniformly continuous.
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Step 3. We show that (f(· + sn)) converges to g uniformly on R. Let U

denote a neighborhood of zero. We keep the notation of Step 2, and take V to be

closed. Since f is almost periodic, it follows from Theorem 2.12 that there exist

a compact set Q and a relatively dense set P in R such that R = Q+ P , and

f(t+ τ)− f(t) ∈ V, ∀(t, τ) ∈ R× P. (3.1)

If we set t = α+ τ with (α, τ) ∈ Q× P , then we have

f(t+ sn)− g(t) = [f(α+ sn + τ)− f(α+ sn)]

+ [f(α+ sn)− g(α)] + [g(α)− g(α+ τ)].

Using (3.1), we have that f(α + sn + τ) − f(α + sn) ∈ V . Moreover, V being

closed and g(α) − g(α + τ) = limn→∞[f(α + sn + τ) − f(α + sn)], we get that

g(α) − g(α + τ) ∈ V . At this stage, it must be shown that there exists n0 ∈ N∗

such that f(α + sn) − g(α) ∈ V for all α ∈ Q and n ≥ n0. To do that, assume

that the contrary holds:

∀k ∈ N∗, ∃αk ∈ Q, ∃nk ∈ N∗, f(αk + snk
)− g(αk) /∈ V. (3.2)

From the compactness of Q, assume that (αk) converges to α0 in Q; then we have

f(αk + snk
)− g(αk) = [f(αk + snk

)− f(α0 + snk
)]

+ [f(α0 + snk
)− g(α0)] + [g(α0)− g(αk)].

The uniform continuity of f and its almost periodicity show that the two first

brackets of the right-hand member tend to zero as k →∞, and the last term also

tends to zero because of the continuity of g. It follows that f(αk+snk
)−g(αk)→ 0

as k →∞, contradicting (3.2) and proving the necessity part.

The converse result follows from the sufficiency part of the proof of [20,

Theorem 3.1.8, p. 55]. In fact, it is easily seen that this proof works even for

a general separated topological vector space. �

Remark 3.2. Theorem 3.1 can be applied to complete metrizable topological

spaces, and then to Fréchet spaces. Let E be a separated quasi-complete TVS

(i.e., an LCS in which every separated closed bounded set in E is complete).

If every compact set in E is a compact set in EB for some bounded disk B,

then the conclusion of Theorem 3.1 holds true. It is also the case if E is the

strict inductive limit of a sequence (En) of Fréchet spaces (in this case E is non-

metrizable).
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4. Almost periodic functions valued in a CBS

4.1. Definitions and elementary properties. Let (X,B) be a separated con-

vex bornological space; then B has a basis consisting of norming elements.

Definition 4.1. A function f : R −→ X is said to be almost periodic if there

exists a norming bounded disk B ⊂ X such that f(R) ⊂ XB and f : R −→ XB

is almost periodic. The set of such functions will be denoted by AP (X).

The definition means that f is continuous from R to the normed space (XB , ‖·
‖B), and for every ε > 0 there exist l(ε) > 0 and an l(ε)-dense set Pε such that

‖f(t+ τ)− f(t)‖B < ε, ∀(t, τ) ∈ R× Pε.

Definition 4.2. Let X be a separated CBS. A subset K of X is said to

be strictly totally bounded (resp. a strictly compact set, resp. a relatively strictly

compact set) if there exists a bounded disk B such that K is totally bounded

(resp. a compact set, resp. a relatively compact set) in XB .

Proposition 4.3. Let f : R −→ X be an almost periodic function. Then

the range of f is strictly totally bounded. If, moreover, X is a complete CBS,

then the range of f is relatively strictly compact.

Proof. Since f is almost periodic, there exists a bounded disk B in X such

that f(R) ⊂ XB and f : R −→ XB is almost periodic. Then, the range of f is

totally bounded in the normed space XB . Moreover, if X is a complete CBS,

we may assume that B is a Banach disk, and then the range of f is a relatively

compact set in the Banach space XB . �

Remark 4.4. It is easily seen that if f : R −→ X is almost periodic, then

f(·+ s) and f̌ are almost periodic, where s is any real number and f̌(t) = f(−t).

We have the Bochner type criterion:

Theorem 4.5. Let X be a complete convex bornological space, and f :

R −→ X a function. The following properties are equivalent:

(i) the function f is almost periodic;

(ii) there exists a bounded disk B such that f : R −→ XB is continuous, and

from any sequence (r′n)n of real numbers, one can extract a subsequence (rn)n
such that the sequence (f(t+ rn))n converges in XB uniformly in t ∈ R.

Proof. The proof results from the definition and the Bochner criterion ap-

plied to almost periodic functions valued in a Banach space. �
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Corollary 4.6. Let X be a complete convex bornological space. Then the

set of almost periodic functions f : R −→ X is an R-vector space.

Proof. The non-trivial part of the proof is the almost periodicity of f + g,

where f : R −→ X and g : R −→ X are two almost periodic functions. This

follows immediately from the relation

‖(f + g)(s)− (f + g)(t)‖A+B ≤ max(‖f(s)− f(t)‖A, ‖g(s)− g(t)‖B) (4.1)

and the above Bochner criterion. �

4.2. Bornologically almost periodic functions. We consider the relationship

between the almost periodicity of a function valued in an LCS E and its almost

periodicity as a function valued in the CBS bE. We introduce the following:

Definition 4.7. Let E be a separated topological vector space. A function

f : R −→ E is said to be bornologically almost periodic if f : R −→ bE is almost

periodic.

Proposition 4.8. Let E be a separated topological vector space, and let

f : R −→ E be a bornologically almost periodic function. Then f is almost

periodic, and moreover, if E is sequentially complete, its range is a relatively

compact set.

Proof. Assume that f : R −→ bE is almost periodic. Note that a bornolog-

ical vector space is separated if and only if any Mackey convergent sequence has a

unique limit. Since a Mackey convergent sequence in E is also convergent for its

topology and E is separated, it follows that bE is a separated BVS. Hence there

exists a norming disk B in E such that f(R) ⊂ EB , and f : R −→ EB is almost

periodic. Since the topology of (EB , ‖ · ‖B) is finer than the one induced by E,

it follows that f : R −→ E is almost periodic. In addition, if E is sequentially

complete, it is bornologically complete (cf. [15], Corollary p. 41), that is, bE is

a complete CBS. In this case, we may choose B to be a Banach disk, and then

the range of f becomes a relatively compact set in EB and also in E. �

Theorem 4.9. Let E be a separated quasi-complete topological vector space

such that every compact set in E is a compact set in EB for some bounded disk B.

Then a function f : R −→ E is almost periodic if and only if it is bornologically

almost periodic.

Proof. Let Γ(f(R)) denote the balanced convex envelope of f(R); since E

is separated and quasi-complete, it is a compact set, and so is K = 2Γ(f(R)).
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It follows from the compactness condition that there exists a bounded disk B

in E for which K is a compact set in EB . Let T and T ′ denote the respective

topologies of E and EB (for the norm ‖ · ‖B). Since the embedding EB −→ E

is continuous, it induces a homeomorphism between the compact spaces (K, T ′)
and (K, T ). This proves the continuity of f : R −→ EB as composition of two

continuous functions. Now let V denote a neighborhood of zero in EB ; then K∩V
is a neighborhood of zero in K for the topology induced by T ′. Since the two

topologies T and T ′ coincide on K, there exists a neigborhood U of zero in E for

which K ∩ V = K ∩ U is a neighborhood of zero in K for the topology induced

by T . Using the almost periodicity of f : R −→ E, there is a relatively dense set

P in R such that

f(t+ τ)− f(t) ∈ U, ∀(τ, P ) ∈ P × R.

Since f(t+ τ) and f(t) are in Γ(f(R)), which is absolutely convex, it follows that

f(t+ τ)− f(t) ∈ K, ∀(τ, P ) ∈ P × R.

The two above relations show that f(t+ τ)− f(t) ∈ K ∩U for all (τ, P ) ∈ P ×R,

and finally

f(t+ τ)− f(t) ∈ V, ∀(τ, P ) ∈ P × R,

showing that f : R −→ EB is almost periodic.

The converse follows from Proposition 4.8. �

Corollary 4.10. If E is a Fréchet space, a function f : R −→ E is almost

periodic if and only if it is bornologically almost periodic.

Proof. It is a fact that if E is a Fréchet space and A is a compact set

in E, then there exists a compact disk B such that A is a compact set in the Ba-

nach space EB . Since a Fréchet space is obviously separated and quasi-complete,

the hypotheses of Theorem 4.9 are fully satisfied, which concludes the proof. �

Remark 4.11. The above results show that a family of E-valued almost pe-

riodic functions with range in the same subspace EB , where E satisfies the hy-

potheses of Theorem 4.9 and B is a Banach disk, can be considered as a subset

of the space of almost periodic functions with range in the Banach space EB .

4.3. Topologically almost periodic functions. Let X be a regular CBS, that

is, tX is a separated LCS. Every function f : R −→ X may be considered as

a function with range in tX or in btX.
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Definition 4.12. Let X be a regular convex bornological space. A function

f : R −→ X is said to be topologically almost periodic if f : R −→ tX is almost

periodic.

Proposition 4.13. Let X be a regular CBS, and f : R −→ X be an almost

periodic function. Then f : R −→ tX is almost periodic. Moreover, if X is

complete, the range of f is a relatively compact set in tX.

Proof. Assume that f : R −→ X is almost periodic. The bornology of X

being finer than the one of btX, it follows that f : R −→ btX is also almost

periodic. Actually, the immediate application of Proposition 4.8 gives the almost

periodicity of f : R −→ tX. Furthermore, if X is a complete CBS, it follows from

Proposition 4.3 that f(R) is a strictly compact set in X. Thus there is a bounded

Banach disk B in X such that f(R) is a relatively compact set in the Banach

space XB . Moreover, if V is any bornivorous disk in X, it absorbs B, and then

the embedding i : XB −→ XV is continuous, which means that i : XB −→ tX is

continuous. Since tX is separated, f(R)
XB

is a compact set in tX, hence f(R) is

a relatively compact set in tX. �

4.4. Spaces of almost periodic functions valued in a CBS.

Theorem 4.14. Let X and Y denote two separated CBS, and let u : X −→
Y be a bounded linear map. If f : R −→ X is an almost periodic function, so is

u ◦ f : R −→ Y .

Proof. Let B be a norming bounded disk for which f : R −→ XB is almost

periodic, and denote by bXB the space (XB , ‖ · ‖B) endowed with its canonical

bornology. A bounded set B′ in bXB being a bounded set in XB , there is λ > 0

such that B′ ⊂ λB. It follows that u(B′) ⊂ λu(B), which implies that u(B′) is

a bounded set in Y . Furthermore, u : XB −→ tY is bounded (in the topological

sense). Since XB is a metrizable locally convex space, it is bornological. Then, tY

being locally convex, u : XB −→ tY is a continuous map. It follows that its kernel

N = (keru)∩XB is a closed set, and then the quotient space XB/N is separated.

From Proposition 2.4, A = u(B) is a norming disk. On the other hand, u(XB) =

YA, and u(λB) = λu(B) is a bounded set in YA, then u : XB −→ YA is a bounded

linear map which proves that it is continuous. It follows that u ◦ f : R −→ YA is

a continuous function. Now we show that it is almost periodic. To do that, let V

denote a neighborhood of zero in YA. From the continuity of u : XB −→ YA,

there exists a neighborhood W of zero in XB such that u(W ) ⊂ V . The almost

periodicity of f gives a relatively dense set P in R such that

f(t+ τ)− f(t) ∈W, ∀(τ, t) ∈ P × R.
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Since u(W ) ⊂ V ; it follows that

u ◦ f(t+ τ)− u ◦ f(t) ∈ V, ∀(τ, t) ∈ P × R,

showing that u ◦ f is almost periodic. �

Now we introduce a complete convex bornological vector space of functions

valued in X for which AP (X) is a complete subspace.

Definition 4.15. A function f : R −→ X is said to be globally bounded if

f(R) is a bounded set of X. It is said to be globally M -continuous if there exists

a bounded set B such that f : R −→ XB is continuous. The set of all globally

M -continuous and globally bounded functions will be denoted by Mgb(X).

Clearly, AP (X) is a subspace of Mgb(X). It is easy to see that if f ∈Mgb(X),

there exists a bounded diskB such that f(R) ⊂ B and f : R −→ XB is continuous.

For a bounded disk B ⊂ X, we denote by Cb(XB) the space of bounded continuous

XB-valued functions defined on R.

Definition 4.16. A subset H ⊂ Mgb(X) will be said to be bounded if there

exists a bounded disk B inX such thatH(R) := ∪u∈Hu(R) ⊂ B andH ⊂ Cb(XB)

(i.e., f ∈ C(XB) as a XB-valued function for every f ∈ H). The set of all

such subsets of Mgb(X) defines a convex vector bornology on Mgb(X), called the

natural bornology of Mgb(X).

For a bounded disk B ⊂ X, we set

HB := {f ∈Mgb(X), f(R) ⊂ B} ∩ Cb(XB).

If B is a disk, it is easily seen that HB is also a disk. Moreover, if B0 is a basis

of bounded disks of the bornology of X, then the sets HB form a basis of the

natural bornology of Mgb(X) when B runs over B0.

Theorem 4.17. If X is a complete CBS, then Mgb(X) is also a complete

CBS and AP (X) is a complete subspace of Mgb(X). Moreover, if X is regular,

Mgb(X) is also regular.

Proof. Suppose that X is complete, and let B be a completing bounded

disk in X, we show that HB is a completing disk in Mgb(X). For the sake of

simplicity, we set HB = H. Let (fn)n be a Cauchy sequence in (Mgb(X)H , ‖·‖H),

where ‖ · ‖H denotes the Minkowski functional of H, we have

∀ε > 0, ∃n0 ∈ N, ∀(m,n) ∈ N2, m ≥ n0, n ≥ n0, ‖fn − fm‖H ≤ ε/2,
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and then fn − fm ∈ εH if (m,n) ∈ N2 satisfies m ≥ n0, n ≥ n0. It follows that

∀(m,n) ∈ N2, m ≥ n0, n ≥ n0, fn(t)− fm(t) ∈ εB, ∀t ∈ R.

Hence we have proved that

∀ε, ∃n0 ∈ N, ∀(m,n) ∈ N2, m ≥ n0, n ≥ n0, sup
t∈R
‖fn(t)− fm(t)‖B ≤ ε.

This means that (fn) is a Cauchy sequence in the Banach space Cb(XB) of

bounded continuous functions endowed with the sup norm, thus it converges to

a continuous function f . Since fn(R) ⊂ B for every n, it follows that ‖fn(t)‖B ≤ 1

for every t and every n. Thus, ‖f(t)‖B ≤ 1 for all t ∈ R, which implies that f is

globally bounded.

To show that AP (X) is a complete subspace of Mgb(X), it suffices (cf. [14],

Proposition 1, p. 35) to prove that AP (X) is b-closed in Mgb(X). This means

that if (fn) is a sequence in AP (X) which b-converges to a function f in Mgb(X),

it must be shown to be almost periodic. But the first part of the proof shows

that the sequence of XB-valued functions (fn) converges uniformly to f . Then

it follows from Theorem 2.14, that f ∈ AP (XB), and then f ∈ AP (X). Hence

AP (X) is b-closed in Mgb(X) proving that AP (X) is complete.

Now, suppose that X is regular, and let f ∈ Mgb(X) \ {0}; there exists

t0 ∈ R such that f(t0) 6= 0. Consider the map h from Mgb(X) to X defined

by h(f) = f(t0). Clearly, h is linear and if B is any bounded disk, we have

h(HB) = {f(t0); f ∈ HB} ⊂ B; hence h is bounded. Since X is regular and

f(t0) 6= 0, it follows that there exists ψ ∈ X× such that ψ(f(t0)) 6= 0. Then we

have ϕ = ψ ◦ h ∈Mgb(X)× and ϕ(f) 6= 0, proving the regularity of Mgb(X) and

the theorem. �

5. Operations in spaces of almost periodic functions

5.1. Integration of almost periodic functions valued in a CBS. For a gen-

eral theory of integration of functions valued in a CBS, we refer to [2] and [7].

Here we give a definition in the spirit of [2, Section 3], adapted to our setting. Let

X denote a complete CBS, and let f : R −→ X be an almost periodic function.

Thus, there exists a Banach disk B such that f : R −→ XB is almost periodic.

Then, for every (a, b) ∈ R2, one can define the Bochner integral of f from a to

b in the Banach space XB . We denote by
∫ b
a

(XB ; f) this integral. In fact, it is

easy to see that this integral is independent of the chosen Banach disk B.
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Definition 5.1. Let f : R −→ X be an almost periodic function. For a, b ∈ R,

the Bochner integral of f from a to b is defined by
∫ b
a
f(t)dt :=

∫ b
a

(XB ; f), where

B is any Banach disk such that f : R −→ XB is almost periodic.

We have the following:

Theorem 5.2. Let X be a complete CBS, and let f : R −→ X be an

almost periodic function such that F (R) is relatively strictly compact in X, where

F (t) =
∫ t

0
f(s)ds. Then F : R −→ X is almost periodic.

Proof. Let B be a bounded Banach disk such that f : R −→ XB is almost

periodic. Then f is Bochner integrable as a continuous XB-valued function.

It follows that F (t) ∈ XB for every t ∈ R. Let C be a second bounded Banach

disk such that F (R) is a relatively compact set in XC , and consider the Banach

disk A = B + C. Then XA = XB + XC . The injections XB −→ XA and

XC −→ XA being continuous, f : R −→ XA is an almost periodic function, and

then F (R) is relatively compact in XA. Since XA is a Banach space, it follows

(see [20, Theorem 3.2.6], or [22, Theorem 1, p. 58]), that F : R −→ XA is almost

periodic. This means that F : R −→ X is almost periodic. �

5.2. Derivation of almost periodic functions valued in a CBS. There are

many possible definitions for differentiability of functions defined between LCS

or CBS, see e.g. [10] and references therein. Our choice of definition is suggested

by the boundedness of the range of an almost periodic function. It is in fact

a particular case of the notion of locally differentiable functions between normed

spaces, see [10, Section 1.5].

Definition 5.3. Let X be a separated CBS. A function f : R −→ X will be

said to be globally b-derivable or shortly gb-derivable if there exists a norming disk

B such that f(R) ⊂ XB and f : R −→ XB is derivable on R.

If f : R −→ X is a function valued in a regular CBS X, it may be interesting

to consider its derivability as a function valued in the LCS tX.

Definition 5.4. Let X be a regular CBS. A function f : R −→ X will be said

to be t-derivable at a point t0 ∈ R if the function f : R −→ tX is a derivable

function at t0.

The following proposition is a direct consequence of the continuity of the

canonical inclusion XB −→ tX for a bounded disk B.

Proposition 5.5. Let X be a regular CBS. Then every gb-derivable function

f : R −→ X is t-derivable on R.
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Remark 5.6. It is easy to see that if an almost periodic function f : R −→ X

is gb-derivable, then there exists a norming disk B such that f : R −→ XB is

a derivable almost periodic function.

Definition 5.7. Let X be a separated CBS. A function f : R → X is said

to be uniformly M -continuous if there exists a norming disk B in X such that

f(R) ⊂ XB and f : R→ XB is uniformly continuous.

We can state the following version of Bochner’s Theorem:

Theorem 5.8 (Bochner’s Theorem). Let X be a completed CBS and f :

R → X a derivable almost periodic function. If the derivative f ′ is uniformly

M -continuous, then it is also almost periodic.

Proof. It is easy to see that we can find a Banach disk B such that f : R→
XB is a derivable almost periodic function with f(R) ⊂ B, and f ′ : R → XB is

uniformly continuous. Then, the proof will follow from Bochner’s Theorem for

almost periodic functions valued in a Banach space (see [22, Bochner’s Theorem,

p. 25]). But we give a direct proof by proving that f ′ ∈ Mgb(X), and that there

exists (gn) ⊂ AP (X) such that gn
M→ f ′ in Mgb(X). To do this, following the

proof of the above-mentioned theorem, we set gn = f 1
n
− f , and for every t ∈ R

gn(t)− f ′(t) = n

∫ t+ 1
n

t

f ′(s)ds− n
∫ t+ 1

n

t

f ′(t)ds,

gn(t)− f ′(t) = n

∫ t+ 1
n

t

(f ′(s)− f ′(t))ds.

Let ε ∈ (0, 1). Since f ′ : R→ XB is uniformly continuous, there exists η > 0 such

that for every s, s′ ∈ R,

|s− s′| < η ⇒ ‖f ′(s)− f ′(s′)‖B ≤ ε.

Fix m ∈ N∗ such that mη > 1. It follows that for every t ∈ R,

‖gn(t)− f ′(t)‖B ≤ n
∫ t+ 1

n

t

‖f ′(s)− f ′(t)‖Bds, n ≥ m,

and then, for every t ∈ R, we have

‖gn(t)− f ′(t)‖B ≤ ε, n ≥ m. (5.1)



276 Vincent Valmorin

On the other hand, since f(R) ⊂ B, we have gm(R) ⊂ 2mB, and consequently

f ′(R) ⊂ (2m+ε)B. It follows that f ′ ∈Mgb(X). Furthermore, gn(t)−f ′(t) ∈ εB
for every t ∈ R and n ≥ m. Thus, gn(R) ⊂ 2(m + ε)B for n ≥ m. Since ε < 1,

it follows that f ′(R) ⊂ 2(m + 1)B and gn(R) ⊂ 2(m + 1)B, for every n ∈ N∗.
Hence, f ′ and gn, n ∈ N∗ are in Mgb(X). We show that (gn) converges to f ′

in the Banach space generated by H2(m+1)B in Mgb(X), where the norm is the

Minkowski functional of H2(m+1)B . We notice that H2(m+1)B = 2(m + 1)HB ;

then, the two disks generate the same subspace in Mgb(X), and their Minkowski

functionals are equivalent. Hence, it suffices to show that (gn) converges to f ′

in the Banach space generated by HB , endowed with the Minkowski functional

of HB . In fact, this follows from (5.1), which means that gn − f ′ ∈ εHB for

n ≥ m, since gn − f ′ ∈ Cb(XB). Thus, gn
M→ f ′ in Mgb(X). Since gn ∈ AP (X)

and AP (X) is b-closed in Mgb(X), it follows that f ′ ∈ AP (X). �

5.3. Nonlinear operations on almost periodic functions. In the sequel,

X and Y denote convex bornological spaces. For a topological vector space E, we

denote by VE(0) the set of neighborhoods of the zero. We introduce the following

two definitions.

Definition 5.9. Let E be a TVS, and M be an arbitrary set. A function

f : R × M −→ E is said to be almost periodic with parameters in M if the

following conditions are satisfied:

(i) ∀x ∈M,fx : R −→ E is continuous, where fx(t) = f(t, x);

(ii) ∀U , a neighborhood of zero in E, ∀x ∈ M , ∃Px, a relatively dense set in R
such that f(t+ τ, x)− f(t, x) ∈ U,∀(t, τ) ∈ R× Px.

Definition 5.10. Let X be a separated CBS, and M an arbitrary set. A func-

tion f : R × M −→ X is said to be almost periodic with parameters in M if

there exists a bounded norming disk B in X such that f(R ×M) ⊂ XB , and

f : R×M −→ XB is almost periodic with parameters in M .

We have the following fundamental result:

Theorem 5.11. Let E and F be two separated topological vector spaces.

Let φ : R −→ E be almost periodic, and f : R × φ(R) −→ F be almost periodic

with parameters in φ(R). Assume that

∀V ∈ VF (0), ∃U ∈ VE(0), f(t, x)− f(t, y) ∈ V,
∀t ∈ R, ∀x, y ∈ φ(R), x− y ∈ U. (5.2)

Then, the function ψ : R −→ F defined by ψ(t) = f(t, φ(t)) is almost periodic.
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Proof. First, we show that ψ is continuous. For this, let t0 ∈ R, and let

V ∈ VF (0). Take a balanced element W of VF (0) such that W + W ⊂ V . From

(5.2), there exists a balanced element U of VE(0) such that

f(t, x)− f(t, y) ∈W, ∀x, y ∈ φ(R), x− y ∈ U. (5.3)

We have

ψ(t)− ψ(t0) = [f(t, φ(t))− f(t, φ(t0))] + [f(t, φ(t0))− f(t0, φ(t0))]. (5.4)

From the continuity of fφ(t0) and φ at t0, there exists η > 0 such that if |t−t0| < η,

then

f(t, φ(t0))− f(t0, φ(t0)) ∈W and φ(t)− φ(t0) ∈ U. (5.5)

It follows from (5.3) and (5.5) that f(t, φ(t)) − f(t, φ(t0)) ∈ W . Hence, using

(5.4), we get ψ(t)− ψ(t0) ∈W +W ⊂ V , proving that F is continuous.

We prove the almost periodicity of ψ. For this, assume that the conditions of the

theorem are fulfilled. Let V ∈ VF (0). Choose a balanced element W of VF (0)

such that

W +W +W +W ⊂ V.

From (5.2), there exists a balanced element U of VE(0) such that

f(t, x)− f(t, y) ∈W, ∀t ∈ R, ∀x, y ∈ φ(R), x− y ∈ U. (5.6)

On the other hand, since φ is almost periodic, there exists a relatively dense set

P0 in R such that

φ(t)− φ(t+ τ) ∈ U, ∀(t, τ) ∈ R× P0. (5.7)

Since φ(R) is totally bounded in E, there exist x1, . . . , xp in φ(R) such that

φ(R) ⊂
p⋃
i=1

(xi + U).

Hence, for every s ∈ R, there exists j ∈ {1, . . . , p} such that φ(s) ∈ xj + U , i.e.,

φ(s)− xj ∈ U . Then, we deduce from (5.6) that

f(t, φ(s))− f(t, xj) ∈W, ∀t ∈ R. (5.8)

We have

ψ(t)− ψ(s) = [f(t, φ(t))− f(t, φ(s))] + [f(t, φ(s))− f(s, φ(s))], (5.9)

and

f(t, φ(s))− f(s, φ(s)) = [f(t, φ(s))− f(t, xj)]

+ [f(t, xj)− f(s, xj)] + [f(s, xj)− f(s, φ(s))].



278 Vincent Valmorin

Since φ(t)−xj (and also xj−φ(t)) is in U , it follows that there exists a relatively

dense set Pj in R such that

[f(t, φ(s))− f(t, xj)] + [f(s, xj)− f(s, φ(s))] ∈W +W. (5.10)

From Definition 5.9, (ii), for each j ∈ {1, . . . , p} there exists a relatively dense set

Pj in R such that

f(t, xj)− f(t+ τ, xj) ∈W, ∀(t, τ) ∈ R× Pj . (5.11)

Denote by P a relatively dense set in R such that P ⊂
⋂p
i=0 Pi. We have that

φ(t)−φ(t+τ) ∈ U , and then f(t, φ(t))−f(t, φ(t+τ)) ∈W for every (t, τ) ∈ R×P .

It follows from (5.9), (5.10), (5.11) with s = t+ τ that

ψ(t)− ψ(t+ τ) ∈W +W +W +W ⊂ V, ∀(t, τ) ∈ R× P. (5.12)

Hence ψ is almost periodic. �

Now, we can state the following two results on nonlinear operations on almost

periodic functions valued in a CBS.

Corollary 5.12. Let X and Y be two separated CBS, where X is regular.

Let φ : R −→ X be topologically almost periodic, and f : R × φ(R) −→ Y be

almost periodic with parameters in φ(R). Assume that there exists a bounded

norming disk C in Y such that f(R× φ(R)) ⊂ YC , and

∀ε > 0, ∃U ∈ VtX(0), ‖f(t, x)−f(t, y)‖C ≤ ε, ∀t ∈ R, ∀x, y ∈ φ(R), x−y ∈ U.

Then, the function F : R −→ Y defined by F (t) = f(t, φ(t)) is almost periodic.

Proof. Since X is regular, tX is a separated LCS. Taking E = tX and

F = YA, where A = B+C, it is easy to see from the continuity of the embeddings

YB −→ XA and XC −→ XA that the hypotheses of Theorem 5.11 are satisfied,

which concludes the proof. �

Corollary 5.13. Let X and Y be two complete convex bornological spaces.

Let φ : R −→ X be almost periodic, and f : R× φ(R) −→ Y be almost periodic

with parameters in φ(R). Let A be a bounded disk in X such φ : R −→ XA is

almost periodic, and let B be a bounded disk in Y as in Definition 5.10. Assume

that

∀ε > 0, ∃r > 0, ‖f(t, x)− f(t, y)‖B ≤ ε, ∀t ∈ R, ∀x, y ∈ φ(R), ‖x− y‖A ≤ r.

Then, the function ψ : R −→ Y defined by ψ(t) = f(t, φ(t)) is almost periodic.
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Proof. If we take E = XA and F = YB , then φ and f satisfy all the

hypotheses of Theorem 5.11. Thus, we can conclude that function ψ is almost

periodic. �

Remark 5.14. To conclude, we want to point out that this last section enables

one to deal with differential equations of the form u′(t) = Tu(t)+f(t, u(t)) = v(t).

Here T is a bounded linear operator on AP (X), v ∈ AP (X), and f : R×X −→ X

with X, a complete CBS.
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