The n-dimensional hyperbolic space in $\mathbf{E}^{4 n-3}$

By RÓBERT OLÁH-GÁL (Miercurea-Ciuc)

Abstract

In this paper we will construct an isometric immersion of the n dimensional hyperbolic space into the euclidian space $\mathbf{E}^{4 n-3}$ with a modification of Danilo Blanus̆a's [2] immersion into $\mathbf{E}^{6 n-5}$ [2].

§1. Introduction

In (1955) Blanus̆a [2] gave a beautiful construction for the isometric embedding of the complete hyperbolic plane \mathbf{H}^{2} into \mathbf{E}^{6} and also for the isometric immersion of the n-dimensional hyperbolic space into $\mathbf{E}^{6 n-5}$. This immersion is of class \mathbf{C}^{∞}, but it is not analytic. A construction of an analytical embedding of the hyperbolic plane into \mathbf{E}^{n} (with sufficiently large n) is unknown even these days.

In 1960 Rozendorn [1] published a paper noting that every metric $d s^{2}=d u^{2}+f^{2}(u) d v^{2}$ can be immersed in \mathbf{E}^{5} using Blanus̆a's method.

The immersion we are dealing with is a modification of Blanus̆a's construction, therefore we shortly recall it. Blanus̆a considered the surface $\Phi(u, v)$ in \mathbf{E}^{6} described in Cartesian coordinates $x_{1}, x_{2}, \ldots, x_{6}$ by the functions

$$
\begin{align*}
& x_{1}(u, v)=x_{1}(u)=\int_{0}^{u} \sqrt{1-f_{1}^{\prime}(y)^{2}-f_{2}^{\prime}(y)^{2}} d y \tag{1}\\
& x_{2}(u, v)=f_{1}(u) \sin \left(v \psi_{1}(u)\right) \tag{2}\\
& x_{3}(u, v)=f_{1}(u) \cos \left(v \psi_{1}(u)\right) \tag{3}\\
& x_{4}(u, v)=f_{2}(u) \sin \left(v \psi_{2}(u)\right) \tag{4}\\
& x_{5}(u, v)=f_{2}(u) \cos \left(v \psi_{2}(u)\right) \tag{5}\\
& x_{6}(u, v)=x_{6}(v)=v \quad-\infty<u, v<\infty \tag{6}
\end{align*}
$$

where

$$
\begin{array}{ll}
f_{1}(u)=\frac{\varphi_{1}(u) \sinh u}{\psi_{1}(u)}, & f_{2}(u)=\frac{\varphi_{2}(u) \sinh u}{\psi_{2}(u)} \\
\psi_{1}(u)=e^{5+2\left[\frac{1+|u|}{2}\right]}, & \psi_{2}(u)=e^{6+2\left[\frac{|u|}{2}\right]}
\end{array}
$$

($[x]$ denotes the integer part of x), and

$$
\begin{aligned}
\varphi_{1}(u) & =\left(\frac{1}{A} \int_{0}^{1+u} \frac{\sin (\pi x)}{e^{\sin ^{-2}(\pi x)}} d x\right)^{1 / 2} \\
\varphi_{2}(u) & =\left(\frac{1}{A} \int_{0}^{u} \frac{\sin (\pi x)}{e^{\sin ^{-2}(\pi x)}} d x\right)^{1 / 2} \\
A & =\int_{0}^{1} \frac{\sin (\pi x)}{e^{\sin ^{-2}(\pi x)}} d x, \quad A \approx 0.141327
\end{aligned}
$$

The functions $\varphi_{1}(u)$ and $\varphi_{2}(u)$ have the properties

$$
\begin{aligned}
0 \leq \varphi_{1}(u) \leq 1, \quad 0 & \leq \varphi_{2}(u) \leq 1 \\
\varphi_{1}(u)^{2}+\varphi_{2}(u)^{2}=1, \quad \varphi_{1}(u) & =\varphi_{2}(u+1), \quad u \in \mathbb{R}
\end{aligned}
$$

ψ_{2} has a discontinuity for even integers u , and so has ψ_{1} for odd integers u , but at these points φ_{1} and φ_{2} vanish together with all of their derivatives, and so the functions f_{1} resp. f_{2} are of class \mathbf{C}^{∞}. Besides,

$$
f_{i}^{\prime}(u)=\frac{\varphi_{i}(u) \cosh u+\varphi_{i}^{\prime}(u) \sinh u}{\psi_{i}(u)}, \quad i=1,2
$$

while ψ_{i} is a step function and has zero derivatives. Furthermore we have

$$
\begin{aligned}
\left|f_{i}^{\prime}(u)\right| & <\frac{e^{|u|}\left|\varphi_{i}(u)\right|+e^{|u|}\left|\varphi_{i}^{\prime}(u)\right|}{\psi_{i}(u)}<\frac{19 e^{|u|}}{\psi_{i}(u)}<19 e^{|u|-(4+|u|)} \\
& =\frac{19}{e^{4}}<\frac{1}{\sqrt{2}}, \quad i=1,2
\end{aligned}
$$

Using the above properties of the functions f_{i}, it is easy to see that

$$
\sqrt{1-f_{1}^{\prime}(y)^{2}-f_{2}^{\prime}(y)^{2}}
$$

is real for any value of u.
Blanus̆A has shown (see [2]) that (1)-(6) give a one-to-one \mathbf{C}^{∞} mapping of the (u, v) plane \mathbb{R}^{2} into \mathbf{E}^{6}, and the metric of $\Phi(u, v)$ induced by \mathbf{E}^{6} is

$$
\begin{equation*}
d s^{2}=d u^{2}+\cosh ^{2} u d v^{2} \tag{7}
\end{equation*}
$$

and hence Φ has a constant negative curvature. (7) can be considered as the metric of $\mathbf{H}^{2}(\mathbf{u}, \mathbf{v})$.

Theorem. (Blanus̆A's [2] p. 218). Functions (1)-(6) (u, v $\in \mathbb{R}$) define an isometric \mathbf{C}^{∞} embedding of the hyperbolic plane into \mathbf{E}^{6}.

§2. The hyperbolic plane in \mathbf{E}^{5}

By omitting x_{6}, we get a surface \sum of \mathbf{E}^{5} with metric $d s^{2}=d u^{2}+$ $\sinh ^{2} u d v^{2} . \sum \subset \mathbf{E}^{5}$ has singularity only when $u=0$, which corresponds to the origin $(0,0,0,0,0)$ of \mathbf{E}^{5}. For integers u the images of the parametric lines are closed. We wish to illustrate the appearance of a surface having one singular point in \mathbf{E}^{5} using an analog of the projection from \mathbf{E}^{4} onto \mathbf{E}^{3} (See Figure 1). At any other point the metric is positive definite and the curvature is -1 . So we obtain

Figure 1.
Parallel projection of a surface with constant negative curvature in \mathbf{E}^{4} into \mathbf{E}^{3}.
The image is also a surface with constant negative curvature in \mathbf{E}^{3}.

Proposition 1. The surface Σ given by (1)-(5) $(u, v \in \mathbb{R})$ is a surface with constant negative curvature, having only one singular point.

In 1955 Amsler [3] proved that each surface of \mathbf{E}^{3} with constant negative curvature has an edge (i.e. it contains a curve consisting of singularities), and showed the nonexistence in \mathbf{E}^{3} of surfaces of constant negative curvature with singularity consisting of one point alone. Proposition 1 shows that AMSLER's theorem fails to be valid in \mathbf{E}^{n} if $n \geq 5$.

If we change $\sinh u$ to $\cosh u$ in f_{1} and f_{2}, then (1)-(6) give a surface with the metric $d s^{2}=d u^{2}+\left(\cosh ^{2} u+1\right) d v^{2}$, which is a metric of Efimov type and its curvature is

$$
K(u, v)=-\frac{1+12 e^{2 u}+6 e^{4 u}+12 e^{6 u}+e^{8 u}}{\left(1+6 e^{2 u}+e^{4 u}\right)^{2}}<-1 / 4 .
$$

If we omit \mathbf{x}_{6} again, we get a surface $\widetilde{\Sigma}$ in \mathbf{E}^{5} with constant negative curvature.
$\widetilde{\Sigma}$ is given by

$$
\begin{align*}
x_{1}(u, v) & =x_{1}(u)=\int_{0}^{u} \sqrt{1-g_{1}^{\prime}(y)^{2}-g_{2}^{\prime}(y)^{2}} d y \tag{8}\\
x_{2}(u, v) & =g_{1}(u) \cos \left(v \psi_{1}(u)\right), \tag{9}\\
x_{3}(u, v) & =g_{1}(u) \sin \left(v \psi_{1}(u)\right), \tag{10}\\
x_{4}(u, v) & =g_{2}(u) \cos \left(v \psi_{2}(u)\right), \tag{11}\\
x_{5}(u, v) & =g_{2}(u) \sin \left(v \psi_{2}(u)\right), \tag{12}\\
g_{1}(u) & =\frac{\varphi_{1}(u) \cosh u}{\psi_{1}(u)}, g_{2}(u)=\frac{\varphi_{2}(u) \cosh u}{\psi_{2}(u)}, u, v \in \mathbb{R} .
\end{align*}
$$

A calculation shows that the metric of $\widetilde{\Sigma}$ in \mathbf{E}^{5} is also (7) and this can be considered as the metric of $\mathbf{R}^{2}(\mathbf{u}, \mathbf{v}) \equiv \mathbf{H}^{2}(\mathbf{u}, \mathbf{v})$.

Theorem. Functions given by (8)-(12) $u, v \in \mathbb{R}$ define an isometric \mathbf{C}^{∞} immersion of the hyperbolic plane into \mathbf{E}^{5}.

Proof. Blanus̆a has shown that φ_{1} / ψ_{1} and φ_{2} / ψ_{2} are of class \mathbf{C}^{∞}. From this follows that \mathbf{g}_{1} and \mathbf{g}_{2} also have this property. We show that

$$
x_{1}(u, v)=\int_{0}^{u} \sqrt{1-g_{1}^{\prime}(y)^{2}-g_{2}^{\prime}(y)^{2}} d y
$$

is real for any value of u. The majoring of $g_{i}{ }^{\prime}$ is totally analogous to that of $f_{i}{ }^{\prime}$

$$
\begin{aligned}
g_{i}^{\prime}(u) & =\frac{\varphi_{i}(u) \cosh u+\varphi_{i}^{\prime}(u) \sinh u}{\psi_{i}(u)}, \quad i=1,2 \\
\left|g_{i}^{\prime}(u)\right| & <\frac{e^{|u|}\left|\varphi_{i}(u)\right|+e^{|u|}\left|\varphi_{i}^{\prime}(u)\right|}{\psi_{i}(u)}<\frac{19 e^{|u|}}{\psi_{i}(u)}<19 e^{|u|-(4+|u|)} \\
& =\frac{19}{e^{4}}<\frac{1}{\sqrt{2}}, \quad i=1,2
\end{aligned}
$$

It follows that $x_{1}(u, v)$ is real for any value of u; moreover $\frac{\partial x_{i}}{\partial u} \nVdash \frac{\partial x_{i}}{\partial v}$ $(i=1, \ldots, 5)$, therefore (8)-(12) is an immersion, indeed.

We remark that the above calculation is analogous to that of BLANUS̆A.

§3. The n-dimensional hyperbolic space in $\mathbf{E}^{4 n-3}$

In order to map the n-dimensional hyperbolic space into $\mathbf{E}^{6 n-5}$ isometrically, Blanus̆a constructed two new functions. These are the following

$$
F_{1}(u)=\frac{\varphi_{1}\left(\frac{1}{u}\right)}{\psi_{1}\left(\frac{1}{u}\right)} \sqrt{\frac{1}{u^{2}}-e^{-2 u}}, \quad F_{2}(u)=\frac{\varphi_{2}\left(\frac{1}{u}\right)}{\psi_{2}\left(\frac{1}{u}\right)} \sqrt{\frac{1}{u^{2}}-e^{-2 u}}
$$

where $\varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2}$ are the same as in $\S 1$.
Let $x_{0}, x_{r 1}, x_{r 2}, \ldots, x_{r 6}(r=1, \ldots, n-1)$ denote a Cartesian coordinate system in $\mathbf{E}^{6 n-5}$, and let $u, v_{r}(r=1, \ldots, n-1)\left(u>0\right.$ and $\left.v_{r} \in \mathbb{R}\right)$ be the parameter domain endowed with the metric

$$
\begin{equation*}
d s^{2}=d x_{0}^{2}+\sum_{r=1}^{n-1} \sum_{s=1}^{6} d x_{r s}^{2}=\frac{1}{u^{2}}\left(d u^{2}+\sum_{r=1}^{n-1} d v_{r}^{2}\right) \tag{13}
\end{equation*}
$$

So we have got the hyperbolic space \mathbf{H}^{n}.
Theorem (Blanus̆a [2] p. 225). The functions

$$
\begin{aligned}
x_{0}\left(u, v_{r}\right) & =x_{0}(u)=\int_{1}^{u} \sqrt{\frac{1}{y^{2}}-F_{1}^{\prime}(y)^{2}-F_{2}^{\prime}(y)^{2}-e^{-2 y} d y} \\
x_{r 1}\left(u, v_{r}\right) & =\frac{e^{-u}}{\sqrt{n-1}} \cos \left(\sqrt{n-1} v_{r}\right) \\
x_{r 2}\left(u, v_{r}\right) & =\frac{e^{-u}}{\sqrt{n-1}} \sin \left(\sqrt{n-1} v_{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
x_{r 3}\left(u, v_{r}\right)= & \frac{F_{1}(u)}{\sqrt{n-1}} \cos \left(\sqrt{n-1} v_{r} \psi_{1}\left(\frac{1}{u}\right)\right), \\
x_{r 4}\left(u, v_{r}\right)= & \frac{F_{1}(u)}{\sqrt{n-1}} \sin \left(\sqrt{n-1} v_{r} \psi_{1}\left(\frac{1}{u}\right)\right) \\
x_{r 5}\left(u, v_{r}\right)= & \frac{F_{2}(u)}{\sqrt{n-1}} \cos \left(\sqrt{n-1} v_{r} \psi_{2}\left(\frac{1}{u}\right)\right), \\
x_{r 6}\left(u, v_{r}\right)= & \frac{F_{2}(u)}{\sqrt{n-1}} \sin \left(\sqrt{n-1} v_{r} \psi_{2}\left(\frac{1}{u}\right)\right) \\
& \quad-\infty<v_{r}<\infty, \quad(r=1, \ldots, n-1), \quad 0<u .
\end{aligned}
$$

define a \mathbf{C}^{∞} isometric immersion of the n-dimensional hyperbolic space into $\mathbf{E}^{6 n-5}$ with the metric (13).

In order to reduce the number of dimensions from $6 n-5$ to $4 n-3$, we need to find a metric

$$
d s^{2}=g_{11}(u) d u^{2}+\sum_{r=1}^{n-1} g_{r+1, r+1}(u) d v_{r}^{2}
$$

with constant negative curvature, where $g_{22}=g_{33}=\cdots=g_{n n} \equiv f(u)^{2}$.
The following observation helps us to generalize a two-dimensional metric $g_{11}=g_{11}(u), g_{12}=0, g_{22}=g_{22}(u)$ with constant negative curvature to an n-dimensional metric $g_{i i}=g_{i i}(u)$ and $g_{i j}=0, i \neq j$ with constant negative curvature.

Proposition. The metric

$$
\begin{equation*}
d s^{2}=x(u) d u^{2}+f^{2}(u) d v^{2} \tag{14}
\end{equation*}
$$

has curvature $K=-1$ if and only if

$$
\begin{equation*}
x^{\prime} f^{\prime}+2 f x^{2}-2 f^{\prime \prime} x=0 \tag{15}
\end{equation*}
$$

Furthermore, this differential equation has the following particular solutions

$$
\begin{equation*}
x_{1}=\frac{f^{\prime 2}}{f^{2}-1} ; \quad x_{2}=\frac{f^{\prime 2}}{f^{2}} ; \quad x_{3}=\frac{f^{\prime 2}}{1+f^{2}} \tag{16}
\end{equation*}
$$

Proof. Suppose that (14) has curvature $K=-1$. Then, using the elementary formula

$$
\begin{equation*}
K(u, v)=\frac{\left(\frac{\partial t_{1}}{\partial u}+\frac{\partial t_{2}}{\partial v}\right)}{2 d} \tag{17}
\end{equation*}
$$

where $d=\sqrt{g_{11} g_{22}-g_{12}^{2}}, t_{1}=\frac{g_{12} \frac{\partial g_{11}}{\partial v}}{d g_{11}}-\frac{\frac{\partial g_{22}}{\partial u}}{d}, t_{2}=\frac{2 \frac{\partial g_{11}}{\partial u}}{d}-\frac{\frac{\partial g_{11}}{\partial v}}{d}-\frac{g_{12} \frac{\partial g_{11}}{\partial u}}{d g_{11}}$ (see e.g. [4]). In our case $d=f \sqrt{x}, t_{1}=-2 \frac{f^{\prime}}{\sqrt{x}}, t_{2}=0$ so we obtain the differential equation (15).

Conversely (14) and (15) yield $K=-1$ by (17). Finally, a simple substitution shows that the functions (16) satisfy the equation (15).

Examples 1. If $f(u)=\cosh u$ then we obtain for $x(u)=x_{1}(u), x(u)=$ $x_{2}(u), x(u)=x_{3}(u)$ the metrics $d s^{2}=d u^{2}+\cosh ^{2} u d v^{2}, d s^{2}=\tanh ^{2} u d u^{2}$ $+\cosh ^{2} u d v^{2}$ and $d s^{2}=\frac{\sinh ^{2} u}{\cosh ^{2} u+1} d u^{2}+\cosh ^{2} u d v^{2}$, respectively.

Examples 2. In case $f(u)=\frac{1}{u}$ we obtain for $x(u)=x_{1}(u), x(u)=$ $x_{2}(u), x(u)=x_{3}(u)$ the metrics $d s^{2}=\frac{1}{u^{2}\left(1-u^{2}\right)} d u^{2}+\frac{1}{u^{2}} d v^{2}, d s^{2}=\frac{1}{u^{2}}\left(d u^{2}\right.$ $\left.+d v^{2}\right)$ and $d s^{2}=\frac{1}{u^{2}\left(1+u^{2}\right)} d u^{2}+\frac{1}{u^{2}} d v^{2}$, respectively.

Let us consider the mapping

$$
\rho: \mathbb{R}^{n}\left(u, v_{r}\right) \longrightarrow \mathbf{E}^{4 n-3}
$$

given in Cartesian coordinates by

$$
\begin{align*}
x_{0}\left(u, v_{r}\right)= & x_{0}(u)=\int_{0}^{u} \sqrt{1-f_{1}^{\prime}(y)^{2}-f_{2}^{\prime}(y)^{2}} d y \tag{18}\\
x_{r 1}\left(u, v_{r}\right)= & f_{1}(u) \sin \left(v_{r} \psi_{1}(u)\right) \tag{19}\\
x_{r 2}\left(u, v_{r}\right)= & f_{1}(u) \cos \left(v_{r} \psi_{1}(u)\right) \tag{20}\\
x_{r 3}\left(u, v_{r}\right)= & f_{2}(u) \sin \left(v_{r} \psi_{2}(u)\right) \tag{21}\\
x_{r 4}\left(u, v_{r}\right)= & f_{2}(u) \cos \left(v_{r} \psi_{2}(u)\right) \tag{22}\\
& -\infty<u, v_{r}<\infty \quad(r=1, \ldots, n-1)
\end{align*}
$$

where

$$
f_{1}(u)=\frac{\varphi_{1}(u) e^{u}}{\psi_{1}(u)}, \quad \quad f_{2}(u)=\frac{\varphi_{2}(u) e^{u}}{\psi_{2}(u)}
$$

and $\varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2}$ are the same as in $\S 1$.
Theorem (the main result). The mapping ρ defines a \mathbf{C}^{∞} isometric immersion of the n-dimensional hyperbolical space \mathbf{H}^{n} into $\mathbf{E}^{4 n-3}$.

To prove the Theorem we need the next
Lemma. The n-dimensional metric

$$
\begin{equation*}
d s^{2}=\left(f^{\prime} / f\right)^{2} d u^{2}+f^{2}(u) \sum_{i=2}^{n} d v_{i}^{2} \tag{23}
\end{equation*}
$$

has curvature $K=-1$. In other words

$$
\begin{equation*}
R_{i j k l}=-\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right) \tag{24}
\end{equation*}
$$

Proof. We get by an easy calculation that the Christoffel symbols of the first kind are

$$
c_{i j k}= \begin{cases}\frac{f(u)^{\prime} f(u)^{\prime \prime}}{f(u)^{2}}-\frac{f(u)^{\prime 3}}{f(u)^{3}}, & i=j=k=1 \\ f(u) f^{\prime}(u), & i=1, j=k>1 \\ -f(u) f^{\prime}(u), & i=j>1, k=1 \\ 0, & \text { otherwise },\end{cases}
$$

and the Christoffel symbols of the second kind are

$$
C_{i j}^{k}= \begin{cases}\frac{f(u)^{2}}{f(u)^{\prime 2}}\left(\frac{f(u)^{\prime} f(u)^{\prime \prime}}{f(u)^{2}}-\frac{f(u)^{\prime 3}}{f(u)^{3}}\right), & i=j=k=1 \\ \frac{f^{\prime}(u)}{f(u)}, & i=1, j=k>1 \\ -\frac{f(u)^{3}}{f^{\prime}(u)}, & i=j>1, k=1 \\ 0, & \text { otherwise } .\end{cases}
$$

From these it follows that

$$
R_{i j k l}= \begin{cases}-f^{\prime}(u)^{2}, & i=k=1, j=l>1 \tag{25}\\ -f(u)^{4}, & i=k>1, j=l>1 \\ 0, & \text { otherwise }\end{cases}
$$

On the other hand,

$$
g_{i k} g_{j l}-g_{i l} g_{j k}= \begin{cases}f^{\prime}(u)^{2}, & i=k=1, j=l>1 \tag{26}\\ f(u)^{4}, & i=k>1, j=l>1 \\ 0, & \text { otherwise }\end{cases}
$$

From (25) and (26) we obtain (24). By the Lemma, (23) implies that $R_{i j k l}=-\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right)$ and thus $K=-1$ is true.

Proof of the Theorem. Functions (18)-(22) are \mathbf{C}^{∞}, so ρ is also \mathbf{C}^{∞}.
Straigthforward calculations show that the images of the tangents to the parametric lines are linearly independent and hence $\rho: \mathbb{R}^{n} \longrightarrow \mathbf{E}^{4 n-3}$ is an immersion. The induced metric of $\rho\left(\mathbb{R}^{n}\right)$ is

$$
d s^{2}=d u^{2}+e^{2 u} \sum_{i=2}^{n} d v_{i}^{2}
$$

Thus, according to the Lemma, it has curvature $K=-1$, and therefore ρ determines an isometric immersion of $\mathbf{H}^{n}=\left(\rho\left(\mathbb{R}^{n}\right), d s^{2}\right)$ into $\mathbf{E}^{4 n-3}$.

References

[1] É. R. Rozendorn, A realization of the metric $d s^{2}=d u^{2}+f^{2}(u) d v^{2}$ in five-dimensional Euclidean space., Akad. Nauk Armjan. SSR Dokl. 30 (1960), 197-199, (Russian. Armenian summary).
[2] Danilo Blanus̆a, Über die Einbettung hyperbolischer Räume in euklidische Räume, Monatsh. Math. 59 (1955), 217-229.
[3] Marc-Henri Amsler, Des surfaces à courbure négative constante dans léspace à trois dimensions et de leurs singularités, Math. Ann. 130 (1955), 234-256.
[4] I. D. Teodorescu and St. D. Teodorescu, Culegere de probleme de geometrie superioară, Ed. Did. şi Ped., Bucureşti (1975), 448-449.

```
RÓBERT OLÁH-GÁL
4100 MIERCUREA-CIUC
S.C. INFOHAR S.A.
(CENTRUL TERITORIAL DE CALCUL)
STR. PETŐFI, NR. }2
ROMÂNIA
```

(Received March 23, 1993; revised December 5, 1994)

