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Greguš type common fixed point theorems
for compatible mappings of type (T )

and variational inequalities

By H. K. PATHAK (Bhilai Nagar), S. M. KANG (Chinju),
Y. J. CHO (Chinju) and J. S. JUNG (Pusan)

Let T and I be two compatible mappings of type (T ) from a normed
space X into itself and let C be a closed convex and bounded subset of X
such that I(C) ⊇ (1− k) · I(C) + k · T (C), where k ∈ (0, 1) is fixed and

‖Tx− Ty‖p ≤ a · ‖Ix− Iy‖p

+ (1− a) ·max
{‖Tx− Ix‖p, ‖Ty − Iy‖p

}

for all x, y ∈ C, where 0 < a < 1 and p > 0. If, for some x0 ∈ C, the
sequence {xn} defined by Ixn+1 = (1 − k) · Ixn + k · Txn for all n ≥ 0
converges to a point z in C and if I is continuous at z, then T and I have a
unique common fixed point. Further, if I is continuous at Tz, then T and I
have a unique common fixed point at which T is continuous. We have also
applied this result to obtain the iterative solution of certain variational
inequalities.

1. Introduction

Let T and I be two mappings of a normed space (X, ‖ · ‖) into itself.
Sessa [11] defined T and I to be weakly commuting if

‖TIx− ITx‖ ≤ ‖Tx− Ix‖
for any x ∈ X. Clearly two commuting mappings weakly commute, but
two weakly commuting mappings in general do not commute. Refer to
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example 1 in Sessa [11] and Diviccaro et al. [5]. Jungck [10] defined
T and I to be compatible mappings if

lim
n→∞

‖TIxn − ITxn‖ = 0,

whenever there exists a sequence {xn} in X such that lim
n→∞

Txn= lim
n→∞

Ixn

= t for some t in X. Clearly two weakly commuting mappings are compat-
ible, but two compatible mappings are in general not weakly commuting.
For examples, refer to Jungck [10]. Recently, Diviccaro, Fisher and
Sessa [5] established the following theorem.

Theorem A. Let T and I be two weakly commuting mappings of
a closed convex subset C of a Banach space X into itself satisfying the
following inequality

(1)
‖Tx− Ty‖p ≤ a · ‖Ix− Iy‖p

+ (1− a) ·max
{‖Tx− Ix‖p, ‖Ty − Iy‖p

}

for all x, y in C, where 0 < a < 1/2p−1 and p ≥ 1. If I is linear, non-
expansive in C and such that I(C) contains T (C), then T and I have a
unique common fixed point at which T is continuous.

In this paper, we will show the following:

Let T and I be two compatible mappings of type (T ) from a normed
space X into itself and let C be a closed convex and bounded subset of X
such that I(C) ⊇ (1− k) · I(C) + k · T (C), where k ∈ (0, 1) is fixed, and

‖Tx− Ty‖p ≤ a · ‖Ix− Iy‖p

+ (1− a) ·max
{‖Tx− Ix‖p, ‖Ty − Iy‖p

}

for all x, y ∈ C, where 0 < a < 1 and p > 0. If, for some x0 ∈ C, the
sequence {xn} defined by Ixn+1 = (1 − k) · Ixn + k · Txn for all n ≥ 0
converges to a point z in C and if I is continuous at z, then T and I
have a unique common fixed point. Further, if I is continuous at Tz,
then T and I have a unique common fixed point at which T is continuous.
We have also applied this result to obtain the iterative solution of certain
variational inequalities. Our theorem extends, generalizes and improves
several common fixed point theorems of Greguš type and many others.

2. Compatible Mappings of Type (T )

In this section, we introduce the concepts of compatible mappings of
type (T ) (type (I)) in normed spaces and show that these mappings are
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equivalent to compatible mappings under some conditions. Throughout
this paper, X denotes a normed space (X, ‖ · ‖) with norm ‖ · ‖ and N , the
set of natural numbers.

Definition 2.1. Let I and T be mappings from a normed space X into
itself. The mappings I and T are said to be compatible of type (T ) if

lim
n→∞

‖ITxn − Ixn‖+ lim
n→∞

‖ITxn − TIxn‖ ≤ lim
n→∞

‖TIxn − Txn‖,

whenever {xn} is a sequence in X such that lim
n→∞

Ixn = lim
n→∞

Txn = t for
some t ∈ X.

Definition 2.2. Let I and T be mappings from a normed space X into
itslef. The mappings I and T are said to be compatible of type (I) if

lim
n→∞

‖TIxn − Txn‖+ lim
n→∞

‖ITxn − TIxn‖ ≤ lim
n→∞

‖ITxn − Ixn‖,

whenever {xn} is a sequence in X such that lim
n→∞

Ixn = lim
n→∞

Txn = t for
some t ∈ X.

The following propositions show that compatible mappings and com-
patible mappings of type (T ) (type (I)) are equivalent under some condi-
tions, but first we have the following:

Proposition 2.1. Every compatible pair of mappings is a compatible
pair of mappings of type (T ) (type (I)).

Proof. Suppose that I and T are compatible mappings of a normed
space X into itself. Let {xn} be a sequence in X such that lim

n→∞
Ixn =

lim
n→∞

Txn = t for some t ∈ X. We have

‖ITxn − Ixn‖ ≤ ‖ITxn − TIxn‖
+ ‖TIxn − Txn‖+ ‖Txn − Ixn‖

i.e.,
‖ITxn − Ixn‖+ ‖ITxn − TIxn‖

≤ 2‖ITxn − TIxn‖+ ‖TIxn − Txn‖+ ‖Txn − Ixn‖.
Letting n →∞, since I and T are compatible, we have

lim
n→∞

‖ITxn − Ixn‖+ lim
n→∞

‖ITxn − TIxn‖ ≤ lim
n→∞

‖TIxn − Txn‖.

Therefore, I and T are compatible mappings of type (T ). Similarly, we can
show that I and T are compatible mappings of type (I). This completes
the proof.
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In order to add validity and weight to the argument that our concept
of compatible mappings of type (T ) is a viable, meaningful and potentially
productive generalization of compatible mappings, the following question
can be addressed: When are compatible mappings of type (T ) compatible?
The following propositions can well answer this question.

Proposition 2.2. Let I and T be compatible mappings of type (T ) of
a normed space X into itself such that lim

n→∞
‖TIxn− Txn‖ = 0, whenever

there exists a sequence {xn} in X such that lim
n→∞

Ixn = lim
n→∞

Txn = t for

some t in X. Then I and T are compatible mappings.

Proof. Since I and T are compatible mappings of type (T ) and
lim

n→∞
‖TIxn − Txn‖ = 0, it follows that

lim
n→∞

‖ITxn − Ixn‖+ lim
n→∞

‖ITxn − TIxn‖ ≤ 0,

which implies lim
n→∞

‖ITxn − TIx‖ = 0. Therefore, the mappings I and T

are compatible.

As a direct consequence of Propositions 2.1 and 2.2, we have the
following:

Proposition 2.3. Let I and T be mappings of a normed space X into
itself such that lim

n→∞
‖ITxn − Txn‖ = 0, whenever there exists a sequence

{xn} in X such that lim
n→∞

Ixn = lim
n→∞

Txn = t for some t in X. Then I

and T are compatible if and only if they are compatible of type (T ).

Recall that a mappings f of a topological space X into a topological
space Y is proper if and only if f−1(C) is compact in X when C is compact
in X.

Proposition 2.4. Suppose that I and T are continuous mappings of a
normed space X into itself and T is proper. If Ix = Tx implies ITx = TIx,
then I and T are compatible mappings of type (T ).

Proof. By the sufficient condition of normed space version of The-
orem 2.2 in [10], the mappings I and T are compatible. Hence, by Propo-
sition 2.1, I and T are compatible mappings of type (T ).

As a direct consequence of Propositions 2.1 and 2.4, we have the
following:
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Proposition 2.5. Let I and T be continuous mappings of a normed
space X into itself and T is proper. Let Ix = Tx implies ITx = TIx.
Then I and T are compatible if and only if they are compatible of type
(T ).

The following examples show that Proposition 2.5 is not true if either
I and T are not continuous or T is not proper.

Example 2.1. Let X = [0,∞) with the Euclidean norm ‖ · ‖. Define
the mappings I, T : X → X by

Ix =
{

1 + x, if x ∈ [0, 1)
1, if x ∈ [1,∞)

and Tx =
{

1, if x ∈ [0, 1)
1 + x, if x ∈ [1,∞).

Then I and T are not continuous at t = 1. Consider a sequence {xn} in
X defined by xn = 1/n, n ∈ N. Then we have

Txn = 1, Ixn = 1 if xn → 1 as n →∞.

Thus ITxn = 1 and TIxn = 2 + xn so that

lim
n→∞

‖ITxn − Ixn‖+ lim
n→∞

‖ITxn − TIxn‖ = lim
n→∞

‖TIxn − Txn‖,
but

lim
n→∞

‖TIxn − ITxn‖ = lim
n→∞

‖1− (2 + xn)‖ = 1.

Therefore, I and T are compatible mappings of type (T ), but they are not
compatible.

Example 2.2. Let X = [0,∞) with the Euclidean norm ‖ · ‖. Define
the mappings I, T : X → X by

Ix =
{

x, if 0 ≤ x ≤ 1
1, if x > 1

and Tx =
x

x + 1

for all x in X. Then T is not proper. For 0 ≤ x ≤ 1, ‖Ixn − Txn‖ =
x2

n/(xn + 1) → 0 if and only if xn → 0 and

lim
n→∞

‖ITxn − Ixn‖ = 0 = lim
n→∞

‖ITxn − TIxn‖
= lim

n→∞
‖TIxn − Txn‖

as xn → 0. Hence, we have

lim
n→∞

‖ITxn − Ix‖+ lim
n→∞

‖ITxn − TIxn‖ = lim
n→∞

‖TIxn − Txn‖.
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For 1 < x < ∞, consider a sequence {xn} in X defined by xn = n for
all n ∈ N . Then we have

Ixn = 1, Txn =
n

n + 1
→ 1 as n →∞.

Now, we have

lim
n→∞

‖ITxn − TIxn‖ =
1
2
, lim

n→∞
‖ITxn − Ixn‖ = 0

and

lim
n→∞

‖TIxn − Txn‖ =
1
2
.

Thus, it follows that

lim
n→∞

‖ITxn − Ixn‖+ lim
n→∞

‖ITxn − TIxn‖ = lim
n→∞

‖TIxn − Txn‖.

Therefore, the mappings I and T are compatible of type (T ), but they are
not compatible.

Proposition 2.6. Suppose that I and T are continuous mappings of
a normed space X into itself and T is proper. If Ix = Tx implies x = Tx,
then the mappings I and T are compatible of type (T ).

Proof. By Corollary 2.6 of [10], the mappings I and T are compat-
ible. Thus, I and T are compatible mappings of type (T ).

Proposition 2.7. Suppose that I and T are continuous mappings of
a normed space X into itself, I and T are compatible mappings of type
(T ) and T is proper. If Ix = Tx implies Tx = TIx, then the mappings I
and T are compatible.

Proof. If Ix = Tx implies Tx = TIx, then the continuity and
compatibility of type (T ) of I and T says that ‖ITx−Ix‖+‖ITx−TIx‖ ≤
0, which implies ITx = TIx and so the mappings I and T are compatible
by the sufficient condition of Theorem 2.2 in [10].

Proposition 2.8. Suppose that I and T are continuous mappings of
a normed space X into itself, I and T are compatible mappings of type
(T ) and T is proper. If Ix = Tx implies x = Ix, then the mappings I and
T are compatible.

Proof. If Ix = Tx implies x = Ix, then the continuity and compat-
ibility of type (T ) of I and T implies that ‖ITx − x‖ + ‖ITx − Tx‖ ≤ 0
and so ITx = x = Tx. Thus, calling Corollary 2.6 of [10], the mappings I
and T are compatible.

As a direct consequence of Propositions 2.1, 2.7 and 2.8, we also have
the following:
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Proposition 2.9. Let I and T be continuous mappings of a normed
space X into itself and T is proper. Then I and T are compatible if
and only if they are compatible of type (T ), if any one of the following
conditions holds:

(1) Ix = Tx implies Tx = TIx.

(2) Ix = Tx implies x = Ix.

The following proposition shows that if the mappings I and T are
compatible of both types (T ) and (I), then they are compatible.

Proposition 2.10. Suppose that I and T are compatible mappings of
a normed space X into itself. Then they are compatible if and only if they
are compatible of both types (T ) and (I).

Proof. The necessary condition follows by Proposition 2.1.
To prove the sufficient condition, let I and T be compatible of both

types (T ) and (I). Then we have

lim
n→∞

‖ITxn − Ixn‖+ lim
n→∞

‖ITxn − TIxn‖(i)

≤ lim
n→∞

‖TIxn − Txn‖

and

lim
n→∞

‖TIxn − Txn‖+ lim
n→∞

‖ITxn − TIxn‖(ii)

≤ lim
n→∞

‖ITxn − Ixn‖,
whenever there exists a sequence {xn} in X such that lim

n→∞
Ixn = lim

n→∞
Txn = t for some t in X. Adding (i) and (ii) and concelling the common
terms, we obtain

2 lim
n→∞

‖ITxn − TIxn‖ ≤ 0,

which implies that lim
n→∞

‖ITxn − TIxn‖ = 0. Therefore, the mappings I

and T are compatible. This completes the proof.

The object of the present paper is to replace linearity and nonexpan-
siveness of the mapping I and the proof of Theorem A is made under con-
siderably weaker conditions of the given mappings, i.e., replacing weakly
commuting pair of mappings T and I with compatible mappings of type
(T ) and using the itertaion method of Mann’s type. In our case, the map-
pings T and I are not necessarily self-mappings of C. Also the range of
p has been extended to the case when 0 < p < 1. The technique used in
the proof of our theorem is different from that of Diviccaro et al. [5].
Further, we have used our main theorem to obtain the iterative solution
of certain variational inequalities.



292 H. K. Pathak, S. M. Kang, Y. J. Cho and J. S. Jung

3. Main Result

Now, we are ready to give our main theorem and an application:

Theorem 3.1. Let T and I be two compatible mappings of type (T )
of a normed space X into itself and let C be a closed, convex and bounded
subset of X satisfying the following condition:

‖Tx− Ty‖p ≤ a · ‖Ix− Iy‖p

+ (1− a) ·max
{‖Tx− Ix‖p, ‖Ty − Iy‖p

}
,

(1)

I(C) ⊇ (1− k) · I(C) + k · T (C)(2)

for all x, y ∈ C, where 0 < a < 1, p > 0, and for some fixed k such that
0 < k < 1. If, for some x0 ∈ C, the sequence {xn} in X defined by

(3) Ixn+1 = (1− k) · Ixn + k · Txn, n ≥ 0,

converges to a point z of C, and if I is continuous at z, then T and I have
a unique common fixed point. Further, if I is continuous at Tx, then T
and I have a unique common fixed point at which T is continuous.

Proof. First we are going to prove that Tz = Iz. We have

(4)
‖Iz − Tz‖p = ‖Iz − Ixn+1 + Ixn+1 − Tz‖p

≤ (‖Iz − Ixn+1‖+ ‖xn+1 − Tz‖)p
.

Now, from (3), we have

‖Ixn+1 − Tz‖p = ‖(1− k) · Ixn + k · Txn − Tz‖p

= ‖(1− k) · (Ixn − Tz) + k · (Txn − Tz)‖p

≤ (
(1− k) · ‖Ixn − Tz‖+ k · ‖Txn − Tz‖)p(5)

=
[
(1− k) · ‖Ixn − Tz‖+ k · (‖Txn − Tz‖p)1/p

]p
.

From (1), we have

‖Txn − Tz‖p ≤ a · ‖Ixn − Iz‖p

+ (1− a) ·max
{‖Txn − Ixn‖p, ‖Tz − Iz‖p

}
.

Now since I is continuous at z, we have Ixn → Iz as n → ∞. Also from
(3) we have ‖Txn − Ixn‖ → 0 as n → ∞. Therefore, for every ε > 0 and
sufficiently large n,

(6) ‖Txn − Tz‖p ≤ (1− a)‖Tz − Iz‖+ ε.
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Hence, from (4), (5) and (6), it follows that

‖Iz − Tz‖p <
[
(1− k) + k · (1− a)1/p

]p · ‖Iz − Tz‖p,

which is a contradiction. Therefore Iz = Tz. Now, since I and T are
compatible mappings of type (T ), we have, by using (1)

‖T 2z − Tz‖p ≤ a · ‖ITz − Tz‖p

+ (1− a) ·max
{‖T 2z − ITz‖p, ‖Tz − Iz‖p

}

≤ a · ‖TIz − Tz‖p + (1− a) · ‖TIz − ITz‖p

or
‖T 2z − Tz‖p ≤ ‖ITz − TIz‖p

≤ (‖TIz − Iz‖ − ‖ITz − Iz‖)p

or
‖T 2z − Tz‖ ≤ ‖T 2z − Tz‖ − ‖ITz − Iz‖,

which implies ‖ITz− Iz‖ ≤ 0 and so ITz = Iz = Tz. Using (1) again and
ITz = Iz, we have

‖T 2z − Tz‖p ≤ (1− a) · ‖T 2z − Tz‖p,

i.e.,

‖T 2z − Tz‖ ≤ (1− a)1/p · ‖T 2z − Tz‖,
which is a contradiction. Therefore, we have T 2z = Tz = ITz, i.e., Tz is
a common fixed point of T and I.

Now, let {yn} be a sequence in C with the limit Tz = z1. Then using
the condition (1), we have

‖Tyn − Tz1‖p ≤ a · ‖Iyn − Iz1‖p

+ (1− a) ·max
{‖Tyn − Iyn‖p, ‖Tz1 − Iz1‖p

}
.

Since I is continuous at Tz = z1, we have, for sufficiently large n and
ε > 0,

‖Tyn − Tz1‖p ≤ (1− a) · ‖Tyn − Iz1‖p + ε.

Again, since ITz = TIz = TTz = Tz1, we have, for sufficiently large n
and ε > 0,

‖Tyn − Tz1‖p ≤ (1− a) · ‖Tyn − Tz1‖p + ε,

i.e., lim
n→∞

‖Tyn − Tz1‖ = 0, which means that T is continuous at Tz. The

proof of the uniqueness follows from that of Diviccaro et al. [5]. This
completes the proof.

The following example shows the validity of Theorem 3.1:
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Example 3.1. Let X = [0,∞) with the Euclidean norm and C = [0, 1].
Let I and T be self-mappings of X defined by

Ix =
{

1 + x2, x ∈ [0, 1)
1, x ∈ [1,∞]

and Ix =
{

1, x ∈ [0, 1]
1 + x2, x ∈ (1,∞].

Clearly I is not linear in C and ‖Ix−Iy‖ = ‖x2−y2‖ = (x+y) · ‖x−y‖ >
‖x− y‖ if x, y ∈ [ 12 , 1). Therefore I is not nonexpansive in C. For a fixed
k such that 0 < k < 1, we have [1, 2] = I(C) ⊃ (1− k) · I(C) + k · T (C) =
[1, 2−k) and ‖Tx−Ty‖p = 0 for all x, y ∈ C and p > 0. Also for any x0 ∈ C,
we see that the sequence {xn} in C such that Ixn+1 = (1−k)·Ixn+k ·Txn

for n ≥ 0 converges to the point 1. Clearly T (1) = 1 is a common fixed
point of I and T .

Moreover, it follows from the lines of Example 2.1 that I and T are
compatible mappings of type (T ).

Remark 1. If p = 1, we obtain a result of Fisher and Sessa [8] with
the appreciably weaker conditions of the space X.

Assuming I to be the identity mapping of X, we have the following:

Corollary 3.2. Let T be a mapping of a normed space X into itself
and let C be a closed, convex and bounded subset of X satisfying the
following condition:

(8) ‖Tx− Ty‖p ≤ a · ‖x− y‖p + (1− a) ·max
{‖Tx− x‖p, ‖Ty − y‖p

}

and C ⊇ (1−k) ·C +k ·T (C) for all x, y in C, where 0 < a < 1 and p > 0,
and for a fixed k such that 0 < k < 1. If, for some x0 ∈ C, the sequence
{xn} in X defined by xn+1 = (1− k) · xn + k · Txn, n ≥ 0, converges to a
poing z of C, then T has a unique fixed point at which T is continuous.

Remark 2. Delbesco et al. [4], for generalization of the result of
Greguš [9], considered the following inequality:

(9) ‖Tz − Ty‖p ≤ a · ‖x− y‖p + b · ‖Tx− x‖p + c · ‖Ty − y‖p

for all x, y in C, where 0 < a < 1/2p−1, p ≥ 1, b ≥ 0, c ≥ 0 and a+b+c = 1.
Due to symmetry, one may suppose b = c, and clearly (8) is more general
than (9) and (8) involves also winder range of p than that of Diviccaro
et al. [5].

Remark 3. Corollary 3.1 with p = 1 was established by Fisher [7].

The condition that T and I are compatible maps of type (T ) is nec-
essary in our theorem as shown in the following:
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Example 3.2. Let X = R be the reals with the Euclidean norm and
C = [0, 1]. Let T and I be two self-mappings of C defined by

Tx =
x + 1

8
and Ix =

x

4

for all x in C. Then we have

‖Tx− Ty‖p =
1
8p
· ‖x− y‖p

=
1
2p
· ‖Ix− Iy‖p = a · ‖Ix− Iy‖p

for all x, y in C, where a = 1/2p. Hence the condition (1) of our theorem
is satisfied. We see that T and I are not compatible mappings of type (T ),
as ‖Tx− Ix‖ → 0 if and only if x → 1 but ‖ITx− Ix‖+ ‖TIx− ITx‖ >
‖TIx− Tx‖ as x → 1. On the other hand, T and I do not have common
fixed points.

Example 3.3. Let X = [0,∞) with the Euclidean norm and C = [0, 1].
Let T and I be two self-mappings of X defined by

Ix =
{

1 + x, if x ∈ [0, 1]
1, if x ∈ (1,∞)

and Tx = 1

for all x in X. Then we have that ‖Tx − Ty‖p = 0 for all x, y in C
and for all a, 0 < a < 1 and p > 0. Also I(C) = [1, 2] ⊃ [1, 2 − k] =
(1− k) · I(C) + k · T (C). Furhter, we see that T and I are not compatible
mappings of type (T ) since ‖Txn − Ixn‖ → 0 if and only if xn → 0 but
‖ITxn − Ixn‖ → 1, ‖ITxn − TIxn‖ → 1, ‖TIxn − Txn‖ → 0 as xn → 0
and so lim

n→∞
‖ITxn − Ixn‖+ lim

n→∞
‖TIxn − ITxn‖ > lim

n→∞
‖TIxn − Txn‖.

On the other hand, T and I do not have common fixed points.

Remark 4. It is not known whether the condition “I(C) contains
T (C)” of Diviccaro et al. [5] is necessary in our theorem.

Finally, we conclude exhibiting the following:

Corollary 3.3. Let T and I be two compatible mappings of type (T )
of a normed space X into itself and let C be a closed, convex and bounded
subset of X satisfying (2) and the following condition:

(10) ‖Tx− Ty‖ ≤ a · ‖Ix− Iy‖+
1
2
(1− a) ·max

{‖Tx− Iy‖, ‖Ty− Ix‖}

for all x, y in C, where 0 < a < 1. For an arbitrary x0 ∈ C, consider the
sequence {xn} in X such that Ixn+1 = (1 − k) · Ixn + k · Txn, n ≥ 0. If
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{xn} converges to a point z of C and if I is continuous at z, then T and
I have a unique common fixed point at which T is continuous.

Proof. The proof follows from Corollary 2 of Diviccaro et al. [5]
and our theorem for p = 1.

4. Application

Drawing inspiration from a recent work of Belbas et al [1], we apply
our theorem to prove the existence of solutions of variational inequalities.
Variational inequalities arise in optimal stochastic control [2] as well as
in other problems in mathematical physics, e.g., deformation of elastic
bodies stretched over solid obstacles, elasto-plastic torsion, etc. [6]. The
iterative methods for solutions of discrete variational inequalities are very
suitable for implementation on parallel computers with single instruction,
multiple-data architecture, particularly on massively parallel processors.

The variational inequality problem is to find a function u such that

(11)
max{Lu− f, u− φ} = 0 on Ω,

u = 0 on ∂Ω,

where Ω is a convex, bounded and open subset of R, L is an elliptic operator
defined on Ω, the closure of Ω, by

L = −aij(x)∂2/∂xi∂xj + bi(x)∂/∂xi + c(x) · IN ,

where summation with respect to repeated indices is implied; c(x) ≥ 0,
[aij(x)] is a strictly positive definite matrix, uniformaly in x, for x ∈ Ω,
f and φ are smooth functions defined in Ω and φ satisfies the condition:
φ(x) ≥ 0 for x ∈ Ω

A problem related to (11) is the two-obstacle variational inequality.
Given two functions φ and u defined on Ω such that φ ≤ µ in Ω, φ ≤ 0 ≤ µ
on Ω, the corresponding variational inequality is

(12)
max{min(Lu− f, u− φ), u− µ)} = 0 on Ω,

u = 0 on ∂Ω.

The problem (12) arises in stochastic game theory.
Let A be an N × N matrix corresponding to the finite difference

discretizations of the operator L. We shall make the following assumptions
about the matrix A:

(13) Aij = 1,
∑

j:j 6=i

Aij > −1, Aij < 0 for i 6= j.
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These assumptions are related to the definition of “M -matrices”; matrices
arising from the finite difference discretization of continuous elliptic oper-
ators will have the property (13) under the appropriate conditions (see [3]
and [12]).

Let B = IN − A. Then the corresponding property for the B matrix
will be

(14) Bij = 0,
∑

j:j 6=i

Bij < 1, Bij > 0 for i 6= j.

Let q = maxi

∑
j Bij and A∗ be an N × N matrix such that A∗ii = 1 − q

and A∗ij = −q for i 6= j. Then we have B∗ = IN −A∗.
Now, we show the existence of iterative solutions of variational in-

equalities:
Consider the following discreet variational ineqalities:

(15)

max
[
min

{
A(x−A∗ · ‖Ix− Tx‖)− f,

x−A∗ · ‖Ix− Tx‖ − φ
}

, x−A∗ · ‖Ix− Tx‖ − µ
]

= 0,

where T and I are compatible operators of type (T ) from RN into itself
implicitly defined by

(16)
Tx = min

[
max

{
BIx + A(1−B∗) · ‖Ix− Tx‖+ f,

(1−B∗) · ‖Ix− Tx‖+ φ
}

, (1−B∗) · ‖Ix− Tx‖+ µ
]

for all x ∈ Q. Then (15) is equivalent to the common fixed point problem:

(17) x = Tx = Ix.

Theorem 2. Under the assumptions (13) and (14), a solution for (17)
exists.

Proof. Let (Ty)i =
[
(1−B∗

ij)·‖Iyj−Tyj‖+µi

]
for any x, y ∈ Q and

any i, j = 1, 2, · · · , N. Then, since (Tx)i ≤
[
(1−B∗

ij) · ‖Ixj − Tyj‖+ µi

]
,

we have

(Tx)i − (Ty)i ≤ (1−B∗
ij) ·

[‖Ixj − Txj‖ − ‖Iyj − Tyj‖
]
,

or
(Tx)i − (Ty)i

≤ (1−B∗
ij) ·max

{‖Ixj − Txj‖, ‖Iyj − Tyj‖
}
.

(18)
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If (Ty)j = max
{
BijTyj + (1 − B∗

ij) · ‖Iyj − Tyj‖ + fi, (1 − B∗
ij) · ‖Iyj −

Tyj‖+ φi

}
, then we introduce the one sided operator

Tx = max
{
BIx + A(1−B∗) · ‖Ix− Tx‖+ f, (1−B∗) · ‖Ix− Tx‖+ φ

}
.

Therefore, (Ty)i = (Ty)i. Now since (Tx)i ≤ (Tx)i, we have

(19) (Tx)i − (Ty)i ≤ (Tx)i − (Ty)i.

Now, if (Tx)i = BijIxj + Aij(1 − B∗
ij) · ‖Ixj − Txj‖ + fi, then since

(Ty)i ≥ BijIyi + Aij(1−B∗
ij · ‖Iyj − Tyj‖+ fi, by using (13), we find

(20)
(Tx)i − (Ty)i ≤ Bij · ‖Ixi − Iyi‖

+ (1−B∗
ij) ·max

{‖Ixj − Txj‖, ‖Iyj − Tyj‖
}
.

If (Tx)i = (1−B∗
ij) · ‖Ixj − Txj‖+ φi, then since

(Ty)i ≥ (1−B∗
ij) · ‖Iyi − Tyj‖+ φi, we find

(21) (Tx)i − (Ty)i ≤ (1−B∗
ij) ·max

{‖Ixj − Txj‖, ‖Iyj − Tyj‖
}
.

Hence, from (18), (19), (20) and (21), we have

(22)
(Tx)i − (Ty)i ≤ q · ‖Ix− Iy‖

+ (1− q) ·max
{‖Ix− Tx‖, ‖Iy − Ty‖}.

Since x and y are arbitrarily choosen, we have, by interchanging x and y,

(23)
(Ty)i − (Tx)i ≤ q · ‖Ix− Iy‖

+ (1− q) ·max
{‖Ix− Tx‖, ‖Iy − Ty‖}.

Therefore, from (22) and (23), it follows that

‖Tx− Ty‖ ≤ q · ‖Ix− Iy‖+ (1− q) · max
{‖Ix− Tx‖, ‖Iy − Ty‖}.

Hence we see that the condition (1) is satisfied for p = 1. Therefore,
Theorem 3.1 ensures the existence of a solution of (17).
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Greguš type, Pub. Mat. 34 (1987), 83–89.

[6] G. Duvaut and J. L. Lions, Inequalities in mechanics and physics, SpringerVerlag,
Berlin, Heidelberg, New York, 1976.

[7] B. Fisher, Common fixed points on a Banach space, Chung Yuan J. 11 (1982),
12–15.

[8] B. Fisher and S. Sessa, On a fixed points theorem of Greguš, Internat. J. Math.
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