Publ. Math. Debrecen 91/3-4 (2017), 515–524 DOI: 10.5486/PMD.2017.7907

On the factors of Stern polynomials II. Proof of a conjecture of M. Gawron

By ANDRZEJ SCHINZEL (Warszawa)

Abstract. Let $B_n(x)$ be the *n*-th Stern polynomial in the sense of KLAVŽAR *et al.* [2]. GAWRON's conjecture [1] about the natural density of indices *n* such that $B_n(t) = 0$, where t = -1/2, -1/3, is proved and generalized. Similar questions are treated.

KLAVŽAR, MILUTINOVIĆ and PETR [2] defined Stern polynomials $B_n(x)$ by the conditions $B_0(x) = 0$, $B_1(x) = 1$, $B_{2n}(x) = xB_n(x)$, $B_{2n+1}(x) = B_n(x) + B_{n+1}(x)$. GAWRON [1] proved that the only rational zeros of $B_k(x)$ are 0, -1, -1/2, -1/3 and proved that for t = -1/2, t = -1/3,

$$d_m(t) = \frac{|\{0 \le k < m : B_k(t) = 0\}|}{m},\tag{1}$$

we have $\liminf_{m\to\infty} d_m(t) = 0$. He conjectured ([1, Conjecture 2.7]) that

$$\lim_{m \to \infty} d_m(t) = 0.$$
 (2)

We shall consider a more general problem: how often an irreducible (over \mathbb{Q}) polynomial f with integral coefficients divides B_n . Denoting a zero of f by t, we introduce $d_m(t)$ by formula (1). Since $B_{2n+1}(0) = 1$, if $t \neq 0$, $t^{-1} = \tau$ is an algebraic integer and we set $F = \mathbb{Q}(t)$. $N_{F/\mathbb{Q}}$ is the norm from F to \mathbb{Q} .

Theorem 1. For every algebraic integer $\tau = t^{-1}$, different from 0 and roots of unity, (2) holds.

Mathematics Subject Classification: 11C08.

Key words and phrases: factor, Stern polynomial.

Corollary 1. For $t = -\frac{1}{2}, -\frac{1}{3}$, (2) holds.

Corollary 2. For every prime p > 2, the upper density of indices m such that $p \mid B_m(1)$ does not exceed 2/p.

As to t being a root of unity, we have only partial results.

Theorem 2. The density of indices n such that $(x + 1)^2 | B_n(x)$ is zero.

Theorem 3. If t is a primitive root of unity of order e > 2, then, for every positive integer m,

$$d_m(t) \le \frac{1}{m} + \frac{1}{m} \left\lfloor \frac{m-1}{\Phi_e(2)} \right\rfloor,\tag{3}$$

where Φ_e is the cyclotomic polynomial of order *e*. Moreover, if $e = 2^a > 2$, or $e = 2 \cdot 3^a > 2$, then, for every positive integer *m*,

$$d_m(t) \le \frac{1}{m} + \frac{1}{m} \left\lfloor \frac{m-1}{3\Phi_e(2)} \right\rfloor.$$
(4)

As to the other conjecture in [1, Conjecture 4.3], we have only a much weaker result.

Theorem 4. The density of indices n such that B_n is reciprocal is zero.

[1, Conjecture 4.3] asserts that the number of $n \leq x$ such that B_n is reciprocal is $O((\log x)^k)$ for a certain k.

Notation. For a prime ideal $\mathfrak{p} \nmid \tau$ of F, let $q = N_{F/\mathbb{Q}}\mathfrak{p}$, and let $W_{\mathfrak{p}}(t)$ be the set of all pairs $(\alpha, \beta) \in \mathbb{F}_q^2$ obtainable from (1, 0) by repeated use of the transformations $T_0(\alpha, \beta) = (t\alpha + \beta, \beta)$ and $T_1(\alpha, \beta) = (\alpha, t\beta + \alpha)$, where t is to be interpreted as an element of \mathbb{F}_q . For an integer $m \neq 0$, P(m) is the greatest prime factor of m. For an algebraic integer τ , $M(\tau)$ is the Mahler measure of τ , i.e.,

$$M(\tau) = \prod_{|\tau^{(i)}| > 1} |\tau^{(i)}|,$$

where $\tau^{(i)}$ are all conjugates of τ .

Lemma 1. There exist infinitely many prime ideals \mathfrak{p} of F such that there is $(\alpha, \beta) \in W_{\mathfrak{p}}(t)$ satisfying

$$T_0(\alpha,\beta) = (\alpha,\beta). \tag{5}$$

PROOF. Let us consider the sequence $u_n = N_{F/\mathbb{Q}}((2\tau - 1)\tau^n - 1)$, where u_n is a linear recurrence defined over \mathbb{Q} . Let $\omega_1, \ldots, \omega_s$ be the characteristic roots of the sequence u_n (the distinct zeros of the companion polynomial), and let l be the least common multiple of the finite orders of the ratios ω_i/ω_j in the multiplicative group \mathbb{C}^* . No two characteristic roots of the sequence u_{lm} ($m = 0, 1, \ldots$) have the ratio of finite order. Hence, by the theorem of PÓLYA [4], $\limsup P(u_{lm}) = \infty$, unless $u_{lm} = A(m)a^m$, where $A \in \mathbb{Q}[x]$ and $a \in \mathbb{Q}^*$. Now, $\limsup P(A(m)) = \infty$, unless A is constant and

$$u_{lm} = Aa^m. ag{6}$$

However, since if an algebraic integer $\tau \neq 0$ is not a root of unity, by a theorem of Kronecker, some of its conjugates $\tau^{(i)}$ lies outside the unit circle. Hence $M(\tau) > 1$. For a large *n* suitably chosen (see [7]), we have for all *i*, hence for infinitely many *m*,

$$(\tau^{(i)})^n = (1+o(1))|\tau^{(i)}|^n,$$

$$|u_{ml}| = (1+o(1))\prod_{|\tau^{(i)}|>1} |2\tau^{(i)} - 1|M(\tau)^{ml}\prod_{|\tau^{(i)}|=1} |2\tau^{(i)} - 2|,$$

$$|u_{2ml}| = (1+o(1))\prod_{|\tau^{(i)}|>1} |2\tau^{(i)} - 1|M(\tau)^{2ml}\prod_{|\tau^{(i)}|=1} |2\tau^{(i)} - 2|,$$

and, since by (6), $u_{2ml}u_0 = u_{ml}^2$, we obtain

$$(1+o(1))\prod_{|\tau^{(i)}|\neq 1} |2\tau^{(i)}-2| = (1+o(1))\prod_{|\tau^{(i)}|>1} |2\tau^{(i)}-1|^{-1}.$$

Since the equality is independent of m, it follows that

$$\prod_{\tau^{(i)}|\neq 1} |2\tau^{(i)} - 2| = \prod_{|\tau^{(i)}|>1} |2\tau^{(i)} - 1|^{-1}.$$

Since the right hand side is non-divisible by 2, the product on the left is empty, and we obtain

$$1 = \prod_{|\tau^{(i)}| > 1} |2\tau^{(i)} - 1|^{-1} < 1$$

The obtained contradiction proves that $\limsup P(u_n) = \infty$, and we take \mathfrak{p} any common prime ideal factor of $P(u_n)$ and $\frac{(2\tau-1)\tau^n-1}{\tau-1}$. On the other hand,

$$(\alpha,\beta) = T_1^{n+2}T_0(1,0) = \left(t,t\,\frac{t^{n+2}-1}{t-1}\right) \in W_{\mathfrak{p}}(t),$$
$$T_0(\alpha,\beta) - (\alpha,\beta) = (\tau^{-n-2}((2\tau-1)\tau^n - 1), 0).$$

Lemma 2. If $\mathfrak{p} \nmid \tau$ is a prime ideal of F satisfying Lemma 1, and the system of linear equations

$$\frac{1}{2}x_{T_0(\alpha,\beta)} + \frac{1}{2}x_{T_1(\alpha,\beta)} = \lambda x_{(\alpha,\beta)}$$
(7)

holds for all $(\alpha, \beta) \in W_{\mathfrak{p}}(t)$ with $\mathbf{x} \neq 0$ and $|\lambda| \geq 1$, then $\lambda = 1$.

PROOF. Let

$$|x_{(\alpha_0,\beta_0)}| = \max_{(\alpha,\beta)\in W_{\mathfrak{p}}(t)} |x_{(\alpha,\beta)}|.$$

We infer from (7) that $|\lambda| = 1$ and

$$x_{T_0(\alpha_0,\beta_0)} = x_{T_1(\alpha,\beta)} = \lambda x_{(\alpha_0,\beta_0)},$$

hence, by induction on the number of steps needed to reach (α, β) from (α_0, β_0) ,

$$x_{T_0(\alpha,\beta)} = x_{T_1(\alpha,\beta)} = \lambda x_{(\alpha,\beta)} \quad \text{and} \quad |x_{(\alpha,\beta)}| = |x_{(\alpha_0,\beta_0)}| > 0,$$

for all $(\alpha, \beta) \in W_{\mathfrak{p}}(t)$, thus, in particular, for (α, β) satisfying (5). But (5) implies $x_{T_0(\alpha,\beta)} = x_{(\alpha,\beta)}, \lambda = 1.$

Lemma 3. Let e be the order of $t = \tau^{-1} \mod the$ prime ideal $\mathfrak{p} \nmid \tau$ of F in the multiplicative group \mathbb{F}_q^* . Then

$$e \ge \frac{\log q - [F:\mathbb{Q}]\log 2}{\log M(\tau)}.$$
(8)

PROOF. It follows from $t^e \equiv 1 \pmod{\mathfrak{p}}$ that $\tau^e \equiv 1 \pmod{\mathfrak{p}}$ and

$$q \mid N_{F/\mathbb{Q}}(\tau^e - 1).$$

However,

$$|N_{F/\mathbb{Q}}(\tau^{e} - 1)| \leq \sum_{S \subset \{1, 2, \dots, [F:\mathbb{Q}]\}} \prod_{i \in S} |\tau^{(i)^{e}}| \leq 2^{[F:\mathbb{Q}]} M(\tau)^{e},$$

thus (8) follows.

Lemma 4. Let $\mathfrak{p} \nmid \tau$ be a prime ideal of F satisfying Lemma 1, and

$$d_{m,\mathfrak{p}}(t) = \frac{|\{0 \le n < m : B_n(t) \equiv 0 \,(\mathrm{mod}\,\mathfrak{p})\}|}{m}.$$

Then the limit $\lim_{n\to\infty} d_{2^n,\mathfrak{p}}(t)$ exists and satisfies the inequality

$$\lim_{n \to \infty} d_{2^n, \mathfrak{p}}(\tau) \le \frac{\log M(\tau)}{\log q - [F : \mathbb{Q}] \log 2}.$$
(9)

518

PROOF. The proof follows that of [1, Theorem 2.5], only instead of [3, Example 8.3.2] we use [3, Theorem 7.10.33] and Lemma 2, together with [3, Exercise 4.4.20 and Formula 8.3.13], and instead of the inequality $\frac{Q}{K} \leq \frac{2}{\log p}$, we use Lemma 3.

PROOF OF THEOREM 1. Let

$$d_m(t) = \frac{|\{0 \le k < m : B_k(t) = 0\}|}{m}.$$

Clearly, for every $\mathfrak{p} \nmid \tau$,

$$d_m(t) \le d_{m,\mathfrak{p}}(t),$$

and by (9) and Lemma 1,

$$\lim_{n \to \infty} d_{2^n}(t) = 0. \tag{10}$$

To show (1), we choose n by the inequalities

$$2^{n-1} \le m < 2^n. \tag{11}$$

Thus

$$d_m(t) \le 2d_{2^n}(t),$$

and (1) follows from (10).

PROOF OF COROLLARY 2. For every $u \in \mathbb{F}_p^*$, all elements $T_0^j(0, u)$ for $0 \leq j < p$ are distinct. Since $T_0(1, 0) = (1, 0)$, following the proof of Lemma 4, we infer that $\lim_{n\to\infty} d_{2^n,p}(1)$ exists and satisfies the inequality

$$\lim_{n \to \infty} d_{2^n, p}(1) \le 1/p.$$

$$\tag{12}$$

We choose n by the inequality (11), and Corollary 2 follows from (12).

Definition 1. For n < 0, $B_n(x) = -B_{-n}(x)$.

Definition 2. For $n \in \mathbb{Z}$,

$$f_n(x) = \frac{B_{3n}(x)}{x+1}.$$

Definition 3. $e_n = f_n(-1)$.

Lemma 5. For $n \in \mathbb{Z}$,

$$B_n(-1) = 3\left\{\frac{n}{3} + \frac{1}{2}\right\} - \frac{3}{2}.$$

519

PROOF. For $n \ge 0$, the formula is known and due to Ulas [8, Theorem 5.1]. For n < 0, we have by Definition 1

$$B_n(-1) = -B_{-n}(-1) = 3\left\{-\frac{n}{3} + \frac{1}{2}\right\} + \frac{3}{2} = 3\left\{\frac{n}{3} + \frac{1}{2}\right\} - \frac{3}{2}.$$

Lemma 6. For $\alpha \in \mathbb{N}$, $a, b \in \mathbb{Z}$, $|b| \leq 2^k$, we have

$$B_{2^{\alpha}a+b}(x) = B_{2^{\alpha}-|b|}(x)B_{a}(x) + B_{|b|}(x)B_{a+\operatorname{sgn} b}(x).$$
(13)

PROOF. For $a, b \in \mathbb{N}$, (13) follows from [5, Lemma 1]. For $a \in \mathbb{N} \setminus \{0\}, b \leq 0$, we have

$$2^{\alpha}a + b = 2^{\alpha}(a - 1) + 2^{\alpha} - |b|$$

and (13) follows again from [5, Lemma 1] with a' = a - 1, $b' = 2^{\alpha} - |b|$. For a = 0, b < 0, we have by Definition 1

$$B_{2^{\alpha}a+b}(x) = -B_{-b}(x) = B_{|b|}(x)B_{-1}(x).$$

For a < 0, we have by the already proved cases

$$B_{2^{\alpha}a+b}(x) = -B_{-2^{\alpha}a-b}(x) = -B_{2^{\alpha}-|b|}(x)B_{-a}(x) - B_{|b|}(x)B_{a-\operatorname{sgn} b}(x)$$
$$= B_{2^{\alpha}-|b|}(x)B_{a}(x) + B_{|b|}(x)B_{a+\operatorname{sgn} b}(x).$$

Lemma 7. For $k \in \mathbb{N}$, $a, b \in \mathbb{Z}$, $3|b| < 4^k$, we have

$$e_{4^k a+b} = e_a + e_b. (14)$$

PROOF. By Definition 2 and Lemmas 5 and 6, we have

$$f_{4^{k}a+b}(x) = \frac{B_{2^{2k}3a+3b}(x)}{x+1} = B_{4^{k}-3|b|}(x)f_{a}(x) + f_{|b|}(x)B_{3a+\mathrm{sgn}\,b}(x),$$

$$f_{4^{k}a+b}(-1) = f_{a}(-1) + f_{|b|}(-1)\operatorname{sgn} b = f_{a}(-1) + f_{b}(-1), \qquad \Box$$

hence, by Definition 3 we obtain (14).

Lemma 8. If $k \in \mathbb{N} \setminus \{0\}$,

$$n = \sum_{i=1}^{k} c_i 4^{k-i} > 0, \quad \bigcup_{i=1}^{k} \{c_i\} \subset \{-1, 1\},$$
(15)

then

$$e_n = |\{i : c_i = 1\}| - |\{i : c_i = -1\}|.$$
(16)

PROOF. We proceed by induction on n. For n = 1, (16) holds. Assume that n > 1 is given by (15), and that (16) holds for all integers in question less than n. Then, applying Lemma 7 with k = 1, $a = \sum_{i=1}^{k-1} c_i 4^{k-i-1} < n$, $b = c_k$, we obtain

$$e_n = e_a + e_b = e_a + c_k,$$

and (16) follows from the inductive assumption.

Lemma 9. If $k \in \mathbb{N} \setminus \{0\}$,

$$n = \sum_{i=1}^{k} c_i 4^{k-i}, \quad \bigcup_{i=1}^{k} \{c_i\} \subset \{1,2\},$$
(17)

then

$$e_n = |\{i : c_i = 1\}| - |\{i : c_i = 2\}|.$$
(18)

PROOF. We proceed by induction on n. For n = 1, (18) holds. Assume that n > 1 is given by (17), and that (18) holds for all integers in question less than n. Then, if $c_k = 1$, applying Lemma 7 with k = 1, $a = \sum_{i=1}^{k-1} c_i 4^{k-i-1} < n, b = 1$, we have

$$e_n = e_a + e_b = e_a + 1,$$

and (18) follows from the inductive assumption. If $c_k = 2$, we have for $a = \sum_{i=1}^{k-1} c_i 4^{k-i-1}$, by Definition 2

$$f_n(x) = f_{4a+2}(x) = \frac{B_{12a+6}(x)}{x+1} = \frac{xB_{6a+3}(x)}{x+1} = xf_{2a+1}(x),$$

hence, by Definition 3

$$e_n = -e_{n/2}.\tag{19}$$

If for a strictly increasing sequence of integers $0 \leq l_1 < l_2 < \cdots < l_{2h} = k$, $c_i = 1 \ (0 < i \leq l_1), c_i = 2 \ (l_1 < i \leq l_2), \ldots, c_i = 1 \ (l_{2h-2} < i \leq l_{2h-1}), c_i = 2 \ (l_{2h-1} < i \leq l_{2h})$, we have

$$\frac{n}{2} = \sum_{i=1}^{k} d_i 4^{k-i},$$

where $d_1 = 1$, $d_i = -1$ $(1 < i \le l_1 + 1)$, ..., $d_i = -1$ $(l_{2h-2} + 1 < i \le l_{2h-1} + 1)$, $d_i = 1$ $(l_{2h-1} + 1 < i \le l_{2h})$, (18) follows from (19) and the inductive assumption.

521

Lemma 10. If $k \in \mathbb{N} \setminus \{0\}$,

$$n = \sum_{i=1}^{k} c_i 4^{k-i}, \quad \bigcup_{i=1}^{k} \{c_i\} \subset \{-1, 0, 1, 2\},$$
(20)

then

$$e_n = \left| \{i : c_i = 1\} \right| - \left| \{i : c_i = -1\} \right| - \left| \{i : c_i = 2\} \right| + 3 \left| \{i : \exists j \ge 0 \ c_i = -1, c_{i+1} = \dots = c_{i+j} = 1, c_{i+j+1} = 2\} \right|.$$
(21)

PROOF. We proceed by induction on n. For n = 0, (21) holds. Assume that n > 0 is given by (20), and that (21) holds for all non-negative integers less than n. If $\{0, -1\} \cap \bigcup_{i=1}^{k} \{c_i\} = \emptyset$, (21) holds by Lemma 9. If $\{0, -1\} \cap \bigcup_{i=1}^{k} \{c_i\} \neq \emptyset$, let j be the greatest index such that $c_j \in \{0, -1\}$. If $c_j = 0$, we take $a = \sum_{i=1}^{j-1} c_i 4^{j-i-1}$, $b = \sum_{i=j+1}^{k} c_i 4^{k-i}$ in Lemma 7. Since $3|b| \leq 3\sum_{i=j+1}^{k} 2 \cdot 4^{k-i} = 2(4^{k-j} - 1) < 4^{k-j+1}$, we obtain

$$e_n = e_a + e_b,$$

and (21) follows from the inductive assumption. If $c_j = -1$, we take $a = \sum_{i=1}^{j-1} c_j 4^{j-i-1}$, $b = \sum_{i=j}^k c_i 4^{k-i}$ in Lemma 7. Since $3|b| \leq 3\sum_{i=j}^k 4^{k-i} = 4^{k-j+1} - 1 < 4^{k-j+1}$, we obtain

$$e_n = e_a + e_b = e_a - e_{|b|}.$$
 (22)

If j = k, then $e_{|b|} = 1$, and (21) follows from the inductive assumption.

If j < k, and for an increasing sequence of integers $j = l_0 \le l_1 < l_2 < \cdots < l_{2h-1} \le l_{2h} = k$ (h > 0), $c_i = 2$ $(j < i \le l_1)$, $c_i = 1$ $(l_1 < i \le l_2)$, \ldots , $c_i = 2$ $(l_{2h-2} < i \le l_{2h-1})$, $c_i = 1$ $(l_{2h-1} < i \le k)$, then, for h = 1, $l_1 = j$, it holds that $|b| = 4^{k-j} - \sum_{i=j+1}^{k} 4^{k-i}$, otherwise

$$|b| = \sum_{i=j+1}^{k} d_i 4^{k-i}$$

where, for h = 1, $l_1 > j$, it holds that $d_i = 1$ $(j < i < l_1)$, $d_{l_1} = 2$, $d_i = -1$ $(l_1 < i \le k)$, otherwise, $d_i = 1$ $(j < i \le l_1)$, $d_i = 2$ $(l_1 < i \le l_2)$, ..., $d_i = 1$ $(l_{2h-2} < i < l_{2h-1})$, $d_{l_{2h-1}} = 2$, $d_i = -1$ $(l_{2h-1} < i \le k)$. Hence, by the inductive assumption, if h = 1, $l_1 = j$, then $e_{|b|} = -k + j + 1$, otherwise

$$e_{|b|} = 2\sum_{\mu=1}^{h} l_{2\mu-1} - l_{2\mu} + k - j - 2,$$

and (21) follows from (22) and the inductive assumption.

PROOF OF THEOREM 2. If $(x+1)^2 | B_n(x)$, then by Definition 2 and 3

$$e_n = 0. (23)$$

Consider n satisfying the inequality

$$-\frac{4^k - 1}{3} \le n \le 2 \frac{4^k - 1}{3},\tag{24}$$

then every expansion $n = \sum_{i=1}^{k} c_i 4^{k-i}$, $c_i \in \{-1, 0, 1, 2\}$ is equally probable. By the Bernoulli law of large numbers, for every $\varepsilon \in (0, 1/6)$ and sufficiently large k, the number of n's in the interval (24) such that

$$\left|\left|\{i:c_i=1\}\right| - \frac{k}{4}\right| > \varepsilon k, \quad \text{or} \quad \left|\left|\{i:c_i=-1\}\right| - \frac{k}{4}\right| > \varepsilon k\right|$$
$$\text{or} \quad \left|\left|\{i:c_i=2\}\right| - \frac{k}{4}\right| > \varepsilon k$$

is less than $\varepsilon 4^k$. If, on the other hand,

$$\left|\left|\{i:c_i=1\}\right| - \frac{k}{4}\right| \le \varepsilon k \quad \text{and} \quad \left|\left|\{i:c_i=-1\}\right| - \frac{k}{4}\right| \le \varepsilon k \\ \text{and} \quad \left|\left|\{i:c_i=2\}\right| - \frac{k}{4}\right| \le \varepsilon k$$

and $e_n = 0$, then, by Lemma 10,

$$l = \left| \{ i : \exists \ j \ge 0 \ c_i = -1, c_{i+1} = \dots = c_{i+j} = 1, c_{i+j+1} = 2 \} \right| \\ \in (k/12 - \varepsilon k, k/12 + \varepsilon k),$$

and the number of n's in the interval (24) satisfying (23) does not exceed

$$\sum_{k/12-\varepsilon k < l < k/12+\varepsilon k} k4^{k-2l} \binom{\lfloor k/2 \rfloor}{l} < (2\varepsilon k+1)k \cdot 4^{k-k/6+2\varepsilon k} \cdot \binom{\lfloor k/2 \rfloor}{\lfloor k/12+\varepsilon k \rfloor} = L.$$

Since $L/4^k$ tends to 0, when ε is small enough and k tends to infinity, the theorem follows.

PROOF OF THEOREM 3. $B_k(t) = 0$ implies $\Phi_k(x) | B_k(x)$. Thus $\Phi_k(2) | B_k(2) = k$ and (3) follows. Moreover, if $e = 2^a$, then $0 = B_k(t) \equiv B_k(1) \pmod{1-t}$, and since $N_{F/\mathbb{Q}}(1-t) = 2$, $B_k(t) \equiv 0 \pmod{2}$, thus by Lemma 5, $k \equiv 0 \pmod{3}$. Since for a > 1, $(\Phi_2^a(2), 2) = 1$, (4) follows. If $e = 2 \cdot 3^a$ and $B_k(t) = 0$, then $k \equiv 0 \pmod{3}$, thus $x + 1 | B_k(x)$, and since for a > 0, $(x + 1, \Phi_e(x)) = 1$, we obtain $(x + 1)\Phi_e(x) | B_k(x)$, thus $3\Phi_e(2) | k$ and (4) follows.

PROOF OF THEOREM 4. Since $B_n(0) = 0$ for n even, $B_n(1) = 1$ for n odd, if B_n is reciprocal, it is monic, but by [6, Corollary 2] for almost all n, in the sense of density, B_n is not monic.

A. Schinzel : On the factors of Stern polynomials II

References

- M. GAWRON, A note on the arithmetic properties of Stern polynomials, *Publ. Math. Debrecen* 85 (2014), 453–465.
- [2] S. KLAVŽAR, U. MILUTINOVIĆ and C. PETR, Stern polynomials, Adv. in Appl. Math. 39 (2007), 86–95.
- [3] C. MEYER, Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.
- [4] G. PÓLYA, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen, J. Reine Angew. Math. 151 (1921), 1–31.
- [5] A. SCHINZEL, On the factors of Stern polynomials, (remarks on the preceding paper of M. Ulas), Publ. Math. Debrecen 79 (2011), 83–88.
- [6] A. SCHINZEL, The leading coefficients of Stern polynomials, In: From Arithmetic to Zeta Functions (J. Sander et al., eds.), Springer International Publishing, Switzerland, 2016.
- [7] A. SCHINZEL and H. ZASSENHAUS, A refinement of two theorems of Kronecker, Michigan Math. J. 12 (1965), 81–85.
- [8] M. ULAS, On certain arithmetic properties of Stern polynomials, Publ. Math. Debrecen 79 (2011), 55–81.

ANDRZEJ SCHINZEL INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES ŚNIADECKICH 8 00-656 WARSAW POLAND

E-mail: schinzel@impan.pl

(Received January 2, 2017; revised April 11, 2017)