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Cocycles on cancellative semigroups

By T. M. K. DAVISON (Hamilton) and B. R. EBANKS (Louisville)

Abstract. The main result proved is that every symmetric cocycle on a can-
cellative abelian semigroup into a divisible abelian group must be a coboundary (i.e.,
a Cauchy difference). This result (with the additional hypothesis that the range is
uniquely divisible) was reported by M. Hossz�u in 1971, but there is a gap in his proof.

1. Introduction

Let M denote an abelian monoid, with 0 as identity element, and let
G be an abelian group. A function F : M2 → G is called a cocycle (on M
to G) if for all x, y, z ∈ M

(1) F (x, y) + F (x + y, z) = F (x, y + z) + F (y, z).

A cocycle is symmetric if, in addition,

(2) F (x, y) = F (y, x)

for all x, y ∈ M .
For each function f from M to G we define f̂ : M2 → G by

(3) f̂(x, y) := f(x) + f(y)− f(x + y).

Then it is easy to verify that f̂ is a symmetric cocycle on M to G. We say
a symmetric cocycle F on M to G is a coboundary if there is a function f

from M to G such that F = f̂ on M2. It is clear that f̂ = ĝ if and only
if there is a homomorphism (i.e., an additive function) A : M → G such
that f = g + A on M .

We recall that an abelian group G is divisible if, given n ∈ N (=
{1, 2, 3, . . . }) and γ ∈ G there is an α ∈ G such that nα = γ. We note
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that α need not be unique; for example Q/Z is divisible. (Here Q and Z
are the additive groups of rationals and integers, respectively.)

The cocycle equation (1) has a long and rich history, with connections
to factor systems and group extensions (see e.g., Baer [2]), cohomology
theory (see e.g., Eilenberg and MacLane [6] and MacLane [13]), infor-
mation theory (see e.g., Ng [14] and Ebanks, Kannappan and Ng [5]),
formal groups (see Fröhlich [8]), the algebra of polyhedra (see Jessen
[11]), and Jordan derivations (see Davison [3]), among others. Among
the many results about solutions of the cocycle equation, we mention here
only a few. J. Erdös [7] proved that every symmetric cocycle on an
abelian group into a divisible abelian group is a coboundary. This result
was proved in a different way (along with other related results) by Jessen,
Karpf and Thorup [12]. In Ebanks [4] it was shown that the same is
true of symmetric cocycles on certain classes of abelian monoids.

The focus of our attention in the present paper is the following claim of
M. Hosszú [10]. Let M be a cancellative abelian monoid and G a uniquely
divisible abelian group; that is nα = γ has unique solution α, given γ ∈ G
and n ∈ N . (So G is in fact a vector space over the rationals.) Then every
symmetric cocycle on M into G is a coboundary. Unfortunately, the proof
given in [10] contains a gap (on page 214) where it is claimed that “by the
cancellation law f(x + y) may be defined uniquely by (7′) . . . ” In fact, if
x + y = x′+ y′ with neither x nor y equal to either x′ or y′, then (7′) does
not show that f(x + y) is well-defined.

Our purpose in this paper is to give a correct proof of (a stronger ver-
sion of) Hosszú’s statement. We strengthen it by dropping the hypothesis
of uniqueness of divisibility in G.

The main result proved here is the following.

Theorem. If M is a cancellative abelian monoid and G is a divisible
abelian group, then every symmetric cocycle on M to G is a coboundary.

Note that this theorem extends trivially to the case M is a cancellative
abelian semigroup. In case M comes without an identity, we adjoin an
identity 0 to M by defining 0+x = x+0 = x for all x ∈ M , and 0+0 = 0.
Then any symmetric cocycle F on M to G extends to a symmetric cocycle
F̄ on M ∪{0} to G by defining F̄ (x, 0) = F̄ (0, x) = F̄ (0, 0) = an arbitrary
element of G for all x ∈ M . By the theorem, F̄ is a coboundary, hence so
is F .

In Section 2 we show how, if a certain extension property holds, Zorn’s
Lemma (transfinite induction) may be used to carry out the proof. In
Section 3 we prove the result when M is cyclic, and in Section 4 we show
that the extension property does indeed hold true. Finally, in Section 5,
we discuss the situation for (1) without (2).
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Notation. For x ∈ M, 〈x〉 = N0x is the submonoid generated by x.
Of course N0 = {0, 1, 2, 3, . . . } is the basic cyclic monoid of the natural
numbers under addition.

2. Generalities and Zorn

Most of the results proved here use only the fact F is a symmetric
cocycle; the structures of the domain and codomain are irrelevant as long
as they are abelian.

Lemma 1. Suppose F is a symmetric cocycle on M to G. Then

F (x, 0) = F (0, z) = F (0, 0),

for all x, z ∈ M . Moreover, if F is a coboundary, say F = f̂ , then

F (x, 0) = F (0, y) = f(0)

for all x, y ∈ M .

Proof. The first statement follows from (1) immediately by putting
y = 0. The second part follows from (3) by putting y = 0, respectively
x = 0.

Lemma 2. Suppose F is a symmetric cocycle on M to G. Then for
all x, y, u, v in M

F (x + y, u + v) = F (x + u, y + v) + F (x, u) + F (y, v)− F (x, y)− F (u, v).

Proof. Using (1) we have

F (u, v)+F (x, y)+F (x+y, u+v) = F (u, v)+F (x, y+u+v)+F (y, u+v).

Then using (2), and (1) again, we have

F (u, v)+F (x, y)+F (x + y, u + v)=F (u, v)+F (u + v, y)+F (x, y + u + v)

=F (u, y + v)+F (v, y)+F (x, y + u + v)

=F (y, v)+F (x, u + y + v)+F (u, y + v)

=F (y, v)+F (x, u)+F (x + u, y + v).
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Lemma 3. Let F be a symmetric cocycle on M to G. Suppose X, Y

are submonoids of M and h : X + Y → G is a function such that F and ĥ
agree when restricted to (X ∪ Y )2. Then F and ĥ agree on (X + Y )2.

Proof. Let x, x′ ∈ X and y, y′ ∈ Y . Then (x+y, x′+y′) ∈ (X+Y )2.
By Lemma 2,

F (x+y, x′+y′) = F (x+x′, y+y′)+F (x, x′)+F (y, y′)−F (x, y)−F (x′, y′).

Now each of x + x′, y + y′, x, x′, y, y′ belongs to X ∪ Y so using the fact
that F = ĥ on (X ∪ Y )2 we deduce that

F (x + y, x′ + y′)=[h(x + x′) + h(y + y′)− h(x + x′ + y + y′)]

+ [h(x)+h(x′)−h(x + x′)]+[h(y) + h(y′)−h(y+y′)]

− [h(x) + h(y)−h(x + y)]−[h(x′)+h(y′)−h(x′+y′)]

=h(x + y) + h(x′ + y′)− h(x + x′ + y + y′)= ĥ(x+y, x′+y′).

So F = ĥ on (X + Y )2 as claimed.
We now introduce the extension property. Suppose F is a symmetric

cocycle on M to G. We say that the pair (S, f) is a coboundary pair for F

if S is a submonoid of M,f is a function from S to G and F = f̂ on S2. If
(S, f) and (T, g) are coboundary pairs for F , then we define ≤ as follows:
(S, f) ≤ (T, g) if S ⊂ T and g agrees with f on S. Finally, we say F has
the extension property if whenever (S, f) is a coboundary pair for F and
x ∈ M \S there is a function h : 〈x〉+S → G such that (S, f) ≤ (〈x〉+S, h).

Lemma 4. Suppose F is a symmetric cocycle on M to G. Suppose Λ is
a linearly ordered set and that {(Sλ, fλ) : λ ∈ Λ} is a chain of coboundary
pairs for F . Put S = ∪Sλ and f = ∪fλ, then (S, f) is a coboundary pair
for F , and (Sλ, fλ) ≤ (S, f) ∀λ ∈ Λ.

Proof. Let x, y ∈ S. Then there is a λ ∈ Λ such that x, y ∈ Sλ.
Thus

F (x, y) = f̂λ(x, y) = fλ(x) + fλ(y)− fλ(x + y)

= f(x) + f(y)− f(x + y) = f̂(x, y),

and so (S, f) is a coboundary pair.

Proposition 1. Suppose the symmetric cocycle F has the extension
property. Then F is a coboundary.

Proof. Lemma 4 shows that each chain of coboundary pairs for F
has a least upper bound, so by Zorn’s Lemma the collection of all cobound-
ary pairs has a maximal element, say (S, f). If S = M we are done, for
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then F = f̂ on M2 so F is a coboundary. If S 6= M , let x ∈ M \ S. Then
by the extension property (S, f) ≤ (〈x〉 + S, h). But this contradicts the
maximality of (S, f), so in fact M \ S = ∅.

The final result of this section does not mention cocycles but plays an
important role.

Lemma 5. Suppose S is a nonempty submonoid of the abelian monoid
M . Let x ∈ M and set Jx = {n ∈ N0 : (nx + S) ∩ S 6= ∅}. Then there is
a p ∈ N0 such that Jx = 〈p〉.

Proof. First we show that J = Jx is a submonoid of N0. Clearly
0 ∈ J . Suppose n, n′ ∈ J . Then there are s, s′ ∈ S such that nx + s ∈ S
and n′x + s′ ∈ S. Hence nx + s + n′x + s′ = (n + n′)x + (s + s′) ∈ S and
so n + n′ ∈ J .

Now if J ∩ N = ∅ then J = 〈0〉. If J ∩ N 6= ∅ let p ∈ J ∩ N be
the smallest element. We claim that J = 〈p〉. For suppose that n ∈ J .
Then n = qp + r for q, r ∈ N0 with 0 ≤ r < p. Also there is an s ∈ S
such that nx + s ∈ S, and similarly px + s0 ∈ S for some s0 ∈ S. Thus
nx + s + qs0 ∈ S. But nx + s + qs0 = q(px + s0) + s + rx, hence r ∈ J .
But r < p, so r = 0 else p is not least. Therefore n = qp ∈ 〈p〉.

3. The cyclic case

Proposition 2. Let M be a cyclic cancellative monoid and G a divis-
ible abelian group. Then every cocycle on M to G is a coboundary.

Proof. Let F be a cocycle on M to G. We will define a function f

such that F = f̂ (incidentally proving that F must be symmetric).

Case 1. Suppose M = 〈a〉 is finite. Then M is a finite cyclic group
of order m ≥ 1, say. Since G is divisible we can choose γ ∈ G such that

(4) mγ =
∑

x∈〈a〉
F (a, x).

We define f(a) := γ, and for n ∈ N ,

(5) f(na) := nf(a)−
n−1∑

j=1

F (a, ja).

This gives a rule for f but doesn’t show that f is a function. For this we
need to prove that if na = ka then f(na) = f(ka). Now na = ka (with
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n 6= k) if and only if n, k differ by a multiple of m, so it suffices to prove
that for every n

f((n + m)a) = f(na).

Now, according to (5),

f((n + m)a) = (n + m)f(a)−
n+m−1∑

j=1

F (a, ja)

= nf(a) + mf(a)−
n−1∑

j=1

F (a, ja)−
n+m−1∑

j=n

F (a, ja)

= f(na) + mf(a)−
∑

x∈〈a〉
F (a, x) = f(na)

by our choice of f(a). So f , given by (4) and (5), is a function. Ob-
serve that f(0) = f(ma) = F (a,ma) = F (a, 0), hence f(0) = F (0, 0) by
Lemma 1.

Case 2. Suppose M = 〈a〉 is infinite. Define f(0) := F (0, 0), f(a) = 0
and f(na) by (5). Note that na = ka implies n = k and thus f(na) =
f(ka), so f is a function.

We now show that in either case the function f is such that F = f̂ .
First, by Lemma 1 we have for all x, z ∈ 〈a〉

F (x, 0) = F (0, z) = F (0, 0) = f(0) = f(x) + f(0)− f(x)

= f(0) + f(z)− f(z) = f̂(x, 0) = f̂(0, z) = f̂(0, 0).

Next, for every n ∈ N

F (a, na) = f̂(a, na)

follows immediately from (5).
Assume now that for some k ∈ N

F (ka, na) = f̂(ka, na)

for all n ∈ N0. Then from (1)

F ((k + 1)a, na) = F (a + ka, na) = F (a, ka + na) + F (ka, na)− F (a, ka)

= f̂(a, (k + n)a) + f̂(ka, na)− f̂(a, ka) = f̂((k + 1)a, na)

for every n ∈ N0. Thus by induction on k the result is true for all k, n ∈ N0;
that is F = f̂ .
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Results very similar to Proposition 2 are known already. For example,
the following shows that the cancellativity hypothesis on a cyclic M can
be dropped if we assume that our cocycle is symmetric.

Proposition 2′. Let M be a cyclic monoid and G a divisible abelian
group. Then every symmetric cocycle on M to G is a coboundary.

Proof. Let F : M2 → G be a symmetric cocycle. If M is finite, then
it contains a minimal ideal. By Theorem 1 in [4], F is a coboundary.

If M is infinite, then it is isomorphic to N0. By Theorem 3 in [12], F
is a coboundary.

For other related remarks, see Section 5.

4. The general case

In view of Proposition 1 it suffices to prove the following result.

Proposition 3. Suppose F is a symmetric cocycle on the cancellative
abelian monoid M . Then F has the extension property.

Proof. Let (S, f) be a coboundary pair for F and suppose x ∈ M \S.
By Proposition 2 there is a function g : 〈x〉 → G such that F = ĝ on 〈x〉2.
We use f and g to define a rule h : 〈x〉+ S → G by

(6) h(mx + s) := mα + g(mx) + f(s)− F (mx, s).

What we have to do first is show there is an α ∈ G such that h is a
function. Then we show that (〈x〉+ S, h) is a coboundary pair for F such
that (S, f) ≤ (〈x〉+ S, h); that is, (〈x〉+ S, h) is an extension of (S, f).

Part I. We show that h is a function, for appropriate choice of α ∈ G.
Suppose that mx + s = m′x + s′ for m ≥ m′ ∈ N0 and s, s′ ∈ S. We need
to show that h(mx + s) = h(m′x + s′). By (6), that means we have to
prove

(7) mα + g(mx) + f(s)−F (mx, s) = m′α + g(m′x) + f(s′)−F (m′x, s′).

Now m = m′ + n for some n ∈ N0, so by cancellation nx + s = s′. By
Lemma 5, n ∈ Jx = 〈p〉 for some p ∈ N0. Thus n = qp for some q ∈ N0,
and px + s0 = t0 for some s0, t0 ∈ S.

If p = 0, then n = 0, m = m′, s = s′, and (7) is satisfied for arbitrary
α ∈ G.

Now suppose p > 0. Since G is divisible, we can choose α ∈ G such
that

(8) pα = F (px, s0)− g(px)− f(s0) + f(t0).
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With this α, we show that (7) holds. Using m = m′ + n and s′ = nx + s,
we can rewrite (7) as

nα + g((m′ + n)x) + f(s)− F (m′x + nx, s)

= g(m′x) + f(nx + s)− F (m′x, nx + s).

Since F is a cocycle, this is equivalent to

nα + g((m′ + n)x) + f(s)− F (nx, s)

= g(m′x) + f(nx + s)− F (m′x, nx).

And since F = ĝ on 〈x〉2, this reduces further to

(9) nα + f(s)− F (nx, s) = f(nx + s)− g(nx),

for all n ∈ Jx = 〈p〉.
Next, recalling that n = qp, that px + s0 = t0, that nx + s ∈ S, that

F is a cocycle, and that F = f̂ on S2, we calculate that

F (nx, s) = F (qs0, nx) + F (qs0 + nx, s)− F (qs0, nx + s)

= F (qs0, qpx) + F (qt0, s)− F (qs0, nx + s)

= F (qs0, qpx) + f(qt0) + f(s)− f(qt0 + s)

− f(qs0)− f(nx + s) + f(qt0 + s)

= F (qs0, qpx) + f(qt0)− f(qs0) + f(s)− f(nx + s).

Substituting this into (9) and using the symmetry of F , we find that it
suffices to prove

(10) F (qpx, qs0) = qpα + g(qpx) + f(qs0)− f(qt0)

for all q ∈ N0.
We complete Part I by establishing (10) by induction. For q = 0, it

is obviously true (cf. Lemma 1). For q = 1, it is true by (8), our choice of
α. Now assume (10) is valid for q = k ∈ N . By Lemma 2, we find that

F ((k + 1)px, (k + 1)s0) = F (kpx + px, ks0 + s0)

= F (kpx + ks0, px + s0) + F ((kpx, ks0) + F (px, s0)− F (kpx, px)

−F (ks0, s0) = [f(kt0) + f(t0)− f(kt0 + t0)] + [kpα + g(kpx)

+f(ks0)− f(kt0)] + [pα + g(px) + f(s0)− f(t0)]

−[g(kpx) + g(px)− g(kpx + px)]− [f(ks0) + f(s0)− f(ks0 + s0)]

= (k + 1)pα + g((k + 1)px) + f((k + 1)s0)− f(k + 1)t0),
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which is (10) for q = k + 1. Therefore (10) is proved, and this finishes
Part I.

Part II. We show that (〈x〉 + S, h) is an extension of (S, f). First,
put m = 0 in (6) to get

h(s) = g(0) + f(s)− F (0, s)

for all s ∈ S. In view of Lemma 1, this means h agrees with f on S. Also,
s = 0 in (6) yields

h(mx) = mα + g(mx) + f(0)− F (mx, 0) = mα + g(mx),

so ĥ = ĝ = F on 〈x〉2. Moreover, (6) can be written now as

F (mx, s) = h(mx) + h(s)− h(mx + s),

showing (since F is symmetric) that F agrees with ĥ on (〈x〉 ∪ S)2.
Finally, by Lemma 3, we see that F and ĥ agree on (〈x〉+S)2. In other

words, (〈x〉 + S, h) is a coboundary pair for F , and (S, f) ≤ (〈x〉 + S, h).
This completes the proof of Proposition 3.

Combining Propositions 1 and 3, we have proved our Theorem.

5. Cocycles without symmetry

From our result about symmetric cocycles, we can derive a result
about arbitrary cocycles if we place an additional hypothesis on the co-
domain. This observation was first made by Hosszú [9] and Aczél [1].
Recall that an abelian group G is uniquely 2-divisible if, given γ ∈ G, there
is a unique α ∈ G such that 2α = γ. This α can be denoted 1

2γ.

Corollary. Let M be a cancellative abelian monoid, and let G be a
divisible abelian group which is uniquely 2-divisible. Then every cocycle
F on M to G is of the form

(11) F = f̂ + A

for some f : M → G and skew-symmetric biadditive A : M2 → G.

Proof. We use the unique 2-divisibility of G to split F into symmet-
ric and skew-symmetric parts. Define H,A : M2 → G by

H(x, y) :=
1
2
[F (x, y) + F (y, x)], A(x, y) :=

1
2
[F (x, y)− F (y, x)].

Clearly, H is symmetric, A is skew-symmetric, and F = H + A. Fur-
thermore, since M is abelian, it is easy to check that both H and A are
cocycles. Hence H is a coboundary.
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It only remains to be shown that A is biadditive. Since A is skew-
symmetric, it suffices to prove that A is additive in one variable. This is
achieved by the following calculation, which uses (1) three times.

2A(x + y, z) = F (x + y, z)− F (z, x + y)

= [F (x, y + z) + F (y, z)− F (x, y)]− [F (z + x, y) + F (z, x)− F (x, y)]

= F (x, z + y)− F (x + z, y) + F (y, z)− F (z, x)

= [F (x, z)− F (z, y)] + F (y, z)− F (z, x) = 2A(x, z) + 2A(y, z).

Conversely, any function F given by (11), with A biadditive, is a cocycle.
This concludes the proof of the corollary.

Remark. By the splitting used in the proof above, we can also prove
the following consequence of Proposition 2′: Every cocycle on a cyclic
monoid into a divisible abelian group uniquely divisible by 2, is a cobound-
ary.
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