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On the factors of Stern polynomials II.
Proof of a conjecture of M. Gawron

By ANDRZEJ SCHINZEL (Warszawa)

Abstract. Let Bn(x) be the n-th Stern polynomial in the sense of Klavžar

et al. [2]. Gawron’s conjecture [1] about the natural density of indices n such that

Bn(t) = 0, where t = −1/2,−1/3, is proved and generalized. Similar questions are

treated.

Klavžar, Milutinović and Petr [2] defined Stern polynomials Bn(x)

by the conditions B0(x) = 0, B1(x) = 1, B2n(x) = xBn(x), B2n+1(x) = Bn(x) +

Bn+1(x). Gawron [1] proved that the only rational zeros of Bk(x) are 0,−1,−1/2,

−1/3 and proved that for t = −1/2, t = −1/3,

dm(t) =
|{0 ≤ k < m : Bk(t) = 0}|

m
, (1)

we have lim infm→∞ dm(t) = 0. He conjectured ([1, Conjecture 2.7]) that

lim
m→∞

dm(t) = 0. (2)

We shall consider a more general problem: how often an irreducible (over Q)

polynomial f with integral coefficients divides Bn. Denoting a zero of f by t,

we introduce dm(t) by formula (1). Since B2n+1(0) = 1, if t 6= 0, t−1 = τ is an

algebraic integer and we set F = Q(t). NF/Q is the norm from F to Q.

Theorem 1. For every algebraic integer τ = t−1, different from 0 and roots

of unity, (2) holds.
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Corollary 1. For t = − 1
2 ,−

1
3 , (2) holds.

Corollary 2. For every prime p > 2, the upper density of indices m such

that p |Bm(1) does not exceed 2/p.

As to t being a root of unity, we have only partial results.

Theorem 2. The density of indices n such that (x+ 1)2 |Bn(x) is zero.

Theorem 3. If t is a primitive root of unity of order e > 2, then, for every

positive integer m,

dm(t) ≤ 1

m
+

1

m

⌊
m− 1

Φe(2)

⌋
, (3)

where Φe is the cyclotomic polynomial of order e. Moreover, if e = 2a > 2, or

e = 2 · 3a > 2, then, for every positive integer m,

dm(t) ≤ 1

m
+

1

m

⌊
m− 1

3Φe(2)

⌋
. (4)

As to the other conjecture in [1, Conjecture 4.3], we have only a much weaker

result.

Theorem 4. The density of indices n such that Bn is reciprocal is zero.

[1, Conjecture 4.3] asserts that the number of n ≤ x such that Bn is reciprocal

is O((log x)k) for a certain k.

Notation. For a prime ideal p - τ of F , let q = NF/Qp, and let Wp(t) be

the set of all pairs (α, β) ∈ F2
q obtainable from (1, 0) by repeated use of the

transformations T0(α, β) = (tα + β, β) and T1(α, β) = (α, tβ + α), where t is to

be interpreted as an element of Fq. For an integer m 6= 0, P (m) is the greatest

prime factor of m. For an algebraic integer τ , M(τ) is the Mahler measure of τ ,

i.e.,

M(τ) =
∏
|τ(i)|>1

|τ (i)|,

where τ (i) are all conjugates of τ .

Lemma 1. There exist infinitely many prime ideals p of F such that there

is (α, β) ∈Wp(t) satisfying

T0(α, β) = (α, β). (5)
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Proof. Let us consider the sequence un = NF/Q((2τ − 1)τn − 1), where un
is a linear recurrence defined over Q. Let ω1, . . . , ωs be the characteristic roots

of the sequence un (the distinct zeros of the companion polynomial), and let l be

the least common multiple of the finite orders of the ratios ωi/ωj in the multiplica-

tive group C∗. No two characteristic roots of the sequence ulm (m = 0, 1, . . . ) have

the ratio of finite order. Hence, by the theorem of Pólya [4], lim supP (ulm) =∞,

unless ulm = A(m)am, where A ∈ Q[x] and a ∈ Q∗. Now, lim supP (A(m)) =∞,

unless A is constant and

ulm = Aam. (6)

However, since if an algebraic integer τ 6= 0 is not a root of unity, by a theorem of

Kronecker, some of its conjugates τ (i) lies outside the unit circle. Hence M(τ) > 1.

For a large n suitably chosen (see [7]), we have for all i, hence for infinitely

many m,

(τ (i))n = (1 + o(1))|τ (i)|n,

|uml| = (1 + o(1))
∏
|τ(i)|>1

|2τ (i) − 1|M(τ)ml
∏
|τ(i)|=1

|2τ (i) − 2|,

|u2ml| = (1 + o(1))
∏
|τ(i)|>1

|2τ (i) − 1|M(τ)2ml
∏
|τ(i)|=1

|2τ (i) − 2|,

and, since by (6), u2mlu0 = u2ml, we obtain

(1 + o(1))
∏
|τ(i)|6=1

|2τ (i) − 2| = (1 + o(1))
∏
|τ(i)|>1

|2τ (i) − 1|−1.

Since the equality is independent of m, it follows that∏
|τ(i)|6=1

|2τ (i) − 2| =
∏
|τ(i)|>1

|2τ (i) − 1|−1.

Since the right hand side is non-divisible by 2, the product on the left is empty,

and we obtain

1 =
∏
|τ(i)|>1

|2τ (i) − 1|−1 < 1.

The obtained contradiction proves that lim supP (un) = ∞, and we take p any

common prime ideal factor of P (un) and (2τ−1)τn−1
τ−1 . On the other hand,

(α, β) = Tn+2
1 T0(1, 0) =

(
t, t

tn+2 − 1

t− 1

)
∈Wp(t),

T0(α, β)− (α, β) = (τ−n−2((2τ − 1)τn − 1), 0). �
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Lemma 2. If p - τ is a prime ideal of F satisfying Lemma 1, and the system

of linear equations
1

2
xT0(α,β) +

1

2
xT1(α,β) = λx(α,β) (7)

holds for all (α, β) ∈Wp(t) with x 6= 0 and |λ| ≥ 1, then λ = 1.

Proof. Let

|x(α0,β0)| = max
(α,β)∈Wp(t)

|x(α,β)|.

We infer from (7) that |λ| = 1 and

xT0(α0,β0) = xT1(α,β) = λx(α0,β0),

hence, by induction on the number of steps needed to reach (α, β) from (α0, β0),

xT0(α,β) = xT1(α,β) = λx(α,β) and |x(α,β)| = |x(α0,β0)| > 0,

for all (α, β) ∈Wp(t), thus, in particular, for (α, β) satisfying (5). But (5) implies

xT0(α,β) = x(α,β), λ = 1. �

Lemma 3. Let e be the order of t = τ−1 mod the prime ideal p - τ of F in

the multiplicative group F∗q . Then

e ≥ log q − [F : Q] log 2

logM(τ)
. (8)

Proof. It follows from te ≡ 1 (modp) that τe ≡ 1 (modp) and

q |NF/Q(τe − 1).

However,

|NF/Q(τe − 1)| ≤
∑

S⊂{1,2,...,[F :Q]}

∏
i∈S
|τ (i)

e
| ≤ 2[F :Q]M(τ)e,

thus (8) follows. �

Lemma 4. Let p - τ be a prime ideal of F satisfying Lemma 1, and

dm,p(t) =
|{0 ≤ n < m : Bn(t) ≡ 0 (modp)}|

m
.

Then the limit limn→∞ d2n,p(t) exists and satisfies the inequality

lim
n→∞

d2n,p(τ) ≤ logM(τ)

log q − [F : Q] log 2
. (9)
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Proof. The proof follows that of [1, Theorem 2.5], only instead of [3, Ex-

ample 8.3.2] we use [3, Theorem 7.10.33] and Lemma 2, together with [3, Exer-

cise 4.4.20 and Formula 8.3.13], and instead of the inequality Q
K ≤

2
log p , we use

Lemma 3. �

Proof of Theorem 1. Let

dm(t) =
|{0 ≤ k < m : Bk(t) = 0}|

m
.

Clearly, for every p - τ ,

dm(t) ≤ dm,p(t),

and by (9) and Lemma 1,

lim
n→∞

d2n(t) = 0. (10)

To show (1), we choose n by the inequalities

2n−1 ≤ m < 2n. (11)

Thus

dm(t) ≤ 2d2n(t),

and (1) follows from (10). �

Proof of Corollary 2. For every u ∈ F∗p, all elements T j0 (0, u) for 0 ≤
j < p are distinct. Since T0(1, 0) = (1, 0), following the proof of Lemma 4, we

infer that limn→∞ d2n,p(1) exists and satisfies the inequality

lim
n→∞

d2n,p(1) ≤ 1/p. (12)

We choose n by the inequality (11), and Corollary 2 follows from (12). �

Definition 1. For n < 0, Bn(x) = −B−n(x).

Definition 2. For n ∈ Z,

fn(x) =
B3n(x)

x+ 1
.

Definition 3. en = fn(−1).

Lemma 5. For n ∈ Z,

Bn(−1) = 3

{
n

3
+

1

2

}
− 3

2
.
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Proof. For n ≥ 0, the formula is known and due to Ulas [8, Theorem 5.1].

For n < 0, we have by Definition 1

Bn(−1) = −B−n(−1) = 3

{
−n

3
+

1

2

}
+

3

2
= 3

{
n

3
+

1

2

}
− 3

2
. �

Lemma 6. For α ∈ N, a, b ∈ Z, |b| ≤ 2k, we have

B2αa+b(x) = B2α−|b|(x)Ba(x) +B|b|(x)Ba+sgn b(x). (13)

Proof. For a, b ∈ N, (13) follows from [5, Lemma 1]. For a ∈ N\{0}, b ≤ 0,

we have

2αa+ b = 2α(a− 1) + 2α − |b|,

and (13) follows again from [5, Lemma 1] with a′ = a− 1, b′ = 2α − |b|.
For a = 0, b < 0, we have by Definition 1

B2αa+b(x) = −B−b(x) = B|b|(x)B−1(x).

For a < 0, we have by the already proved cases

B2αa+b(x) = −B−2αa−b(x) = −B2α−|b|(x)B−a(x)−B|b|(x)Ba−sgn b(x)

= B2α−|b|(x)Ba(x) +B|b|(x)Ba+sgn b(x). �

Lemma 7. For k ∈ N, a, b ∈ Z, 3|b| < 4k, we have

e4ka+b = ea + eb. (14)

Proof. By Definition 2 and Lemmas 5 and 6, we have

f4ka+b(x) =
B22k3a+3b(x)

x+ 1
= B4k−3|b|(x)fa(x) + f|b|(x)B3a+sgn b(x),

f4ka+b(−1) = fa(−1) + f|b|(−1) sgn b = fa(−1) + fb(−1), �

hence, by Definition 3 we obtain (14).

Lemma 8. If k ∈ N \ {0},

n =

k∑
i=1

ci4
k−i > 0,

k⋃
i=1

{ci} ⊂ {−1, 1}, (15)

then

en =
∣∣{i : ci = 1}

∣∣− ∣∣{i : ci = −1}
∣∣. (16)
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Proof. We proceed by induction on n. For n = 1, (16) holds. Assume that

n > 1 is given by (15), and that (16) holds for all integers in question less than n.

Then, applying Lemma 7 with k = 1, a =
∑k−1
i=1 ci4

k−i−1 < n, b = ck, we obtain

en = ea + eb = ea + ck,

and (16) follows from the inductive assumption. �

Lemma 9. If k ∈ N \ {0},

n =

k∑
i=1

ci4
k−i,

k⋃
i=1

{ci} ⊂ {1, 2}, (17)

then

en =
∣∣{i : ci = 1}

∣∣− ∣∣{i : ci = 2}
∣∣. (18)

Proof. We proceed by induction on n. For n = 1, (18) holds. Assume that

n > 1 is given by (17), and that (18) holds for all integers in question less than n.

Then, if ck = 1, applying Lemma 7 with k = 1, a =
∑k−1
i=1 ci4

k−i−1 < n, b = 1, we

have

en = ea + eb = ea + 1,

and (18) follows from the inductive assumption. If ck = 2, we have for a =∑k−1
i=1 ci4

k−i−1, by Definition 2

fn(x) = f4a+2(x) =
B12a+6(x)

x+ 1
=
xB6a+3(x)

x+ 1
= xf2a+1(x),

hence, by Definition 3

en = −en/2. (19)

If for a strictly increasing sequence of integers 0 ≤ l1 < l2 < · · · < l2h = k,

ci = 1 (0 < i ≤ l1), ci = 2 (l1 < i ≤ l2), . . . , ci = 1 (l2h−2 < i ≤ l2h−1), ci = 2

(l2h−1 < i ≤ l2h), we have

n

2
=

k∑
i=1

di4
k−i,

where d1 = 1, di = −1 (1 < i ≤ l1 + 1), . . . , di = −1 (l2h−2 + 1 < i ≤
l2h−1 + 1), di = 1 (l2h−1 + 1 < i ≤ l2h), (18) follows from (19) and the inductive

assumption. �
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Lemma 10. If k ∈ N \ {0},

n =

k∑
i=1

ci4
k−i,

k⋃
i=1

{ci} ⊂ {−1, 0, 1, 2}, (20)

then

en =
∣∣{i : ci = 1}

∣∣− ∣∣{i : ci = −1}
∣∣− ∣∣{i : ci = 2}

∣∣
+ 3
∣∣{i : ∃j ≥ 0 ci = −1, ci+1 = . . . = ci+j = 1, ci+j+1 = 2}

∣∣. (21)

Proof. We proceed by induction on n. For n = 0, (21) holds. Assume that

n > 0 is given by (20), and that (21) holds for all non-negative integers less than n.

If {0,−1} ∩
⋃k
i=1{ci} = ∅, (21) holds by Lemma 9. If {0,−1} ∩

⋃k
i=1{ci} 6= ∅,

let j be the greatest index such that cj ∈ {0,−1}. If cj = 0, we take a =∑j−1
i=1 ci4

j−i−1, b =
∑k
i=j+1 ci4

k−i in Lemma 7. Since 3|b| ≤ 3
∑k
i=j+1 2 · 4k−i =

2(4k−j − 1) < 4k−j+1, we obtain

en = ea + eb,

and (21) follows from the inductive assumption. If cj = −1, we take a =∑j−1
i=1 cj4

j−i−1, b =
∑k
i=j ci4

k−i in Lemma 7. Since 3|b| ≤ 3
∑k
i=j 4k−i =

4k−j+1 − 1 < 4k−j+1, we obtain

en = ea + eb = ea − e|b|. (22)

If j = k, then e|b| = 1, and (21) follows from the inductive assumption.

If j < k, and for an increasing sequence of integers j = l0 ≤ l1 < l2 < · · · <
l2h−1 ≤ l2h = k (h > 0), ci = 2 (j < i ≤ l1), ci = 1 (l1 < i ≤ l2), . . . , ci = 2

(l2h−2 < i ≤ l2h−1), ci = 1 (l2h−1 < i ≤ k), then, for h = 1, l1 = j, it holds that

|b| = 4k−j −
∑k
i=j+1 4k−i, otherwise

|b| =
k∑

i=j+1

di4
k−i,

where, for h = 1, l1 > j, it holds that di = 1 (j < i < l1), dl1 = 2, di = −1

(l1 < i ≤ k), otherwise, di = 1 (j < i ≤ l1), di = 2 (l1 < i ≤ l2), . . . , di = 1

(l2h−2 < i < l2h−1), dl2h−1
= 2, di = −1 (l2h−1 < i ≤ k). Hence, by the inductive

assumption, if h = 1, l1 = j, then e|b| = −k + j + 1, otherwise

e|b| = 2

h∑
µ=1

l2µ−1 − l2µ + k − j − 2,

and (21) follows from (22) and the inductive assumption. �
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Proof of Theorem 2. If (x+ 1)2 |Bn(x), then by Definition 2 and 3

en = 0. (23)

Consider n satisfying the inequality

−4k − 1

3
≤ n ≤ 2

4k − 1

3
, (24)

then every expansion n =
∑k
i=1 ci4

k−i, ci ∈ {−1, 0, 1, 2} is equally probable.

By the Bernoulli law of large numbers, for every ε ∈ (0, 1/6) and sufficiently

large k, the number of n’s in the interval (24) such that∣∣∣∣∣∣{i : ci = 1}
∣∣− k

4

∣∣∣∣ > εk, or

∣∣∣∣∣∣{i : ci = −1}
∣∣− k

4

∣∣∣∣ > εk

or

∣∣∣∣∣∣{i : ci = 2}
∣∣− k

4

∣∣∣∣ > εk

is less than ε4k. If, on the other hand,∣∣∣∣∣∣{i : ci = 1}
∣∣− k

4

∣∣∣∣ ≤ εk and

∣∣∣∣∣∣{i : ci = −1}
∣∣− k

4

∣∣∣∣ ≤ εk
and

∣∣∣∣∣∣{i : ci = 2}
∣∣− k

4

∣∣∣∣ ≤ εk
and en = 0, then, by Lemma 10,

l =
∣∣{i : ∃ j ≥ 0 ci = −1, ci+1 = · · · = ci+j = 1, ci+j+1 = 2}

∣∣
∈ (k/12− εk, k/12 + εk),

and the number of n’s in the interval (24) satisfying (23) does not exceed∑
k/12−εk<l<k/12+εk

k4k−2l
(
bk/2c
l

)
<(2εk + 1)k · 4k−k/6+2εk ·

(
bk/2c

bk/12 + εkc

)
=L.

Since L/4k tends to 0, when ε is small enough and k tends to infinity, the theorem

follows. �

Proof of Theorem 3. Bk(t)=0 implies Φk(x) |Bk(x). Thus Φk(2) |Bk(2)

= k and (3) follows. Moreover, if e = 2a, then 0 = Bk(t) ≡ Bk(1) (mod 1 − t),
and since NF/Q(1 − t) = 2, Bk(t) ≡ 0 (mod 2), thus by Lemma 5, k ≡ 0 (mod 3).

Since for a > 1, (Φ2
a(2), 2) = 1, (4) follows. If e = 2 · 3a and Bk(t) = 0, then

k ≡ 0 (mod 3), thus x + 1 |Bk(x), and since for a > 0, (x + 1,Φe(x)) = 1, we

obtain (x+ 1)Φe(x) |Bk(x), thus 3Φe(2) |k and (4) follows. �

Proof of Theorem 4. Since Bn(0) = 0 for n even, Bn(1) = 1 for n odd,

if Bn is reciprocal, it is monic, but by [6, Corollary 2] for almost all n, in the

sense of density, Bn is not monic. �
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