Publ. Math. Debrecen 91/3-4 (2017), 455–466 DOI: 10.5486/PMD.2017.7781

B-spectral theory of linear relations in complex Banach spaces

By MARCEL ROMAN (Iași) and ADRIAN SANDOVICI (Iași)

Abstract. Let \mathfrak{X} and \mathfrak{Y} be two complex Banach spaces. Let A be a multi-valued linear operator (a linear relation) from \mathfrak{X} to \mathfrak{Y} , and let B be an everywhere defined bounded operator also from \mathfrak{X} to \mathfrak{Y} . Operator B plays the role of a transition operator from \mathfrak{X} to \mathfrak{Y} . It is the main goal of the present note to study the basic spectral properties of A linked to the transition operator B.

1. Introduction

Let A and B two closed linear operators in a Banach space \mathfrak{X} with dom $A \subset$ dom B, where dom A and dom B stand for the domains of the definition of A and B, respectively. The set

 $\{\lambda \in \mathbb{C} : \lambda B - A \text{ has a single valued and bounded inverse on } \mathfrak{X}\}$

is called the *B* modified resolvent set of *A* (or simply the *B* resolvent set of *A*) and is denoted by $\rho_B(A)$. The bounded operator $(\lambda B - A)^{-1}$ is called the *B* modified resolvent of *A* (or simply the *B* resolvent of *A*). These notions have been used in the study of degenerate equations on Banach spaces (see [7] and the references therein).

However, a large number of partial differential equations arising in physics and in applied sciences can be only modeled by using two different Banach spaces, let say \mathfrak{X} and \mathfrak{Y} , and two different (possible multi-valued) linear operators, let

Mathematics Subject Classification: 47A10, 47A05, 47A25, 47A99.

Key words and phrases: linear relation, Banach space, B-resolvent set, B-pseudo-resolvent, B-spectrum.

say A and B from \mathfrak{X} to \mathfrak{Y} . More precisely, assume that A is a multi-valued linear operator (a linear relation) from \mathfrak{X} to \mathfrak{Y} , and B is an everywhere defined bounded operator also from \mathfrak{X} to \mathfrak{Y} ; the operator B can be seen as a transition operator from \mathfrak{X} to \mathfrak{Y} . The main goal of the present note consists in the study of the basic spectral properties of A linked to the transition operator B. Section 2 contains some basic material concerning closed multi-valued linear operators (linear relations) in Banach spaces (more details can be found for instance in [1],[6]). In the next section, the notions of B-regular points of A and the B-resolvent set of A are introduced and studied. In Section 4, the B-pseudo-resolvent of A is defined, and some links with the previous notions are established. Finally, the B-spectrum of A is discussed in Section 5.

The results obtained in this note complete the corresponding ones in [2], and they are strongly related to concepts from various spectral problems in applied sciences (for related works see, for instance, [7], [8], [14], [16]). In particular, the study of different types of degenerate equations on Banach complex spaces could be done using the concepts and results obtained in the present note, cf. [7].

Examples to reveal the applicability of our theoretical treatment will be provided in [13]. More precisely, the main results of this note will be applied to study various perturbations of linear relations in Banach spaces in the spirit of the results obtained in [3], [4], [5], [8], [9], [10], [11], [12], [15]. In particular, finite *B*-rank perturbations and *B*-compact perturbations of closed linear relations will be studied.

2. Linear relations in complex Banach spaces

Let \mathfrak{X} and \mathfrak{Y} be two complex Banach spaces and provide the Cartesian product $\mathfrak{X} \times \mathfrak{Y}$ with the product topology, so that the Cartesian product $\mathfrak{X} \times \mathfrak{Y}$ is also a complex Banach space. A linear relation, or relation for short, A from \mathfrak{X} to \mathfrak{Y} is a linear subspace of the space $\mathfrak{X} \times \mathfrak{Y}$. The notation $L[\mathfrak{X}, \mathfrak{Y}]$ will stand for the class of all linear relations from \mathfrak{X} to \mathfrak{Y} . The notations dom A, ran A, ker A and mul A stand for the domain, the range, the kernel and the multi-valued part of A:

$$\begin{split} & \operatorname{dom} A = \{x \in \mathfrak{X} : \{x, y\} \in A\}, \quad \operatorname{ran} A = \{y \in \mathfrak{Y} : \{x, y\} \in A\}, \\ & \operatorname{ker} A = \{x \in \mathfrak{X} : \{x, 0\} \in A\}, \quad \operatorname{mul} A = \{y \in \mathfrak{Y} : \{0, y\} \in A\}. \end{split}$$

The inverse A^{-1} is a linear relation from \mathfrak{Y} to \mathfrak{X} given by

$$A^{-1} = \{\{y, x\} : \{x, y\} \in A\},\$$

so that

 $\operatorname{dom} A^{-1} = \operatorname{ran} A, \quad \operatorname{ran} A^{-1} = \operatorname{dom} A, \quad \ker A^{-1} = \operatorname{mul} A, \quad \operatorname{mul} A^{-1} = \ker A.$

For linear relations A_1 and A_2 from \mathfrak{X} to \mathfrak{Y} , the operator-like sum $A_1 + A_2$ is the linear relation from \mathfrak{X} to \mathfrak{Y} defined by

$$A_1 + A_2 = \{\{x, y_1 + y_2\} : \{x, y_1\} \in A_1, \{x, y_2\} \in A_2\}$$

so that dom $(A_1 + A_2) = \text{dom } A_1 \cap \text{dom } A_2$ and mul $(A_1 + A_2) = \text{mul } A_1 + \text{mul } A_2$. For $\lambda \in \mathbb{C}$, the linear relation λA from \mathfrak{X} to \mathfrak{Y} is defined by

$$\lambda A = \{\{x, \lambda y\} : \{x, y\} \in A\}.$$

Assume that \mathfrak{Z} is also a complex Banach space. For a linear relation A_1 from \mathfrak{X} to \mathfrak{Z} and a linear relation A_2 from \mathfrak{Z} to \mathfrak{Y} , the product A_2A_1 is defined as the linear relation from \mathfrak{X} to \mathfrak{Y} by

$$A_2A_1 = \{\{x, y\} \in \mathfrak{X} \times \mathfrak{Y} : \{x, z\} \in A_1, \{z, y\} \in A_2, \text{ for some } z \in \mathfrak{Z}\}.$$

For $\lambda \in \mathbb{C}$, the notation λA agrees in this sense with $(\lambda I)A$. The product of linear relations is associative.

A relation A from \mathfrak{X} to \mathfrak{Y} is closed if A is closed as a subset of $\mathfrak{X} \times \mathfrak{Y}$. It is easy to see that ker A and mul A are closed linear subspaces of \mathfrak{X} and \mathfrak{Y} , respectively. The notation $LC[\mathfrak{X}, \mathfrak{Y}]$ will stand for the class of all closed linear relations from \mathfrak{X} to \mathfrak{Y} . The closure of $A \in L[\mathfrak{X}, \mathfrak{Y}]$ will be denoted by clos A.

A linear operator B from \mathfrak{X} to \mathfrak{Y} with dom $B \subset \mathfrak{X}$ and ran $B \subset \mathfrak{Y}$ can be seen as a relation if it is identified with its graph: $\{\{x, Bx\} \in \mathfrak{X} \times \mathfrak{Y} : x \in \text{dom } B\}$. The operator B is closed if its graph is closed, and it is closable if the closure of its graph is the graph of an operator. Equivalently, an operator B is closable if $\{0, y\} \in \text{clos } B$ implies that y = 0. An operator B is bounded if it has a bounded norm, that is

$$||B|| = \sup\{||Bx|| : x \in \operatorname{dom} B, ||x|| = 1\} < \infty.$$

The closed graph theorem asserts that a closed linear operator B with dom $B = \mathfrak{X}$ is bounded. The notation $[\mathfrak{X}, \mathfrak{Y}]$ will stand for the class of all linear bounded everywhere defined operators from \mathfrak{X} to \mathfrak{Y} . The following well-known result, whose proof can be founded, for instance, in [6], is often useful.

Lemma 2.1. Let B be a bounded linear operator from the Banach space \mathfrak{X} to the Banach space \mathfrak{Y} . Then the following statements hold true:

- (i) The operator B is closed if and only if dom B is closed.
- (ii) The operator B is closable and $\cos B$ is a bounded operator. Furthermore, $\|\cos B\| = \|B\|$.
- (iii) dom (clos B) = clos (dom B).

Lemma 2.2. Assume that \mathfrak{X} and \mathfrak{Y} are two complex Banach spaces, $A \in LC[\mathfrak{X}, \mathfrak{Y}]$ and $B \in [\mathfrak{X}, \mathfrak{Y}]$. Then the relations $A - \lambda B$ and $(A - \lambda B)^{-1}$ are also closed.

PROOF. Let $\{x_n, y_n\} \in A - \lambda B$ such that $\{x_n, y_n\} \to \{x, y\} \in \mathfrak{X} \times \mathfrak{Y}$. Then $\{x_n, y_n + \lambda B x_n\} \in A$, $y_n + \lambda B x_n \to y + \lambda B x$. Since A is closed, it follows that $\{x, y + \lambda B x\} \in A$. This implies that $\{x, y\} \in A - \lambda B$. Thus $A - \lambda B$ is a closed relation. Then its inverse $(A - \lambda B)^{-1}$ is also closed.

3. B-resolvent set

Assume that \mathfrak{X} and \mathfrak{Y} are two complex Banach spaces, $A \in L[\mathfrak{X}, \mathfrak{Y}]$ and $B \in [\mathfrak{X}, \mathfrak{Y}]$. The set $\gamma_B(A)$ of *B*-regular points of A is defined by

 $\gamma_B(A) = \{\lambda \in \mathbb{C} : (A - \lambda B)^{-1} \text{ is a bounded operator} \}.$

Clearly, $\lambda \in \gamma_B(A)$ if and only if there exists a number r > 0 depending on λ such that

$$||y - \lambda Bx|| \ge r \cdot ||x||, \quad \text{for } \{x, y\} \in A,$$

in which case $||(A - \lambda B)^{-1}|| \le \frac{1}{r}$.

If A is closed and $\lambda \in \gamma_B(A)$, then $(A - \lambda B)^{-1}$ is a closed bounded operator so that $\operatorname{ran}(A - \lambda B) = \operatorname{dom}(A - \lambda B)^{-1}$ is closed by Lemma 2.1.

Conversely, if $\operatorname{ran}(A - \lambda B)$ is closed for some $\lambda \in \gamma_B(A)$, then the bounded operator $(A - \lambda B)^{-1}$ is closed by Lemma 2.1, which implies that A is closed. Moreover, $\gamma_B(\operatorname{clos} A) = \gamma_B(A)$, which is a consequence of the following identity:

$$\operatorname{clos}(A - \lambda B)^{-1} = (\operatorname{clos} A - \lambda B)^{-1}.$$

Theorem 3.1. Assume that \mathfrak{X} and \mathfrak{Y} are two complex Banach spaces, $A \in LC[\mathfrak{X}, \mathfrak{Y}]$ and $B \in [\mathfrak{X}, \mathfrak{Y}]$. Let $\mu \in \gamma_B(A)$, and let $\lambda \in \mathbb{C}$ such that $|\lambda - \mu| \cdot ||B|| \cdot ||(A - \mu B)^{-1}|| < 1$. Then

(i) $\lambda \in \gamma_B(A)$ and

$$\|(A - \lambda B)^{-1}\| \le \frac{\|(A - \mu B)^{-1}\|}{1 - |\lambda - \mu| \cdot \|(A - \mu B)^{-1}\| \cdot \|B\|}.$$
(3.1)

In particular, $\gamma_B(A)$ is open.

(ii) $\overline{\operatorname{ran}}(A - \lambda B)$ is not a proper subset of $\overline{\operatorname{ran}}(A - \mu B)$.

PROOF. Let $\mu \in \gamma_B(A)$, and let $\{x, y\} \in A$. Since $(A - \mu B)^{-1}$ is a bounded operator, it follows from the identity $(A - \mu B)^{-1}(y - \mu Bx) = x$ that

$$||(A - \mu B)^{-1}|| \cdot ||y - \mu Bx|| \ge ||x||.$$
(3.2)

For each $\lambda \in \mathbb{C}$ one has

$$||y - \lambda Bx|| = ||(y - \mu Bx) - (\lambda - \mu)Bx||$$

$$\geq ||y - \mu Bx|| - |\lambda - \mu| \cdot ||Bx||$$

$$\geq ||y - \mu Bx|| - |\lambda - \mu| \cdot ||B|| \cdot ||x||.$$
(3.3)

A combination of (3.2) and (3.3) leads to

$$\begin{split} \|(A-\mu B)^{-1}\| \cdot \|y-\lambda Bx\| &\geq \|(A-\mu B)^{-1}\| \cdot \|y-\mu Bx\| \\ &-|\lambda-\mu| \cdot \|(A-\mu B)^{-1}\| \cdot \|B\| \cdot \|x\| \\ &\geq \|x\|-|\lambda-\mu| \cdot \|(A-\mu B)^{-1}\| \cdot \|B\| \cdot \|x\| \\ &= (1-|\lambda-\mu| \cdot \|(A-\mu B)^{-1}\| \cdot \|B\|) \cdot \|x\|. \end{split}$$
(3.4)

Since $\{y - \lambda Bx, x\} \in (A - \lambda B)^{-1}$, inequality (3.4) shows that $(A - \lambda B)^{-1}$ is a bounded operator, whose norm is estimated by (3.1).

(ii) Assume, by contradiction, that $\overline{\operatorname{ran}}(A-\lambda B)$ is a proper subset of $\overline{\operatorname{ran}}(A-\mu B)$. Let $\alpha \in \mathbb{R}$ such that $|\lambda - \mu| \cdot ||(A - \mu B)^{-1}|| \cdot ||B|| < \alpha < 1$. Using Riesz' Lemma, it follows that there exists an element $y_0 \in \overline{\operatorname{ran}}(A - \mu B)$ such that $||y_0|| = 1$ and $||y - y_0|| \ge \alpha$ for all $y \in \overline{\operatorname{ran}}(A - \lambda B)$. Let $\{y_n\} \subset \operatorname{ran}(A - \mu B)$ be such that $y_n \to y_0$. Then there exists $\{x_n\}$ such that $\{x_n, y_n\} \in A - \mu B$, so that $\{x_n, y_n + (\mu - \lambda)Bx_n\} \in A - \lambda B$. Then

$$\alpha \le \|y_0 - (y_n + (\mu - \lambda)Bx_n)\|$$

= $\|(y_0 - y_n) + (\lambda - \mu)Bx_n\| \le \|y_0 - y_n\| + |\lambda - \mu| \cdot \|Bx_n\|$
 $\le \|y_0 - y_n\| + |\lambda - \mu| \cdot \|(A - \mu B)^{-1}\| \cdot \|B\| \cdot \|y_n\|.$

Letting $n \to \infty$ in this inequality one has

$$\alpha \le |\lambda - \mu| \cdot \| (A - \mu B)^{-1} \| \cdot \| B \|.$$

The last inequality contradicts the hypothesis. Hence, $\overline{ran} (A - \lambda B)$ is not a proper subset of $\overline{ran} (A - \mu B)$.

The *B*-resolvent set $\rho_B(A)$ of $A \in L[\mathfrak{X}, \mathfrak{Y}]$ is defined by

$$\rho_B(A) = \{\lambda \in \mathbb{C} : \overline{\operatorname{ran}} (A - \lambda B) = \mathfrak{Y} \text{ and } (A - \lambda B)^{-1} \text{ is a bounded operator} \}.$$

Assume that $\rho_B(A) \neq \emptyset$. Then A is closed if and only if $\operatorname{ran}(A - \lambda B) = \mathfrak{Y}$, for some, and hence for all $\lambda \in \rho_B(A)$. Furthermore, $\rho_B(\operatorname{clos} A) = \rho_B(A)$.

Lemma 3.2. Assume that \mathfrak{X} and \mathfrak{Y} are two complex Banach spaces, $A \in LC[\mathfrak{X}, \mathfrak{Y}]$ and $B \in [\mathfrak{X}, \mathfrak{Y}]$. If $\mu \in \rho_B(A)$ and $|\lambda - \mu| \cdot ||(A - \mu B)^{-1}|| \cdot ||B|| < 1$, then $\lambda \in \rho_B(A)$. In particular, $\rho_B(A)$ is open.

PROOF. Since $\mu \in \rho_B(A)$, one has $\mu \in \gamma_B(A)$ and $\overline{\operatorname{ran}}(A - \mu B) = \mathfrak{Y}$. Hence, $\lambda \in \gamma_B(A)$ and $\overline{\operatorname{ran}}(A - \lambda B)$ is not a proper subset of $\overline{\operatorname{ran}}(A - \mu B) = \mathfrak{Y}$, cf. Theorem 3.1. Therefore, $\overline{\operatorname{ran}}(A - \lambda B) = \mathfrak{Y}$, so that $\lambda \in \rho_B(A)$.

Let now $A \in LC[\mathfrak{X}, \mathfrak{Y}]$. Then $\rho_B(A)$ is the set of all $\lambda \in \mathbb{C}$ for which $A - \lambda B$ is invertible, in the sense that $\operatorname{ran}(A - \lambda B) = \mathfrak{Y}$ and $\ker(A - \lambda B) = \{0\}$. For each $\lambda \in \rho_B(A)$ it follows that $(A - \lambda B)^{-1} \in [\mathfrak{Y}, \mathfrak{X}]$. This operator is called the *B*-resolvent operator of A.

Theorem 3.3. Assume that \mathfrak{X} and \mathfrak{Y} are two complex Banach spaces, $A \in LC[\mathfrak{X}, \mathfrak{Y}]$ and $B \in [\mathfrak{X}, \mathfrak{Y}]$.

(i) If $\lambda, \mu \in \mathbb{C}$, then

$$(A - \lambda B)^{-1} - (A - \mu B)^{-1} = (\lambda - \mu)(A - \lambda B)^{-1} \cdot B \cdot (A - \mu B)^{-1}.$$
 (3.5)

Furthermore, the B-resolvent operator $(A - \lambda B)^{-1}$ is holomorphic for $\lambda \in \rho_B(A)$.

(ii) If $\mu \in \rho_B(A)$ and $|\lambda - \mu| \cdot ||(A - \mu B)^{-1}|| \cdot ||B|| < 1$, then

$$(A - \lambda B)^{-1} = \sum_{j=0}^{\infty} (\lambda - \mu)^j \cdot (A - \mu B)^{-1} \cdot \left(B \cdot (A - \mu B)^{-1}\right)^j.$$
(3.6)

PROOF. (i) Assume that $\{x, y\} \in (A - \lambda B)^{-1} - (A - \mu B)^{-1}$, so that $\{x, y_1\} \in (A - \lambda B)^{-1}$ and $\{x, y_2\} \in (A - \mu B)^{-1}$ for some $y_1, y_2 \in \mathfrak{Y}$ with $y_1 - y_2 = y$. One has $\{y_1, x\} \in A - \lambda B$ and

$$\{y_2, x\} \in A - \mu B = A - \lambda B + (\lambda - \mu)B.$$

Then $\{y_2, x - (\lambda - \mu)By_2\} \in A - \lambda B$, so that

$$\{y, (\lambda - \mu)By_2\} = \{y_1, x\} - \{y_2, x - (\lambda - \mu)By_2\} \in A - \lambda B.$$

This implies that $\{(\lambda - \mu)By_2, y\} \in (A - \lambda B)^{-1}$, which shows that $\{y_2, y\} \in (\lambda - \mu)(A - \lambda B)^{-1}B$. Hence,

$$\{x, y\} \in (\lambda - \mu)(A - \lambda B)^{-1} \cdot B \cdot (A - \mu B)^{-1},$$
(3.7)

which leads to

$$(A - \lambda B)^{-1} - (A - \mu B)^{-1} \subseteq (\lambda - \mu)(A - \lambda B)^{-1} \cdot B \cdot (A - \mu B)^{-1}.$$
 (3.8)

Conversely, let $\{x, y\} \in (\lambda - \mu)(A - \lambda B)^{-1} \cdot B \cdot (A - \mu B)^{-1}$, so that $\{x, z\} \in (A - \mu B)^{-1}$, $\{z, w\} \in (\lambda - \mu)B$ and $\{w, y\} \in (A - \lambda B)^{-1}$ for some $z \in \mathfrak{X}$ and $w \in \mathfrak{Y}$. It follows from $\{x, z\} \in (A - \mu B)^{-1}$ that $\{z, x\} \in A - \mu B$, so that

$$\{z, x + (\mu - \lambda)Bz\} \in A - \lambda B.$$
(3.9)

Since $w = (\lambda - \mu)Bz$, relation (3.9) implies that $\{z, x - w\} \in A - \lambda B$, so that $\{x - w, z\} \in (A - \lambda B)^{-1}$. Consequently,

$$\{x, z + y\} = \{x - w, z\} + \{w, y\} \in (A - \lambda B)^{-1}.$$

Finally,

$$\{x, y\} = \{x, z + y\} - \{x, z\} \in (A - \lambda B)^{-1} - (A - \mu B)^{-1},$$

so that

$$(\lambda - \mu)(A - \lambda B)^{-1} \cdot B \cdot (A - \mu B)^{-1} \subseteq (A - \lambda B)^{-1} - (A - \mu B)^{-1}.$$
 (3.10)

A combination of (3.8) and (3.10) leads to (3.5).

Assume now that $\lambda, \mu \in \rho_B(A), \lambda \neq \mu$. It follows from (3.5) that

$$\frac{(A-\lambda B)^{-1} - (A-\mu B)^{-1}}{\lambda - \mu} = (A-\lambda B)^{-1} \cdot B \cdot (A-\mu B)^{-1}.$$
 (3.11)

This identity further implies that the resolvent operator $(A - \lambda B)^{-1}$ is holomorphic for $\lambda \in \rho_B(A)$.

(ii) With the notation $R_B(\lambda) = (A - \lambda B)^{-1}$ it follows by induction from (3.5) that

$$R_B(\lambda) = \sum_{j=0}^n (\lambda - \mu)^j \cdot R_B(\mu) \cdot (B \cdot R_B(\mu))^j + (\lambda - \mu)^{n+1} \cdot R_B(\lambda) \cdot (B \cdot R_B(\mu))^{n+1}.$$
(3.12)

From the estimation

$$\|(\lambda - \mu)^{n+1} \cdot R_B(\lambda) \cdot (B \cdot R_B(\mu))^{n+1}\| \le \|R_B(\lambda)\| \cdot (|\lambda - \mu| \cdot \|R_B(\mu)\| \cdot \|B\|)^{n+1},$$

and the inequality $|\lambda - \mu| \cdot ||R_B(\mu)|| \cdot ||B|| < 1$, it follows that the rest term in (3.12) tends to 0 as $n \to \infty$. This completes the proof.

Equation (3.5) with λ , $\mu \in \rho_B(A)$ is called the *B*-resolvent identity of *A*. In the case $\mathfrak{X} = \mathfrak{Y}$ and B = I, the classical notion of resolvent identity is obtained.

4. *B*-pseudo-resolvents

Let $B \in [\mathfrak{X}, \mathfrak{Y}]$, and let $\Omega \subset \mathbb{C}$. Assume that for each $\lambda, \mu \in \Omega$ there exists an operator $R_B(\cdot) \in [\mathfrak{Y}, \mathfrak{X}]$ such that

$$R_B(\lambda) - R_B(\mu) = (\lambda - \mu) \cdot R_B(\lambda) \cdot B \cdot R_B(\mu).$$
(4.1)

Such a family of operators $(R_B(\lambda))_{\lambda \in \Omega}$ is called a *B*-pseudo-resolvent.

Theorem 4.1. Assume that \mathfrak{X} and \mathfrak{Y} are two complex Banach spaces and $B \in [\mathfrak{X}, \mathfrak{Y}]$. Let $\{R_B(\lambda)\}_{\lambda \in \Omega}$ be a *B*-pseudo-resolvent. Then there exists a unique linear relation $A \in LC[\mathfrak{X}, \mathfrak{Y}]$ such that $\Omega \subset \rho_B(A)$ and $R_B(\lambda) = (A - \lambda B)^{-1}$, $\lambda \in \Omega$. In particular, the *B*-pseudo-resolvent $R_B(\lambda)$ has a unique maximal extension to $\rho_B(A)$.

PROOF. The linear relation $R_B(\lambda)^{-1} + \lambda B$ does not depend on $\lambda \in \Omega$. To see this, let $\{x, y\} \in R_B(\lambda)^{-1} + \lambda B$, so that $\{x, y - \lambda Bx\} \in R_B(\lambda)^{-1}$. Then $R_B(\lambda)(y - \lambda Bx) = x$. Using (4.1), one has

$$R_B(\mu)(y - \lambda Bx) = (I + (\mu - \lambda)R_B(\mu)B)R_B(\lambda)(y - \lambda Bx),$$

which implies that

$$R_B(\mu)(y - \lambda Bx) = x + (\mu - \lambda)R_B(\mu)Bx.$$

Then $R_B(\mu)(y - \mu Bx) = x$, so that $\{x, y\} \in R_B(\mu)^{-1} + \mu B$. Hence it follows that $R_B(\lambda)^{-1} + \lambda B \subset R_B(\mu)^{-1} + \mu B$. The reverse inclusion follows by symmetry. Hence,

$$R_B(\lambda)^{-1} + \lambda B = R_B(\mu)^{-1} + \mu B.$$

Define the linear relation A by $A = R_B(\lambda)^{-1} + \lambda B$, which is equivalent to $R_B(\lambda) = (A - \lambda B)^{-1}$. Clearly, the relation A is uniquely defined. Since $R_B(\lambda) \in [\mathfrak{Y}, \mathfrak{X}]$ for $\lambda \in \Omega$, this implies that $\lambda \in \rho_B(A)$. Hence $\Omega \subset \rho_B(A)$.

Theorem 4.2. Let A be a closed linear relation. Then

$$\gamma_B(A) \cap \operatorname{clos} \rho_B(A) \subset \rho_B(A).$$

PROOF. Let $\mu \in \gamma_B(A) \cap \operatorname{clos} \rho_B(A)$, and let $(\mu_n) \subset \rho_B(A) \subset \gamma_B(A)$ such that $\mu_n \to \mu$. It follows from inequality (3.1) that the sequence $(\|(A - \mu_n B)^{-1}\|)$ is bounded. Hence, the resolvent identity implies that

$$||(A - \mu_n B)^{-1} - (A - \mu_m B)^{-1}|| \to 0, \quad n, m \to \infty.$$

Hence, the *B*-resolvent $R_B(\lambda) = (A - \lambda B)^{-1}$ has an extension to μ , and the resolvent identity shows that $R_B(\lambda)$ extended to μ is a *B*-pseudo-resolvent, which implies that $\mu \in \rho_B(A)$.

5. The *B*-spectrum

Let \mathfrak{X} and \mathfrak{Y} be two complex Banach spaces, $A \in L[\mathfrak{X}, \mathfrak{Y}]$ and $B \in [\mathfrak{X}, \mathfrak{Y}]$. It follows from $A - \lambda B = \{\{x, y - \lambda Bx\} : \{x, y\} \in A\}$ that

$$\ker(A - \lambda B) = \{x : \{x, \lambda Bx\} \in A\}.$$

A complex number $\lambda \in \mathbb{C}$ is said to be a *B*-eigenvalue of *A* when there is a nonzero element $x \in \ker(A - \lambda B)$. Furthermore, ∞ is said to be a *B*-eigenvalue of *A* when there is a non-zero element $m \in \operatorname{mul} A$. The *B*-point spectrum $\sigma_{pB}(A)$ of *A* is the set of all *B*-eigenvalues $\lambda \in \mathbb{C} \cup \{\infty\}$ of *A*. It may happen that $\sigma_{pB} = \mathbb{C} \cup \infty$. Indeed, if there is a non-zero element $z \in \mathfrak{X}$ such that $\{z, 0\} \in A$

and $\{0, Bz\} \in A$, then $\{z, \lambda Bz\} \in A$ for any $\lambda \in \mathbb{C}$. When $\lambda \in \mathbb{C}$, the identity $\operatorname{mul}(A - \lambda B)^{-1} = \ker(A - \lambda B)$ implies that

$$\lambda \in \sigma_{pB}(A) \Leftrightarrow (A - \lambda B)^{-1}$$
 is not an operator

The *B*-spectrum $\sigma_B(A)$ of *A* is defined by $\sigma_B(A) = \mathbb{C} \setminus \rho_B(A)$, and the *B*-approximative point spectrum (or *B*-spectral kernel) of *A* is defined by $\Pi_B(A) = \mathbb{C} \setminus \gamma_B(A)$.

Theorem 5.1. Let \mathfrak{X} and \mathfrak{Y} be two complex Banach spaces, $A \in L[\mathfrak{X}, \mathfrak{Y}]$ and $B \in [\mathfrak{X}, \mathfrak{Y}]$. The B-approximative point spectrum $\Pi_B(A)$ of A is contained in the B-spectrum $\sigma_B(A)$ of A, and both sets are closed. Moreover, $\lambda \in \Pi_B(A)$ if and only if there exists a sequence $(\{x_n, y_n\}) \subset A$ such that

$$||x_n|| = 1, \quad y_n - \lambda B x_n \to 0, \quad n \to \infty.$$

PROOF. It follows from $\rho_B(A) \subset \gamma_B(A)$ that $\Pi_B(A) \subset \sigma_B(A)$. It has been already shown that the sets $\rho_B(A)$ and $\gamma_B(A)$ are open, so that their complements $\sigma_B(A)$ and $\Pi_B(A)$ are closed.

Assume that $\lambda \in \Pi_B(A)$. Then for each $\varepsilon > 0$ there exists an element $\{x_{\varepsilon}, y_{\varepsilon}\} \in A$ with $||x_{\varepsilon}|| = 1$ and $||y_{\varepsilon} - \lambda B x_{\varepsilon}|| \leq \varepsilon$. This implies the existence of the requested sequence. Conversely, assume that such a sequence exists. Then does not exist a number $\varepsilon_0 > 0$ such that $||y - \lambda x|| \geq \varepsilon_0 ||x||$ for all $\{x, y\} \in A$. This shows that $\lambda \in \Pi_B(A)$.

Theorem 5.1 shows that $\sigma_{pB}(A) \setminus \{\infty\}$ is contained in the *B*-approximative point spectrum $\Pi_B(A)$. It is possible to separate various points of the spectrum. Observe that for any $\lambda \in \mathbb{C}$ there are three different situations with respect to $\ker(A - \lambda B)$:

 $K_1. \ \ker(A - \lambda B) = \{0\}, \ (A - \lambda B)^{-1} \text{ is bounded};$ $K_2. \ \ker(A - \lambda B) = \{0\}, \ (A - \lambda B)^{-1} \text{ is not bounded};$ $K_3. \ \ker(A - \lambda B) \neq \{0\}.$

Similarly, there are three different situations with respect to $ran(A - \lambda B)$:

- R_1 . ran $(A \lambda B) = \mathfrak{Y};$
- $R_2. \ \overline{\operatorname{ran}} (A \lambda B) = \mathfrak{Y}, \ \operatorname{ran} (A \lambda B) \neq \mathfrak{Y};$ $R_2. \ \overline{\operatorname{ran}} (A \lambda B) \neq \mathfrak{Y}$

According to these possibilities, the complex plane \mathbb{C} can be divided into nine mutually disjoint subsets. Furthermore, the following equivalences hold true:

(1) $\lambda \in \gamma_B(A)$ (points of *B*-regular type) $\Leftrightarrow \lambda \in K_1 \cap (R_1 \cup R_2 \cup R_3);$

(2) $\lambda \in \Pi_B(A)$ (*B*-approximative point spectrum) \Leftrightarrow

$$\Rightarrow \lambda \in (K_2 \cup K_3) \cap (R_1 \cup R_2 \cup R_3);$$

- (3) $\lambda \in \rho_B(A)$ (*B*-resolvent set) $\Leftrightarrow \lambda \in K_1 \cap (R_1 \cup R_2);$
- (4) $\lambda \in \sigma_B(A) \Leftrightarrow \lambda \in ((K_2 \cup K_3) \cap (R_1 \cup R_2 \cup R_3)) \cup (K_1 \cap R_3);$
- (5) $\lambda \in \sigma_{pB}(A)$ (*B*-point spectrum) $\Leftrightarrow \lambda \in K_3 \cap (R_1 \cup R_2 \cup R_3).$

Theorem 5.2. Let \mathfrak{X} and \mathfrak{Y} be two complex Banach spaces, $A \in LC[\mathfrak{X}, \mathfrak{Y}]$ and $B \in [\mathfrak{X}, \mathfrak{Y}]$. Then the subsets $K_1 \cap R_2$ and $K_2 \cap R_1$ are empty.

PROOF. Assume that $\lambda \in K_1 \cap R_2$, so that $(A - \lambda B)^{-1}$ is a bounded closed operator with a closed domain of definition $\operatorname{dom}(A - \lambda B)^{-1} = \operatorname{ran}(A - \lambda B)$, a contradiction.

Assume now that $\lambda \in K_2 \cap R_1$, so that $(A - \lambda B)^{-1}$ is an unbounded closed operator with the domain of definition $\operatorname{dom}(A - \lambda B)^{-1} = \operatorname{ran}(A - \lambda B) = \mathfrak{Y}$, which leads to a contradiction by the closed graph theorem.

References

- [1] R. ARENS, Operational calculus of linear relations, Pacific J. Math. 11 (1961), 9–23.
- [2] A. G. BASKAKOV and K. I. CHERNYSHOV, Spectral analysis of linear relations and degenerate operator semigroups, Sb. Math. 193 (2003), 1573–1610.
- [3] T. BERGER and C. TRUNK AND H. WINKLER, Linear relations and the Kronecker canonical form, *Linear Algebra Appl.* 488 (2016), 13–44.
- [4] S. R. CARADUS, Operators with finite ascent and descent, Pacific J. Math. 18 (1966), 437–449.
- [5] S. R. CARADUS, Perturbation theory for generalized Fredholm operators, *Pacific J. Math.* 52 (1974), 11–15.
- [6] R. W. CROSS, Multivalued Linear Operators, Marcel Dekker, Inc., New York, 1998.
- [7] A. FAVINI and A. YAGI, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, Inc., New York – Basel – Hong Kong, 1999.
- [8] I. C. GOHBERG and M. G. KREĬN, The basic propositions on defect numbers, root numbers and indices of linear operators, Amer. Math. Soc. Transl. (2) 13 (1960), 185–264.
- [9] M. A. KAASHOEK, Ascent, descent, nullity and defect: A note on a paper by A. E. Taylor, Math. Ann. 72 (1967), 105–115.
- [10] M. A. KAASHOEK and D. C. LAY, Ascent, descent, and commuting perturbations, Trans. Amer. Math. Soc. 169 (1972), 35–47.
- [11] A. ILCHMANN, T. SELIG and C. TRUNK, The Byrnes–Isidori form for infinite-dimensional systems, SIAM J. on Control Optim. 54 (2016), 1504–1534.
- [12] D. C. LAY, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197–214.
- [13] M. ROMAN and A. SANDOVICI, Perturbations of linear relations in Banach spaces, *in preparation*.

466 M. Roman and A. Sandovici : *B*-spectral theory of linear relations...

- [14] F. RIESZ, Über lineare Functionalgleichungen, Acta Math. 41 (1916), 71–98.
- [15] A. E. TAYLOR, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18–49.
- [16] A. E. TAYLOR and D. C. LAY, Introduction to Functional Analysis, Second Edition, John Wiley & Sons, New York – Chichester – Brisbane, 1980.

MARCEL ROMAN DEPARTMENT OF MATHEMATICS AND INFORMATICS "GHEORGHE ASACHI" TECHNICAL UNIVERSITY OF IAŞI B-DUL CAROL I, NR. 11 700506, IAŞI ROMANIA *E-mail:* marcel.roman@tuiasi.ro,

marcelroman@gmail.com

ADRIAN SANDOVICI DEPARTMENT OF MATHEMATICS AND INFORMATICS "GHEORGHE ASACHI" TECHNICAL UNIVERSITY OF IAŞI B-DUL CAROL I, NR. 11 700506, IAŞI ROMANIA *E-mail:* adrian.sandovici@luminis.ro,

adrian.sandovici@gmail.com

(Received July 6, 2016; revised April 18, 2017)