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Abstract. Recently, we have proved that there do not exist warped product semi-

slant submanifolds of Sasakian manifolds other than contact CR-warped products which

have been studied by Hasegawa and Mihai. In this paper, we introduce another class

of submanifolds, called warped product pseudo-slant submanifolds. A characterization

theorem for such immersions is obtained. Also, we establish an inequality for the squared

norm of the second fundamental form in terms of the warping function and the slant an-

gle. Furthermore, the equality case in the statement of the inequality is investigated, and

we give two examples of pseudo-slant and warped product pseudo-slant submanifolds.

1. Introduction

The geometry of slant submanifolds has intensely been studied since B.-Y.

Chen defined and studied slant immersions in complex geometry as a natural

generalization of both holomorphic and totally real immersions [7], [8]. Later,

A. Lotta extended this study to almost contact metric manifolds [20]. After

that, Cabrerizo et al. [5] studied and characterized these submanifolds in case

of K-contact and Sasakian manifolds. To generalize these submanifolds, N. Pa-

paghiuc [21] introduced the notion of another class of submanifolds, called semi-

slant submanifolds, and then this idea was further extended by Cabrerizo et al.
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for semi-slant submanifolds in contact metric manifolds [4]. Later, A. Carri-

azo [6] introduced another class of submanifolds, called anti-slant submanifolds.

On the other hand, the concept of warped products was introduced by

Bishop and O’Neill [2] to construct examples of Riemannian manifolds with

negative curvature. They defined these manifolds as follows:

Let M1 and M2 be two Riemannian manifolds with Riemannian metrics g1
and g2, respectively, and a positive differentiable function f on M1. Consider

the product manifold M1 ×M2 with its projections π1 : M1 ×M2 → M1 and

π2 : M1×M2 →M2. Then their warped product manifold M = M1×fM2 is the

Riemannian manifold M1 ×M2 = (M1 ×M2, g) equipped with the Riemannian

structure such that

g(X,Y ) = g1(π1∗X,π1∗Y ) + (f ◦ π1)2g2(π2∗X,π2∗Y ),

for any vector field X,Y tangent to M , where ∗ is the symbol for the tangent

maps. A warped product manifold M = M1×fM2 is said to be trivial, or simply

a Riemannian product manifold, if the warping function f is constant. Let X be

a vector field on M1, and Z be a vector field on M2, then from [2, Lemma 7.3],

we have

∇XZ = ∇ZX = (X ln f)Z, (1.1)

where ∇ is the Levi–Civita connection on M . If M = M1 ×f M2 is a warped

product manifold, then M1 is a totally geodesic submanifold, and M2 is a totally

umbilical submanifold of M [2]. We note that warped product manifolds have

their application to general relativity. Many spacetime models such as Robertson–

Walker spacetime, asymptotically flat spacetime, Schwarzschild spacetime and

Reissner–Nordström spacetime are examples of warped product manifolds, for

details see [17].

In the beginning of this century, B.-Y. Chen initiated the study of warped

product CR-submanifolds of Kaehler manifolds [9], [10]. He established several

fundamental results on the existence of such warped product submanifolds, in-

cluding optimal inequalities and characterisations [11], [12]. Later, Hasegawa

and Mihai extended this study by investigating contact CR-warped product sub-

manifolds in Sasakian manifolds [16]. For the detailed survey on warped product

manifolds and warped product submanifolds, we refer to [13], [15], [14].

Recently, warped product pseudo-slant submanifolds of Kaehler manifolds

were studied by B. Sahin under the name of Hemi-slant warped products [24].

He obtained many interesting results, including a characterization and a sharp
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relation for the squared norm of the second fundamental form by using the mixed

totally geodesic condition. In the context of contact metric manifold, we have

seen that there is no warped product semi-slant submanifold in Sasakian mani-

folds [1], [25].

In this paper, we study the warped product submanifolds where one of the

factor is slant and another is anti-invariant, and we call such submanifolds warped

product pseudo-slant submanifolds (warped product hemi-slant submanifolds in

the same sense of Sahin [24]) of Sasakian manifolds.

The paper is organized as follows. In Section 2, we review some basic formu-

las and definitions for almost contact metric manifolds and their submanifolds.

In Section 3, we recall the definitions of slant and pseudo-slant submanifolds,

as well as provide an example and some basic results which are useful for the

next section. In Section 4, we study warped product pseudo-slant submanifolds.

At the beginning of this section, we construct an example of such warped prod-

uct immersions and then obtain a characterization result. In the same section,

we also establish an inequality for the squared norm of the second fundamental

form in terms of warping function and the slant angle. The equality case is also

considered.

2. Preliminaries

An almost contact manifold is a (2n+ 1) odd-dimensional manifold M̃ which

carries a tensor field ϕ of the tangent space, a vector field ξ, called characteristic

or Reeb vector field, and a 1-form η satisfying

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

where I : TM̃ → TM̃ is the identity mapping. From the definition, it follows

that ϕξ = 0, η ◦ϕ = 0, and the (1, 1)-tensor field ϕ has constant rank 2n (cf. [3]).

An almost contact manifold (M̃, ϕ, η, ξ) is said to be normal when the tensor field

Nϕ = [ϕ,ϕ]+2dη⊗ξ vanishes identically, where [ϕ,ϕ] is the Nijenhuis torsion of ϕ.

It is known that any almost contact manifold (M̃, ϕ, η, ξ) admits a Riemannian

metric g such that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ) (2.2)

for any X,Y ∈ Γ(TM̃), the Lie algebra of vector fields on M̃ . This metric g

is called a compatible metric, and the manifold M̃ together with the structure
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(ϕ, ξ, η, g) is called an almost contact metric manifold. As an immediate conse-

quence of (2.2), one has η(X) = g(X, ξ) and g(ϕX, Y ) = −g(X,ϕY ). Hence,

the fundamental 2-form Φ of M̃ is defined Φ(X,Y ) = g(X,ϕY ) and the manifold

is said to be a contact metric manifold if Φ = dη. If ξ is a Killing vector field

with respect to g, the contact metric structure is called a K-contact structure.

A normal contact metric manifold is said to be a Sasakian manifold. In terms of

the covariant derivatives of ϕ, the Sasakian condition can be expressed by

(∇̃Xϕ)Y = g(X,Y )ξ − η(Y )X (2.3)

for all X,Y ∈ Γ(TM̃), where ∇̃ is the Levi–Civita connection of g. From the

formula (2.3), it follows that ∇̃Xξ = −ϕX. The covariant derivative of ϕ is

defined by

(∇̃Xϕ)Y = ∇̃XϕY − ϕ∇̃XY

for all X,Y ∈ Γ(TM̃).

Now, let M be an isometrically immersed submanifold in M̃ with induced

metric g. Let Γ(TM) the Lie algebra of vector fields on M and Γ(T⊥M), the set

of all vector fields normal to M . If we denote the Levi–Civita connection of M

by ∇, then the Gauss and Weingarten formulas are respectively given by

∇̃XY = ∇XY + σ(X,Y ), ∇̃XV = −AVX +∇⊥XV, (2.4)

for any vector field X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where ∇⊥ is the normal

connection in the normal bundle, σ is the second fundamental form, and AV is the

shape operator (corresponding to the normal vector field V ) for the immersion

of M into M̃ . They are related by g(σ(X,Y ), V ) = g(AVX,Y ).

For any X ∈ Γ(TM) and V ∈ Γ(T⊥M), the tangential and normal compo-

nents of ϕX and ϕV are respectively decomposed as

(a) ϕX = TX + FX, (b) ϕV = tV + fV. (2.5)

Let p ∈M and {e1, . . . , em, . . . , e2n+1} be an orthonormal basis of the tangent

space TpM̃ such that e1, . . . , em are tangent to M at p. We denote by H the mean

curvature vector, that is H(p) = 1
m

∑m
i=1 σ(ei, ei). Also, we set

σrij = g(σ(ei, ej), er), i, j ∈ {1, . . . ,m}, r ∈ {n+ 1, . . . , 2n+ 1}, (2.6)
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and

‖σ‖2 =

m∑
i,j=1

g(σ(ei, ej), σ(ei, ej)). (2.7)

The gradient ~∇f of a smooth function f on a manifold M is defined as

g(~∇f,X) = Xf , for any X ∈ Γ(TM). As a consequence, we have

‖~∇f‖2 =

n∑
i=1

(ei(f))2 (2.8)

for an orthonormal frame {e1, . . . , en} on M .

A submanifold M normal to ξ in a Sasakian manifold is said to be a C-totally

real submanifold. In this case, ϕ maps any tangent space of M into the normal

space, that is, ϕ(TpM) ⊂ T⊥p M , for every p ∈M .

For submanifolds tangent to the structure vector field ξ, there are different

classes of submanifolds. We mention the following:

(i) A submanifold M tangent to ξ is called an invariant submanifold if ϕ pre-

serves the tangent space of M , that is, ϕ(TpM) ⊂ TpM , for every p ∈M .

(ii) A submanifold M tangent to ξ is called an anti-invariant submanifold if ϕ

maps any tangent space of M into the normal space, that is, ϕ(TpM) ⊂
T⊥p M , for every p ∈M .

(iii) A submanifold M tangent to ξ is called a contact CR-submanifold if there

exists a pair of orthogonal distributions D : p→ Dp and D⊥ : p→ D⊥p , ∀ p ∈
M such that TM = D⊕D⊥⊕〈ξ〉, where 〈ξ〉 is the 1-dimensional distribution

spanned by the structure vector field ξ, D is invariant, i.e., ϕD = D and D⊥

is anti-invariant, i.e., ϕD⊥ ⊆ T⊥M .

There are other classes of submanifolds tangent to ξ, which we discuss in the

next section.

3. Slant and pseudo-slant immersions

Slant immersions in complex geometry were defined and studied by B.-Y.

Chen [7], [8]. Later on, A. Lotta introduced the notion of slant immersions of

a Riemannian manifold into an almost contact metric manifold, and he discussed

some properties of such immersions [20]. In [5], Cabrerizo et al. studied slant

submanifolds of Sasakain manifolds.
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A submanifold M tangent to ξ is said to be slant if, for any p ∈ M and

any X ∈ TpM , linearly independent to ξ, the angle between ϕX and TpM is

a constant θ ∈ [0, π/2], which is called the slant angle of M in M̃ . Invariant

and anti-invariant immersions are slant immersions with slant angle θ = 0 and

θ = π/2, respectively. A slant immersion which is not invariant nor anti-invariant

is called a proper slant immersion.

We recall the following result for slant submanifolds.

Theorem 3.1 ([5]). Let M be a submanifold of an almost contact metric

manifold M̃ , such that ξ ∈ Γ(TM). Then M is slant if and only if there exists

a constant λ ∈ [0, 1] such that

T 2 = λ(−I + η ⊗ ξ). (3.1)

Furthermore, if θ is slant angle, then λ = cos2 θ.

The following relations are straightforward consequence of (3.1):

g(TX, TY ) = cos2 θ[g(X,Y )− η(X)η(Y )], (3.2)

g(FX,FY ) = sin2 θ[g(X,Y )− η(X)η(Y )], (3.3)

for any X,Y ∈ Γ(TM).

Now, for a slant submanifold M , we prove the following result for later use.

Theorem 3.2. Let M be a proper slant submanifold of an almost contact

metric manifold M̃ . Then

(a) tFX = sin2 θ(−X + η(X)ξ), (b) fFX = −FTX, (3.4)

for any X ∈ Γ(TM).

Proof. From (2.5) (a), we have ϕ2X = ϕTX +ϕFX, for any X ∈ Γ(TM).

Using (2.1) and again by (2.5), we derive

−X + η(X)ξ = T 2X + FTX + tFX + fFX.

Then, using Theorem 3.1 and equating the tangential and normal components,

we get the desired result. �

Pseudo-slant submanifolds were defined by Carriazo in [6] under the name

of anti-slant submanifolds as a particular class of bi-slant submanifolds. How-

ever, the term “anti-slant” makes it seem as though there is no slant part, which
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is not the case. Later, he called these classes of submanifolds as pseudo-slant

submanifolds. He defined these submanifolds as follows:

A submanifold M of an almost contact metric manifold M̃ is said to be

a pseudo-slant submanifold if there exists a pair of orthogonal distributions D⊥

and Dθ on M such that TM = D⊥ ⊕ Dθ ⊕ 〈ξ〉, D⊥ is anti-invariant, that is,

ϕ(D⊥) ⊂ T⊥M and Dθ is slant with angle θ 6= 0.

In this case, we call the angle θ the slant angle of the submanifold M . Denote

the dimensions of D⊥ and Dθ by n1 and n2, respectively. Then invariant (resp.

anti-invariant) and proper slant submanifolds are the special cases of pseudo-

slant submanifolds with n1 = 0, θ = 0 (resp. n2 = 0) and n1 = 0, respectively.

Similarly, contact CR-submanifolds are also the special cases of pseudo-slant sub-

manifolds with slant angle θ = 0. A pseudo-slant submanifold is said to be proper

if neither any ni = 0, i = 1, 2, nor θ = 0 or π/2.

A pseudo-slant submanifold M is said to be mixed totally geodesic if

σ(X,Z) = 0, for any X ∈ Γ(Dθ ⊕ 〈ξ〉) and Z ∈ Γ(D⊥).

Let M be a pseudo-slant submanifold of an almost contact metric mani-

fold M̃ . Then the normal bundle T⊥M can be decomposed as

T⊥M = ϕD⊥ ⊕ FDθ ⊕ ν, ϕD⊥ ⊥ FDθ,

where ν is the normal invariant subbundle under ϕ.

For the examples of slant submanifolds of Sasakian manifolds, we refer to [5].

In the following, we construct an example of a pseudo-slant submanifold in

a Sasakian manifold.

Example 3.1. Consider R9 with its usual Sasakian structure (ϕ, ξ, η, g), given

by

ϕ

{
4∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+ Z

∂

∂z

}
=

4∑
i=1

(
Yi

∂

∂xi
−Xi

∂

∂yi

)
+

4∑
i=1

Yiy
i ∂

∂z
,

ξ = 2
∂

∂z
, η =

1

2

(
dz −

4∑
i=1

yidxi

)
,

g = η ⊗ η +
1

4

4∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi),

where (x1, . . . , x4, y1, . . . , y4, z) are Cartesian coordinates. Now, for any θ ∈
[0, π2

)
,

x(u, v, w, s, z) = 2(u, 0, w, 0, 0, v, s cos θ, s sin θ, z)
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defines a 5-dimensional proper pseudo-slant submanifold M . Then the tangent

space of M spanned by the orthogonal tangent vectors

e1 = 2

(
∂

∂x1
+ y1

∂

∂z

)
, e2 = 2

∂

∂y2
, e3 = 2

(
∂

∂x3
+ y3

∂

∂z

)
,

e4 = cos θ

(
2
∂

∂y3

)
+ sin θ

(
2
∂

∂y4

)
, e5 = 2

∂

∂z
= ξ.

Thus the tangent space TM = D⊥ ⊕ Dθ ⊕ 〈ξ〉, where D⊥ = Span{e1, e2} and

Dθ = Span{e3, e4}.

Now, we have the following useful results for pseudo-slant submanifolds.

Proposition 3.1 ([19]). Let M be a pseudo-slant submanifold of a Sasakian

manifold M̃ . Then, the anti-invariant distribution D⊥ is always integrable.

Lemma 3.1. On a pseudo-slant submanifold M of a Sasakian manifold M̃ ,

we have

g(∇XZ, Y ) = sec2 θ{g(σ(X,Z), FTY )− g(σ(X,TY ), ϕZ)} (3.5)

for any X,Y ∈ Γ(Dθ ⊕ 〈ξ〉) and Z ∈ Γ(D⊥).

Proof. From (2.4) and (2.2), we have

g(∇XY,Z) = g(∇̃XY,Z) = g(ϕ∇̃XY, ϕZ) = g(∇̃XϕY, ϕZ)− g((∇̃Xϕ)Y, ϕZ)

for any X,Y ∈ Γ(Dθ ⊕ 〈ξ〉) and Z ∈ Γ(D⊥). Using (2.5) (a) and (2.3), we derive

g(∇XY, Z) = g(∇̃XTY, ϕZ) + g(∇̃XFY, ϕZ).

Then, from (2.4) and the covariant derivative property of ϕ, we find

g(∇XY,Z) = g(σ(X,TY ), ϕZ)− g(FY, ϕ∇̃XZ)− g(FY, (∇̃Xϕ)Z).

Using (2.3) and (2.2), we obtain

g(∇XY,Z) = g(σ(X,TY ), ϕZ) + g(ϕFY, ∇̃XZ)

= g(σ(X,TY ), ϕZ) + g(tFY, ∇̃XZ) + g(fFY, ∇̃XZ).

Thus by Theorem 3.2, we get

g(∇XY, Z) = g(σ(X,TY ), ϕZ)− sin2 θg(Y, ∇̃XZ)

− η(Y ) sin2 θg(∇̃Xξ, Z)− g(FTY, ∇̃XZ).

Using (2.3), (2.4) and the orthogonality of two distributions, we derive

g(∇XY, Z) = g(σ(X,TY ), ϕZ) + sin2 θg(∇̃XY,Z)− g(σ(X,Z), FTY ).

Hence, the assertion follows from the last relation. �
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Proposition 3.2. Let M be a pseudo-slant submanifold of a Sasakian man-

ifold M̃ . Then

cos2 θg([X,Y ], Z) = g(σ(X,TY ), ϕZ)− g(σ(Y, TX), ϕZ)

+ g(σ(Y,Z), FTX)− g(σ(X,Z), FTY ), (3.6)

for any X,Y ∈ Γ(Dθ ⊕ 〈ξ〉) and Z ∈ Γ(D⊥).

Proof. By Lemma 3.1, we have

g(∇XY,Z) = sec2 θ{g(σ(X,TY ), ϕZ)− g(σ(X,Z), FTY )} (3.7)

for any X,Y ∈ Γ(Dθ ⊕ 〈ξ〉) and Z ∈ Γ(D⊥). By interchanging X by Y in (3.7),

we find

g(∇YX,Z) = sec2 θ{g(σ(Y, TX), ϕZ)− g(σ(Y, Z), FTX)}. (3.8)

Thus the result follows from (3.7) and (3.8). �

4. Warped product pseudo-slant submanifolds

Recently, Sahin proved the non-existence of warped product semi-slant sub-

manifolds in Kaehler manifolds [23]. Then, he considered warped product pseudo-

slant (hemi-slant) submanifolds of Kaehler manifolds [24]. He proved many in-

teresting results, including characterization and inequality for such submanifolds,

by using the mixed totally geodesic condition. In the context of almost contact

metric manifolds, we have seen that there do not exist warped product semi-

slant submanifolds other than contact CR-warped products in Sasakian manifolds

[1], [25]. We have also proved the non-existence of warped product pseudo-slant

submanifolds of the form M⊥ ×f Mθ of a Sasakian manifold M̃ in [25], where

M⊥ and Mθ are anti-invariant and proper slant submanifolds of a Sasakian man-

ifold M̃ , respectively. In this paper, we consider the warped products of the form

Mθ ×f M⊥.

First, we give the following example of a warped product pseudo-slant sub-

manifold of an almost contact metric manifold.

Example 4.1. Consider a submanifold M of R7 with the Cartesian coordi-

nates (x1, y1, x2, y2, x3, y3, z) and the almost contact structure

ϕ

(
∂

∂xi

)
=

∂

∂yi
, ϕ

(
∂

∂yj

)
= − ∂

∂xj
, ϕ

(
∂

∂z

)
= 0, 1 ≤ i, j ≤ 3.



340 Siraj Uddin and Falleh R. Al-Solamy

For any vector field X = λi
∂
∂xi

+ µj
∂
∂yj

+ ν ∂
∂z ∈ Γ(TR7), then we have

g(X,X) = λ2i + µ2
j + ν2, g(ϕX,ϕX) = λ2i + µ2

j

and

ϕ2(X) = −λi
∂

∂xi
− µj

∂

∂yj
= −X + η(X)ξ

for any i, j = 1, 2, 3. It is clear that g(ϕX,ϕX) = g(X,X) − η2(X). Thus,

(ϕ, ξ, η, g) is an almost contact metric structure on R7. Let us consider the im-

mersion χ of M into R7 as

χ(u, v, w, z) = (v, u, u cosw,
√

3 v cosw, u sinw,
√

3 v sinw, z).

Then the tangent bundle TM of M is spanned by the following orthogonal vector

fields:

e1 =
∂

∂y1
+ cosw

∂

∂x2
+ sinw

∂

∂x3
, e2 =

∂

∂x1
+
√

3 cosw
∂

∂y2
+
√

3 sinw
∂

∂y3
,

e3 = −u sinw
∂

∂x2
−
√

3 v sinw
∂

∂y2
+ u cosw

∂

∂x3
+
√

3 v cosw
∂

∂y3
; e4 =

∂

∂z
.

Then, with respect to the given almost contact structure, we obtain

ϕe1 = − ∂

∂x1
+ cosw

∂

∂y2
+ sinw

∂

∂y3
,

ϕe2 =
∂

∂y1
−
√

3 cosw
∂

∂x2
−
√

3 sinw
∂

∂x3
, ϕe4 = 0,

ϕe3 = −u sinw
∂

∂y2
+
√

3 v sinw
∂

∂x2
+ u cosw

∂

∂y3
−
√

3 v cosw
∂

∂x3
.

Since ϕe3 is orthogonal to TM , D⊥ = Span{e3} is an anti-invariant distribution,

and Dθ = Span{e1, e2} is a proper slant distribution with slant angle θ = 5π
12 such

that ξ = e4 tangent to Dθ. Hence M is a proper pseudo-slant submanifold of R7.

It is easy to show that the slant distribution Dθ⊕ < ξ > is integrable. We denote

the integral manifolds of D⊥ and Dθ⊕ < ξ > by M⊥ and Mθ, respectively. Then

the metric tensor g of the product manifold M is given by

g = dz2 + 2du2 + 4dv2 + (u2 + 3v2)dw2 = g1 +
(√

u2 + 3v2
)2
g2,

where g1 = dz2 + 2du2 + 4dv2 is the metric tensor of Mθ and g2 is the metric

tensor of M⊥. Thus M is a warped product pseudo-slant submanifold of the form

Mθ ×f M⊥ with warping function f =
√
u2 + 3v2.
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Now, we have the following results for later use.

Lemma 4.1. Let M = Mθ × fM⊥ be a warped product submanifold of

a Sasakian manifold M̃ such that ξ ∈ Γ(TMθ), where M⊥ and Mθ are anti-

invariant and proper slant submanifolds of M̃ , respectively. Then

(i) g(σ(X,Y ), ϕZ) = g(σ(X,Z), FY );

(ii) g(σ(Z,W ), FTX) = g(σ(Z, TX), ϕW )− cos2 θ(X ln f)g(Z,W );

(iii) g(σ(Z,W ), FX) = g(σ(Z,X), ϕW ) + {(TX ln f) + η(X)}g(Z,W );

or any X,Y ∈ Γ(TMθ) and Z,W ∈ Γ(TM⊥).

Proof. From (2.4), we have

g(σ(X,Y ), ϕZ) = g(∇̃XY, ϕZ)

for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥). Then, using (2.2) and the covariant

derivative property of ϕ, we obtain

g(σ(X,Y ), ϕZ) = g((∇̃Xϕ)Y,Z)− g(∇̃XϕY,Z).

Using (2.3) and the fact that ξ is tangent to Mθ, we derive

g(σ(X,Y ), ϕZ) = g(TY, ∇̃XZ) + g(FY, ∇̃XZ). (4.1)

Hence, the first part of the lemma follows from (4.2) by using (2.4) and (1.1). For

the other parts, for any Z,W ∈ Γ(TM⊥) and X ∈ Γ(TMθ), we have

g(σ(Z,W ), FTX) = g(σ(Z,W ), ϕTX) = g(∇̃ZW,ϕTX)− g(∇ZW,T 2X).

Using (2.2), (3.1) and the covariant derivative property of ϕ, we derive

g(σ(Z,W ), FTX) =− g(∇̃ZϕW,TX) + g((∇̃Zϕ)W,TX)

+ cos2 θg(∇ZW,X) + η(X) cos2 θg(∇Zξ,W ).

Thus from (2.3), (2.4) and the fact that ξ is tangent to Mθ, we obtain

g(σ(Z,W ), FTX) = g(AϕWZ, TX)− cos2 θg(W,∇ZX). (4.2)

Hence, the second part follows from (4.3) and (1.1). If we replace X by TX in (ii),

then we have

g(σ(Z,W ), FX) = g(σ(Z,X), ϕW )− η(X)g(σ(Z, ξ), ϕW ) + (TX ln f)g(Z,W ).

Part (iii) of the lemma follows from the above relation by using the fact that for

a Sasakian manifold, we have σ(Z, ξ) = −ϕZ. Thus, the proof is complete. �



342 Siraj Uddin and Falleh R. Al-Solamy

Now, we give the following characterization for pseudo-slant submanifolds.

Theorem 4.1. Let M be a proper pseudo-slant submanifold of a Sasakian

manifold M̃ such that ξ is tangent to the slant distribution Dθ. Then M is

a locally warped product manifold of the form Mθ×µM⊥ such that Mθ is a proper

slant submanifold and M⊥ is an anti-invariant submanifold of M̃ if and only if

AϕZTX −AFTXZ = cos2 θX(µ)Z, (4.3)

for any X ∈ Γ(Dθ ⊕ 〈ξ〉) and Z ∈ Γ(D⊥), where µ is a function on M such that

W (µ) = 0, for any W ∈ Γ(D⊥).

Proof. Let M = Mθ×fM⊥ be a warped product submanifold of a Sasakian

manifold M̃ . Then, for any X,Y ∈ Γ(TMθ) and Z ∈ Γ(TM⊥), we have

g(AϕZTX, Y ) = g(h(TX, Y ), ϕZ) = g(∇̃Y TX,ϕZ).

Then, from (2.2) and the covariant derivative of ϕ, we have

g(AϕZTX, Y ) = g((∇̃Y ϕ)TX,Z)− g(∇̃Y ϕTX,Z).

Using (2.5) (a) and (2.3), we get

g(AϕZTX, Y ) = −g(∇̃Y T 2X,Z)− g(∇̃Y FTX,Z).

By Theorem 3.1, the above equation takes the form

g(AϕZTX, Y ) = cos2 θ g(∇̃YX,Z)− cos2 θ η(X)g(∇̃Y ξ, Z) + g(AFTXY,Z).

From the symmetry of the shape operator A and the characteristic equation of

the Sasakian structure, we obtain

g(AϕZTX −AFTXZ, Y ) = − cos2 θ g(X,∇Y Z).

Then, by using (1.1) and the orthogonality of vector fields, we get

g(AϕZTX −AFTXZ, Y ) = 0.

Thus, we conclude that AϕZTX − AFTXZ lies in TM⊥. This fact can also be

obtained from Lemma 4.1 (i) by interchanging Y by TY . Using this fact with

Lemma 4.1 (ii), we get (4.3).
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Conversely, if M is a pseudo-slant submanifold with the slant distribution Dθ

tangent to ξ and the anti-invariant distribution D⊥ such that (4.3) holds, then,

by Proposition 3.2, we have

cos2 θ g([X,Y ], Z) = g(AϕZTY −AFTY Z,X)− g(AϕZTX −AFTXZ, Y )

for any X,Y ∈ Γ(Dθ ⊕ 〈ξ〉) and Z ∈ Γ(D⊥). Using (4.3) and the orthogonality

of vector fields, we get either cos θ = 0 or g([X,Y ], Z) = 0. Since M is a proper

pseudo-slant submanifold, we get that θ 6= π
2 , thus we conclude that Dθ ⊕ 〈ξ〉 is

integrable. Also, from Lemma 3.1, we have

cos2 θ g(∇XY, Z) = g(AϕZTY −AFTY Z,X).

Thus, using the given conditions of (4.3), we get either cos2 θ=0 or g(∇XY, Z)=0,

but, since M is a proper pseudo-slant submanifold, we get that θ 6= π
2 , which

means that the leaves of the distribution Dθ⊕〈ξ〉 are totally geodesic in M . Also,

we know that D⊥ is integrable (Proposition 3.1), and if we consider σ⊥ be the

second fundamental form of a leaf M⊥ of D⊥ in M , then, for any X ∈ Γ(Dθ⊕〈ξ〉)
and Z,W ∈ Γ(D⊥), we have

g(σ⊥(Z,W ), X) = g(∇ZW,X) = g(∇̃ZW,X).

Then, from (2.2), we get

g(σ⊥(Z,W ), X) = g(ϕ∇̃ZW,ϕX)− η(X)g(∇̃Zξ,W ).

Using (2.3) and (2.5) (a), we derive

g(σ⊥(Z,W ), X) = g(∇̃ZϕW,TX) + g(∇̃ZϕW,FX)− g((∇̃Zϕ)W,FX).

Again by using (2.3), (2.4) and the fact that ξ is tangent to Mθ, we obtain

g(σ⊥(Z,W ), X) = −g(ϕW, ∇̃ZTX)− g(ϕW, ∇̃ZFX)

= −g(ϕW, σ(Z, TX)) + g(W, ∇̃ZϕFX)− g(W, (∇̃Zϕ)FX).

Then, from (2.5) (b) and (2.3), we arrive at

g(σ⊥(Z,W ), X) = −g(AϕWTX,Z) + g(W, ∇̃ZtFX) + g(W, ∇̃ZfFX).

Thus, by Theorem 3.2, we get

g(σ⊥(Z,W ), X) =− g(AϕWTX,Z) + sin2 θg(∇̃ZW,X)

− η(X) sin2 θg(W, ∇̃Zξ)− g(W, ∇̃ZFTX).
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Using (2.3), (2.4) and the symmetry of the shape operator, we obtain

cos2 θ g(σ⊥(Z,W ), X) = −g(AϕWTX −AFTXW,Z).

Then, from (4.3), we derive

g(σ⊥(Z,W ), X) = −(Xµ)g(Z,W ),

which means that σ⊥(Z,W ) = −g(Z,W )~∇µ, where ~∇µ is the gradient of the

function µ. Thus M⊥ is a totally umbilical submanifold of M with mean curvature

vector H⊥ = −~∇µ. We can show that H⊥ is parallel with the normal connection

DN of M⊥ in M (see [26]). Thus the leaves of D⊥ are totally umbilical with

parallel mean curvature H⊥ in M , that is, M⊥ is an extrinsic sphere in M .

Hence, by a result of Hiepko [18], M is a locally warped product manifold of

the form Mθ ×µM⊥. This completes the proof of the theorem. �

Now, we construct the following frame fields on warped product pseudo-

slant submanifolds. Let M = Mθ ×f M⊥ be an m-dimensional warped product

pseudo-slant submanifold of a (2n + 1)-dimensional Sasakian manifold M̃ such

that M⊥ is an n1-dimensional anti-invariant submanifold of M̃ , and Mθ is a

proper slant submanifold of M̃ with the dimension n2 = 2p + 1 such that ξ is

tangent to Mθ. Let us consider the tangent spaces of M⊥ and Mθ by D⊥ and

Dθ ⊕ 〈ξ〉 = Ξ instead of TM⊥ and TMθ, respectively. We set the orthonormal

frame fields of D⊥ and Dθ⊕〈ξ〉 = Ξ, respectively, as {e1, e2, . . . , en1
} and {en1+1 =

e∗1, . . . , en1+p = e∗p, en1+p+1 = e∗p+1 = sec θTe∗1, . . . , en1+2p = e∗2p = sec θTe∗p, em =

e∗2p+1 = ξ}, where θ is the slant angle of the immersion. Then the orthonormal

frame fields of the normal subbundles of ϕD⊥, FDθ and ν, respectively, are

{em+1 = ẽ1 = ϕe1, em+2 = ẽ2 = ϕe2, . . . , em+n1
= ẽn1

= ϕen1
}, {em+n1+1 =

ẽn1+1 = csc θFe∗1, em+n1+2 = ẽn1+2 = csc θFe∗2, . . . , em+n1+p = ẽn1+p =

csc θFe∗p, em+n1+p+1 = ẽn1+p+1 = csc θ sec θFTe∗1, . . . , e2m−1 = ẽm−1 =

csc θ sec θFTe∗p} and {e2m = ẽm, . . . , e2n+1 = ẽ2(n−m+1)}.

Theorem 4.2. Let M = Mθ ×f M⊥ be a mixed totally geodesic warped

product submanifold of a Sasakian manifold M̃ such that ξ ∈ Γ(TMθ), where

Mθ is a proper slant submanifold, and M⊥ is an n1-dimensional anti-invariant

submanifold of M̃ . Then we have the following:

(i) The squared norm of the second fundamental form of M satisfies

‖σ‖2 ≥ n1 cot2 θ ‖~∇ ln f‖2, (4.4)

where ~∇ ln f is the gradient of ln f along Mθ.
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(ii) If the equality sign in (4.5) holds identically, then Mθ is totally geodesic

in M̃ , and M⊥ is a totally umbilical submanifold of M̃ .

Proof. From the definition of σ, we have

‖σ‖2 =

m∑
i,j=1

g(σ(ei, ej), σ(ei, ej)) =

2n+1∑
r=m+1

m∑
i,j=1

g(σ(ei, ej), er).

Using the frame fields of D⊥ and Dθ ⊕ 〈ξ〉, we find

‖σ‖2 =

2n+1∑
r=m+1

n1∑
l,k=1

g(σ(el, ek), er)
2 +

2n+1∑
r=m+1

2p+1∑
i,j=1

g(σ(e∗i , e
∗
j ), er)

2.

The above relation can be separated for the φD⊥, FDθ and µ components as

follows:

‖σ‖2 =

n1∑
r=1

n1∑
l,k=1

g(σ(el, ek), ẽr)
2 +

2p+n1∑
r=n1+1

n1∑
l,k=1

g(σ(el, ek), ẽr)
2

+

2(n−m+1)∑
r=m

n1∑
l,k=1

g(σ(el, ek), ẽr)
2 +

n1∑
r=1

2p+1∑
i,j=1

g(σ(e∗i , e
∗
j ), ẽr)

2

+

2p+n1∑
r=n1+1

2p+1∑
i,j=1

g(σ(e∗i , e
∗
j ), ẽr)

2 +

2(n−m+1)∑
r=m

2p+1∑
i,j=1

g(σ(e∗i , e
∗
j ), ẽr)

2. (4.5)

We shall leave all other positive terms except the second term to be evaluated,

then we obtain

‖σ‖2 ≥
2p+n1∑
r=n1+1

n1∑
l,k=1

g(σ(el, ek), ẽr)
2

=

p+n1∑
r=n1+1

n1∑
l,k=1

g(σ(el, ek), ẽr)
2 +

2p+n1∑
r=n1+p+1

n1∑
l,k=1

g(σ(el, ek), ẽr)
2.

Then, from the adopted frame of FDθ, we obtain

‖σ‖2 ≥
p∑
i=1

n1∑
l,k=1

g(σ(el, ek), csc θFe∗i )
2 +

p∑
i=1

n1∑
l,k=1

g(σ(el, ek), csc θ sec θFTe∗i )
2.
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Hence, by Lemma 4.1 (ii)–(iii), we derive

‖σ‖2 ≥ csc2 θ

p∑
i=1

n1∑
l,k=1

(Te∗i ln f + η(e∗i ))
2g(el, ek)2

+ cot2 θ

p∑
i=1

n1∑
l,k=1

(e∗i ln f)2g(el, ek)2

= csc2 θ

2p+1∑
i=1

n1∑
l,k=1

(Te∗i ln f)2g(el, ek)2 + n1 csc2 θ

+ cot2 θ

p∑
i=1

n1∑
l,k=1

(e∗i ln f)2g(el, ek)2

− csc2 θ

2p+1∑
i=p+1

n1∑
l,k=1

(Te∗i ln f + η(e∗i ))
2g(el, ek)2.

Using the considered frame fields, the above expression can be written as

‖σ‖2 ≥ n1 csc2 θ

2p+1∑
i=1

g(e∗i , T ~∇ ln f)2 + n1 csc2 θ + n1 cot2 θ

p∑
i=1

(e∗i ln f)2

− n1 csc2 θ

p∑
i=1

g(e∗p+i, T ~∇ ln f)2 − n1 csc2 θ.

To satisfy (2.8), the above inequality can be simplified as

‖σ‖2 ≥ n1 csc2 θ‖T ~∇ ln f‖2 + n1 cot2 θ

p∑
i=1

(e∗i ln f)2

− n1 csc2 θ sec2 θ

p∑
i=1

g(Te∗i , T
~∇ ln f)2.

Using (3.2) and the fact that for a warped product submanifold of a Sasakian

manifold, ξ ln f = 0, we arrive at

‖σ‖2 ≥ n1 cot2 θ‖~∇ ln f‖2 + n1 cot2 θ

p∑
i=1

(e∗i ln f)2 − n1 cot2 θ

p∑
i=1

(e∗i ln f)2,

which is inequality (i). If the equality holds in (i), then, from the leaving terms

of (4.5), we conclude that

σ(Ξ,Ξ) ⊥ FDθ, σ(Ξ,Ξ) ⊥ ν ⇒ σ(Ξ,Ξ) ∈ ϕD⊥, (4.6)

and

σ(D⊥,D⊥) ⊥ ϕD⊥, σ(D⊥,D⊥) ⊥ ν ⇒ σ(D⊥,D⊥) ∈ FDθ. (4.7)
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Also, from the fourth term of (4.6) and Lemma 4.1 (i), we get σ(Ξ,Ξ) ⊥ ϕD⊥.

Thus, by using (4.7) and the fact that σ(Ξ,Ξ) ⊥ ϕD⊥, we get σ(Ξ,Ξ) = 0,

which implies that Mθ is totally geodesic in M̃ due to Mθ being totally geodesic

in M [2], [9]. Furthermore, since M is mixed geodesic, from Lemma 4.1 (ii) and

(4.7), we have

g(σ(Z,W ), FTX) = − cos2 θ(X ln f)g(Z,W ) (4.8)

for any Z,W ∈ Γ(D⊥) and X ∈ Γ(Ξ). Hence, since M⊥ is totally umbilical

in M [2], [9], it follows that M⊥ is totally umbilical in M̃ . Thus, the proof is

complete. �
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