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Spaces having approximate resolutions consisting
of finite-dimensional polyhedra

By VLASTA MATIJEVIĆ (Split)

Abstract. Finitistic spaces are characterized as spaces which admit approximate
resolutions consisting of finite-dimensional polyhedra, having PL-bonding maps and
dense projections.

§1. Preliminaries

The notion of a finitistic space was introduced by R. G. Swan ([21])
for purposes in cohomological dimension theory. Some topological proper-
ties of finitistic spaces are given in [1], [2], [5], [6] and [19]. For instance, in
[19] it is shown that for paracompact finitistic spaces, integral cohomolog-
ical dimension is preserved under the Stone–Čech compactification. The
purpose of this paper is to give more information about finitistic spaces
using the techniques of approximate resolutions of spaces. The theory of
approximate resolutions of spaces was introduced by S. Mardešić and L.
R. Rubin ([11]) and further developed by S. Mardešić and T. Watanabe
([15]) in an attempt to overcome some defects in the theory of polyhedral
inverse systems of compact non-metric and non-compact spaces.

We shall use the same terminology and notions as in [15]. A normal or
numerable (open) covering of a (topological) space X is an open covering U
of X which admits a subordinate partition of unity. The set of all normal
coverings of X is denoted by Cov(X). For any subset A ⊆ X and any
U ∈ Cov(X), the subset

⋃{U ∈ U : U ∩ A 6= ∅} ⊆ X is denoted by
st(A,U) and called the star of A (with respect to U). If U ,V ∈ Cov(X)
and V refines U , we write V ≤ U . For two maps f, g : Y → X which are
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U-near, i.e. for every y ∈ Y there exists a U ∈ U with f(y), g(y) ∈ U ,
we write (f, g) ≤ U . If U ∈ Cov(X) and A ⊆ X are given, the normal
covering {U ∩A : U ∈ U} of the subspace A is denoted by U | A. We say
that a subset A ⊆ X is normally embedded in a space X provided every
V ∈ Cov(A) admits a normal covering U ∈ Cov(X) such that U | A ≤ V.
The order of U , in notation ord(U), is the largest integer n such that U
contains n elements with non-empty intersection, or ∞ if no such integer
exists. We say that dim X ≤ n provided, for any U ∈ Cov(X), there is a
V ∈ Cov(X) such that V ≤ U and ord(V) ≤ n + 1.

A space X is called finitistic if for each normal covering U ∈ Cov(X)
there are a positive integer n and a normal covering V ∈ Cov(X) such that
V ≤ U and ord(V) ≤ n. This means that for each U ∈ Cov(X) of a finitistic
space X there exists a refinement V ∈ Cov(X) such that |N(V)| is a finite-
dimensional polyhedron, where N(V) denotes the nerve of the covering
V. The dimension of |N(V)| depends on U . By the definition of finitistic
spaces, it is clear that every compact space and every finite-dimensional
space is finitistic. Finitistic spaces need not be finite-dimensional; any
compact infinite-dimensional space provides an example.

We now quote from [15] the main definitions and results concerning
approximate resolutions.

An approximate inverse system X is a collection {Xλ,Uλ, pλλ′ , Λ}
consisting of

(i) a preordered indexing set Λ = (Λ,≤) (it need not be antisymmet-
ric), which is directed and unbounded (i.e. has no upper bound).

(ii) for each λ ∈ Λ, Xλ is a topological space and Uλ ∈ Cov(Xλ).
(iii) for any two related indices λ ≤ λ′, pλλ′ : Xλ′ → Xλ is a (contin-

uous) map (pλλ = idXλ
is the identity map on Xλ).

Furthermore, the following three conditions must be satisfied:
(A1) For any three related indices λ ≤ λ′ ≤ λ′′,

(pλλ′pλ′λ′′ , pλλ′′) ≤ Uλ ;

(A2) For each λ ∈ Λ and each U ∈ Cov(Xλ), there exists a λ′ ≥ λ such
that

(pλλ1pλ1λ2 , pλλ2) ≤ U , whenever λ2 ≥ λ1 ≥ λ′ ;

(A3) For each λ ∈ Λ and each U ∈ Cov(Xλ), there exists a λ′ ≥ λ such
that

Uλ′′ ≤ p−1
λλ′′ U =

{
p−1

λλ′′(U); U ∈ Uλ

}
: whenever λ′′ ≥ λ′ .
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An approximate mapping p={pλ : λ ∈ Λ} :X→X ={Xλ,Uλ, pλλ′ , Λ}
of a topological space X into an approximate inverse system X is a family
of maps pλ : X → Xλ, λ ∈ Λ, such that the following condition holds:

(AS) For any λ ∈ Λ and any U ∈ Cov(Xλ), there exists a λ′ ≥ λ such
that

(pλλ′′pλ′′ , pλ) ≤ U , for every λ′′ ≥ λ′ .

Let POL denote the collection of all polyhedra (endowed with the
CW-topology).

An approximate resolution of a space X is an approximate mapping
p = {pλ : λ ∈ Λ} : X → X = {Xλ,Uλ, pλλ′ , Λ} of X into an approximate
system X satisfying the following two conditions:

(R1) For any P ∈ POL, V ∈ Cov(P ) and mapping f : X → P there
is a λ ∈ Λ such that, for every λ′ ≥ λ, there exists a mapping g : Xλ′ → P
satisfying (gpλ′ , f) ≤ V .

(R2) For every P ∈ POL and V ∈ Cov(P ) there is a V ′ ∈ Cov(P )
such that for any λ ∈ Λ and any two maps g, g′ : Xλ → P , for which
(gpλ, g′pλ) ≤ V ′, there exists a λ′ ≥ λ such that (gpλλ′′ , g

′pλλ′′) ≤ V for
any λ′′ ≥ λ′.

An approximate resolution of a space X can be characterized by condi-
tions of a different kind. Instead of (R1) and (R2), which are often difficult
to verify, more convenient are the following two equivalent conditions ([15],
Theorem 2.8):

(B1) For every U ∈ Cov(X) there is a λ ∈ Λ such that p−1
λ′ Uλ′ ≤ U ,

for every λ′ ≥ λ.
(B2) For each λ ∈ Λ there is a λ′ ≥ λ such that, for every λ′′≥λ′,

pλλ′′(Xλ′′) ⊆ st(pλ(X),Uλ).

§2. Spaces having compact approximate resolutions

First, we shall describe a special class of finitistic spaces using approx-
imate resolutions.

A topological space X is called pseudocompact if X is a Tychonoff
space and every continuous real-valued function defined on X is bounded.

Theorem 2.1. Let X be a Tychonoff space. Then the following state-
ments are equivalent.

(i) X is pseudocompact.

(ii) X admits an approximate resolution p = {pλ : λ ∈ Λ} : X →
X = {Xλ,Uλ, pλλ′ , Λ}, where all Xλ are compact polyhedra,
all bonding maps pλλ′ are surjective and Λ is cofinite.
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(iii) X admits an approximate resolution p = {pλ : λ ∈ Λ} : X →
X = {Xλ,Uλ, pλλ′ ,Λ}, where all Xλ are compact Hausdorff
spaces.

Our proof of Theorem 2.1 uses a result from [12] and the following
two propositions:

Proposition 2.2. Let p = {pλ : λ ∈ Λ} : X → X = {Xλ,Uλ, pλλ′ , Λ}
be an approximate resolution of a space X and let A ⊆ X. If A is a dense
subset of X, normally embedded in X, then p | A = {pλ | A : λ ∈ Λ} :
A → X = {Xλ,Uλ, pλλ′ ,Λ} is an approximate resolution of A. Conversely,
if p | A = {pλ | A : λ ∈ Λ} : A → X = {Xλ,Uλ, pλλ′ ,Λ} is an approximate
resolution of A, then A is normally embedded in X. Furthermore, A is a
dense subset of X if X is a Tychonoff space.

Proof. Assume that A is a dense subset of X, normally embedded
in X. We have to prove that p | A = {pλ | A : λ ∈ Λ} : A → X =
{Xλ,Uλ, pλλ′ , Λ} is an approximate resolution of A. Consequently, we
need to verify (B1) and (B2) or equivalently (B1)∗ and (B2)∗ (see 2.9,
2.10 of [15]).

(B1)∗ Choose any U ∈ Cov(A). We need to find an index λ ∈ Λ and
a covering V ∈ Cov(Xλ) such that (pλ | A)−1 V ≤ U . Since A ⊆ X is
normally embedded in X, there exists U1 ∈ Cov(X) such that

(1) U1 | A ≤ U .

By assumption, p is an approximate resolution of X and therefore, by
(B1)∗, there exist λ ∈ Λ and V ∈ Cov(Xλ) such that

(2) p−1
λ V ≤ U1 .

We claim that (pλ | A)−1 V ≤ U . Let V ∈ V be given. Then, by (1) and
(2), (pλ | A)−1(V ) = p−1

λ (V ) ∩ A ⊆ U1 ∩ A ⊆ U for some, U1 ∈ U1 and
U ∈ U , which establishes (pλ | A)−1 V ≤ U .

(B2)∗ Choose any λ ∈ Λ and U ∈ Cov(Xλ). We need to find an
index λ′ ≥ λ such that pλλ′(Xλ′) ⊆ st(pλ(A),U). By assumption, p is an
approximate resolution and therefore, by (B2)∗ for p, there exists a λ′ ≥ λ
such that pλλ′(Xλ′) ⊆ st(pλ(X),U). Since Ā = X, we get

pλλ′(Xλ′) ⊆ st(pλ(X),U) = st(pλ(Ā),U) ⊆ st(pλ(A),U) = st(pλ(A),U) ,

which establishes (B2)∗.
Assume, now, that p | A is an approximate resolution of A. We must

prove that A is normally embedded in X. Let V be a normal covering of A.
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Since p | A is an approximate resolution, by (B1)∗ (which is equivalent to
(B1)), there exist a λ ∈ Λ and a W ∈ Cov(Xλ) such that

(3) (pλ | A)−1W ≤ V .

Put U = p−1
λ W ∈ Cov(X). We claim that U | A ≤ V. Let U∩A, U ∈ U , be

any member of the normal covering U | A. Then by (3), U ∩A = p−1
λ (W )∩

A = (pλ | A)−1(W ) ⊆ V , for some W ∈ W and V ∈ V, which establishes
U | A ≤ V . This shows that A is normally embedded in X. Furthermore,
let X be a Tychonoff space. We shall prove that A is dense in X. Assume
that A is not dense in X, i.e. there exists a point x ∈ X \ Ā. Since X is
a Tychonoff space, there exists a mapping f : X → I = [0, 1] such that
f(x) = 0 and f(Ā) = 1. Let W = {[0, 1), (0, 1]}. Then U = f−1W is
a normal covering of X such that x /∈ st(Ā,U) = st(A,U). Since p is an
approximate resolution of X, by (B1)∗, there exist a λ ∈ Λ and a normal
covering V of Xλ such that p−1

λ V ≤ U . We claim that

(4) pλ(x) /∈ st(pλ(A),V) .

Indeed, if a member V ∈ V meets pλ(A), then p−1
λ (V ) meets A, and

therefore it is contained in f−1((0, 1]). Since x/∈f−1((0, 1]), pλ(x)/∈V ,
which establishes (4). Choose a normal covering V1 of Xλ such that stV1 ≤
V. By (AS) for p and (B2)∗ for p | A, there exists a λ′ ∈ Λ such that

(pλλ′pλ′ , pλ) ≤ V1 and(5)

Pλλ′(Xλ′) ⊆ st(pλ(A),V1) .(6)

Now (5) and (6) imply

pλ(x) ∈ pλ(X) ⊆ st(pλλ′pλ′(X),V1) ⊆ st(pλλ′(Xλ′),V1) ⊆
⊆ st(st(pλ(A),V1),V1) ⊆ st(pλ(A), stV1) ⊆ st(pλ(A),V) ,

which contradicts (4). This completes the proof of the proposition.

Proposition 2.3. Let X be a Tychonoff space. X is pseudocompact
if and only if it is normally embedded in its Stone–Čech compactification
βX.

Proof. Let U ∈ Cov(X) be a normal covering of the space X. We
need to find a normal covering V ∈ Cov(βX) such that V | X ≤ U .
Since U is a normal covering of X, there exist a metric space Y , a con-
tinuous mapping f : X → Y and an open covering W ∈ Cov(Y ) such
that f−1W≤U . The space f(X) ⊆ Y is pseudocompact and metric and
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therefore, it is a compact space ([4], Theorems 3.10.21 and 5.1.20). Con-
sequently, f : X → f(X) is a continuous map of the Tychonoff space
X to the compact space f(X). Therefore, f is extendable to a map-
ping f̄ : βX → f(X) ⊆ Y . Put V = (f̄)−1W ∈ Cov(βX). Then,
V | X = (f̄)−1W | X = f−1W ≤ U , which shows that X is normally
embedded in βX.

Let a Tychonoff space X be a normally embedded in its Stone–Čech
compactification βX. Let f : X → R be any real-valued function. Con-
sider the open covering U = {(i, i + 2) : i ∈ Z} ∈ Cov(R). Then f−1 U is a
normal covering of X. Since X is normally embedded in βX, there exists
a finite covering V = {V1, . . . , Vn} ∈ Cov(βX) such that V | X ≤ f−1 U .
Now, we obtain X = X ∩ (V1 ∪ · · · ∪ Vn) ⊆ f−1U1 ∪ · · · ∪ f−1Un =
f−1(U1 ∪ · · · ∪ Un), where each Ui is some (k, k + 2) ⊆ R. This implies
that f(X) ⊆ U1 ∪ · · · ∪ Un, i.e. f(X) is bounded.

Proof of Theorem 2.1. (i) =⇒ (ii) Let X be a pseudocompact
space and βX its Stone–Čech compactification. Since βX is a compact
Hausdorff space it admits an approximate resolution p = {pλ : λ ∈ Λ} :
X → X = {Xλ,Uλ, pλλ′ , Λ}, where all Xλ are compact polyhedra, all pλλ′

are (irreducible) surjections and Λ is cofinite ([12], Theorem 1). Actu-
ally, Mardešić and Rubin constructed, for each compact Hausdorff space
Y , such an approximate resolution p = {pλ : λ ∈ Λ} : Y → X =
{Xλ, ελ, pλλ′ , Λ} with numerical meshes ελ. Since Xλ are metric compacta
and Λ is cofinite, it is possible to replace the numerical meshes by open
coverings Uλ and thus obtain an approximate resolution p = {pλ : λ∈Λ}:
Y → X = {Xλ,Uλ, pλλ′ , Λ} ([13], Theorem 1 and Remark 1.). Now
Proposition 2.2 and Proposition 2.3 imply that p | X = {pλ | X : λ∈Λ}:
X → X = {Xλ,Uλ, pλλ′ , Λ} is the desired approximate resolution of X.
Note that there exist compact Hausdorff spaces Y which do not admit
(commutative) polyhedral resolutions with surjective bonding maps ([17],
[18]).

(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i) Let X be a Tychonoff space, which admits an approx-

imate resolution consisting of compact spaces and let f : X → R be any
real-valued function. Let U = {(i, i + 2) : i ∈ Z} ∈ Cov(R). By (R1)∗,
there exist a λ ∈ Λ and a mapping g : Xλ → R such that (f, gpλ) ≤ U .
Then f(X) ⊆ st(gpλ(X),U) ⊆ st(g(Xλ),U). Since Xλ is a compact space
g(Xλ) ⊆ R is a compact subset of R and it is therefore bounded. The
choice of U guaranties the boundedness of st(g(Xλ),U) and thus, also the
boundedness of f(X).

Remark 2.4. If we omit the requirements on surjectivity of the bond-
ing maps, then Theorem 2.1 is true already for commutative resolutions
([7] and [9], Theorem 1).
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Corollary 2.5. Every pseudocompact space X is finitistic.

Proof. Let X be pseudocompact and U ∈ Cov(X) arbitrary. By
Theorem 2.1, X admits an approximate resolution p = {pλ : λ ∈ Λ} :
X → X = {Xλ,Uλ, pλλ′ , Λ} consisting of compact spaces. By (B1)∗ there
exist an index λ and a finite covering V ∈ Cov(X) such that p−1

λ V ≤ U .
Then p−1

λ V is the desired finite-dimensional refinement.

Note that Corollary 2.5 also easily follows from Proposition 2.3.
Using Corollary 2.5, it is easy to answer in the negative Hattori’s

Question 1. from [6]: Is every normal finitistic space paracompact?
Let X = [0, ω1) be the space of all countable ordinal numbers. X

is normal pseudocompact space, but not compact. Consequently, it is
a finitistic space. However, X is not paracompact because paracompact
pseudocompact spaces are compact ([4], Theorem 5.1.20 and 3.10.21).

§3. Spaces having finite-dimensional approximate resolutions

Let K be a simplicial complex and let f, g : X → |K| be mappings
into its geometric realization |K| endowed with the CW-topology. We say
that g is a K-modification of f if, for every point x ∈ X and (closed)
simplex σ ∈ K, f(x) ∈ σ implies g(x) ∈ σ. Note that the relation “to be
a K-modification” is reflexive and transitive but, generally, not symmetric
or antisymmetric.

Let K be a simplicial complex. We say that a simplex σ ∈ K is
principal if it is not a proper face of any other simplex of K.

Let K be a simplicial complex, |K| its geometric realization and let
x ∈ |K|. By st(x,K) we denote the open set

⋃
x∈σ

Intσ ⊆ |K|.

Proposition 3.1. Let K be a simplicial complex and let {xa : a∈A}
⊆ |K| be a family of points xa such that st(xa, K) ∩ st(Xa′ ,K) = ∅,
for each a 6= a′. Then there exists a retraction ϕ : |K| \ {xa : a∈A}
→ |K| \

( ⋃
a∈A

st(xa,K)
)
, which is a K-modification of the inclusion map

i : |K| \ {xa : a ∈ A} → |K|.
Proposition 3.2. Let X be a topological space, K a finite-dimensional

simplicial complex and f : X → |K| a map. Then there exist a subcomplex
L of K and a dense K-modification g : X → |L| of f .

Proof. If f(X) = |L|, where L is a subcomplex of K, then L and
g = f satisfy the proposition (if K is 0-dimensional, g is a surjection).
So, without loss of generality, we may assume that dimK = n ≥ 1 and
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f(X) is a proper subset of |M |, where |M | is the carrier of f(X) (i.e. M

is the minimal subcomplex of K, such that |M | contains f(X)). Since
f(X) ⊂ |M | there exists a principal simplex σ ∈ M such that Int σ \
f(X) 6= ∅, for otherwise f(X)=|M |. Let An be the family of all simplexes
σ∈M such that dim σ = n and Intσ \ f(X) 6= ∅. If An is non-empty,
we can choose points xσ ∈ Intσ \ f(X) for each σ ∈ An. Then {xσ :
σ ∈ An} satisfies the conditions in Propositions 3.1. Therefore, there
exist a proper subcomplex Mn of M and a mapping ϕn : |M | \ {xσ : σ ∈
An} → |Mn| = |M | \

( ⋃
σ∈An

st(xσ, M)
)
, which is an M -modification of the

inclusion f : |M | \ {xσ : σ ∈ An} → |M |. So, ϕnf is a K-modification of
f . Mn is a subcomplex of M having the property that ϕnf(X) contains
the interiors of all n-dimensional simplexes of Mn. Let An−1 be the family
of all principal simplexes σ ∈ Mn such that dim σ = n − 1 and Intσ \
ϕnf(X) 6= ∅. If An−1 is a nonempty family, we can repeat the procedure
and obtain a subcomplex Mn−1 of Mn and a mapping ϕn−1 : |Mn| \ {xσ :
σ ∈ An−1} → |Mn−1| which is an Mn-modification of the inclusion i :
|Mn|\{xσ : σ ∈ An−1} → |Mn|. So, ϕn−1ϕnf is a Mn-modification of ϕnf
and also a K-modification of f . Mn−1 is a subcomplex of Mn having the
property that ϕn−1ϕnf(X) contains the interiors of all n-dimensional and
all (n−1)-dimensional simplexes of Mn−1. In the same manner repeating n
times this procedure, we obtain subcomplexes M1 ≤ M2 ≤ · · · ≤ M of M
and a mapping ϕ1ϕ2 ◦ · · · ◦ϕn−1ϕnf : X → |M1| having the property that
ϕ1ϕ2 ◦ · · · ◦ ϕn−1ϕnf(X) contains the interiors of all principal simplexes
of M1 and ϕ1ϕ2 ◦ · · · ◦ϕn−1ϕnf is a K-modification of f . Hence, L = M1

and g = ϕ1ϕ2 ◦ · · · ◦ ϕn−1ϕnf : X → |M1| have the required properties.

Remark 3.3. Let X be a space, let U be a normal covering of X with
the property ordU ≤ n, let N(U) be the nerve of U and let f : X → |N(U)|
be a canonical map. Then there exist a subcomplex N of N(U) and a dense
N(U)-modification g : X → |N | of f . The mapping g : X → |N | ⊆ |N(U)|
is also canonical.

Lemma 3.4. Let X be a finitistic space, let P1, . . . , Pn be polyhedra,
let f1 : X→P1, . . . , fn : X→Pn be mappings and let U1 ∈Cov(P1), . . . ,Un

∈ Cov(Pn) be open coverings. Then there exist a finite-dimensional poly-
hedron P , a dense map f : X → P and PL-mappings p1 : P → P1, . . . , pn :
P → Pn such that (fi, pif) ≤ U i, for i = 1, . . . , n.

Proof. For each i = 1, . . . , n choose a triangulation Ki of Pi so
fine that the covering S̄i formed by all the closures of the members of
Si = {st(v, Ki) : v ∈ K0

i } ∈ Cov(|Ki| = Pi) refines U i, i.e. S̄i ≤ U i (see,
e.g., [14], Theorem 4, Appendix 1). Let V ∈ Cov(X) be a normal covering



Spaces having approximate resolutions . . . 309

of X such that V ≤ f−1
i (Si), i = 1, . . . , n. Since X is a finitistic space,

there exist an integer n and a normal covering U ∈ Cov(X) such that
U ≤ V and ord(U) ≤ n. Let g : X → |N(U)| be a canonical map. By
Proposition 3.2 there exist a finite-dimensional polyhedron P = |N | and a
dense mapping f : X → |N | ⊆ |N(U)| which is an N(U)-modification of
g.

Now, we will define mappings πi : N(U)0 = U → K0
i , i = 1, 2, . . . , n,

in the following way. To a vertex U ∈ N(U)0 we assign a vertex v =
πi(U) ∈ K0

i such that U ⊆ f−1
i (st(v, Ki)), i = 1, . . . , n.

Claim 1. For each i = 1, . . . , n, πi : N(U)0 → K0
i is a simplicial

mapping.
Indeed, let U1, . . . , Um be vertices of N(U)0, which span a simplex of

N(U). Then U1 ∩ U2 ∩ . . . Um 6= ∅ and therefore, ∅ 6= U1 ∩ · · · ∩ Um ⊆
f−1

i (st(πi(U1),K0
i )) ∩ · · · ∩ f−1

i (st(πi(Um),K0
i )) ⊆ f−1

i (st(πi(U1),K0
i ) ∩

· · · ∩ st(πi(Um),K0
i )). Now, we obtain st(πi(U1),K0

i ) ∩ · · · ∩ st(πi(Um),
K0

i ) 6= ∅, which shows that the vertices πi(U1), . . . , πi(Um) span a simplex
of Ki. For each i = 1, . . . , n, the mapping πi induces a mapping |πi| :
|N(U)| → |Ki|. Put pi = |πi| | (|N | = P ) : P → |Ki| = Pi. Note that each
pi is a PL-mapping.

Claim 2. For each i = 1, . . . , n, pif : X → |Ki| is a Ki-modification
of fi.

Let x ∈ X be an arbitrary point of X and σ = [v1, . . . , vk] ∈ Ki a
simplex of Ki such that fi(x) ∈ σ. We need to prove that pif(x) ∈ σ.
Let U1, . . . , Us be all the members of the covering U which contain x.
Then g(x) ∈ τ = [U1, . . . , Us] ∈ N(U). Since f : X → |N | is an N(U)-
modification of g, f(x) ∈ τ ∩ |N | and therefore, there exists a simplex
τ ′ = [Uj1 , . . . , Ujr ] ≤ τ (r ≤ s) such that f(x) ∈ τ ′ and Uj1 , . . . , Ujr ∈
N0. Then pif(x) ∈ [pi(Uj1), . . . , pi(Ujr )] = [πi(Uj1), . . . , πi(Ujr )]. Put
πi({Uj1 , . . . , Ujr}) = {w1, . . . , wt} ⊆ K0

i , t ≤ r. Then, pif(x) ∈ [w1, . . . ,
wt]. Since x ∈ U1 ∩ · · · ∩ Us ⊆ f−1

i (st(πi(U1),K0
i )) ∩ · · · ∩ f−1

i (st(πi(Us),
K0

i )), we obtain fi(x) ∈ st(w1, K
0
i )∩· · ·∩st(wt,K

0
i ). Now we have fi(x) ∈

σ ∩ st(w1,K
0
i ) ∩ · · · ∩ st(wt,K

0
i ) and therefore, [v1, . . . , vk] ∩ st(wj , K

0
i ) 6=

∅, for each j = 1, . . . , t. But this implies that each wj is some v1, i.e.
{w1, . . . , wt} ⊆ {v1, . . . , vk}. This means that [w1, . . . , wt] ≤ [v1, . . . , vk]
and therefore, pif(x) ∈ σ.

Claim 3. (pif, fi) ≤ U i.
Because of Claim 2., for each x ∈ X there exists a simplex σ ∈ Ki

such that pif(x), fi(x) ∈ σ. Then, pif(x), fi(x) ∈ st(v, K0
i ), where

v is any vertex of σ. Since S̄i ≤ U i there exists a U ∈ U i such that
pif(x), fi(x) ∈ U . This completes the proof of the lemma.
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Theorem 3.5. For a topological space X the following statements are
equivalent.

(i) X is finitistic.

(ii) X admits an approximate resolution p = {pλ : λ ∈ Λ} : X → X =
{Xλ,Uλ, pλλ′ , Λ} where all Xλ are finite-dimensional polyhedra, all
bonding maps pλλ′ are PL, all projections pλ are dense and Λ is
cofinite.

(iii) X admits an approximate resolution p = {pλ : λ ∈ Λ} : X → X =
{Xλ,Uλ, pλλ′ , Λ} consisting of finite-dimensional spaces.

Proof. (i) =⇒ (ii). Let X be a finitistic space. The required
approximate resolution is obtained by repeating the proof of Theorem 1.7
of [10] using Lemma 3.4 instead of Lemma 3.1.

(ii) =⇒ (iii) is obvious.
(iii) =⇒ (i). Let p = {pλ : λ ∈ Λ} : X → X = {Xλ,Uλ, pλλ′ , Λ}

be an approximate resolution such that each Xλ is a finite-dimensional
space. Let U ∈ Cov(X) be an arbitarary normal covering of X. By (B2)∗,
there exist an index λ and a covering V ∈ Cov(Xλ) such that p−1

λ V ≤ U .
Since Xλ is finite-dimensional, there exist an integer n and a covering
W ∈ Cov(Xλ) such that ord(W) ≤ n and W ≤ V. Then p−1

λ W ∈ Cov(X)
is the required finite-dimensional refinement of U .

Remark 3.6. Let X be a topological space with dimension dim X ≤ m.
Then one can achieve the polyhedron P in Lemma 3.4 has dim P ≤ m and
therefore, X admits an approximate resolution p = {pλ : λ ∈ Λ} : X →
X = {Xλ,Uλ, pλλ′ , Λ} such that each polyhedron Xλ has dim Xλ ≤ m, all
projections pλ are dense, all bonding maps pλλ′ are PL and Λ is cofinite
(see [23] Theorem 1.).

Remark 3.7. Recently the following result has been obtained: If X
is a Tychonoff finitistic space then X admits a commutative resolution
consisting of finite-dimensional polyhedra ([20], Theorem 1.8). This is a
weaker form of the implication (i) =⇒ (ii) of Theorem 3.5.

§4. Approximate resolutions of direct products

Using the techniques of approximate resolutions of spaces one can
obtain some results concerning the product of finitistic spaces.

Let U be any open covering of a space X, and for every U ∈ U let VU

be an open covering of a fixed space Y . Then the family S = {U × V :
U ∈ U , V ∈ VU} is an open covering of the product space X × Y , called a
stacked covering of X × Y (over U).
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It is well-known fact that, for every space X, every compact Hausdorff
space Y and every normal covering W of X × Y , there exist a normal
covering U of X and a stacked covering S of X×Y (over U), which refines
W and is normal ([3], pp. 357, 361). We shall denote this stacked covering
S by U ×(VU )U∈U .

Theorem 4.1. Let p = {pλ : λ ∈ Λ} : X → X = {Xλ,Uλ, pλλ′ , Λ} be
an approximate resolution of a space X and let Y be a compact Hausdorff
space. Then there exist an approximate resolution q = {qµ : µ ∈ M} :
X × Y → Z = {Zµ,Vµ, qµµ′ , M} of X × Y , such that each Zµ is some
Xλ × Y , each qµµ′ is some pλλ′ × 1 and each qµ is some pλ × 1.

Proof. First, we shall prove that p×1 = {pλ×1 : λ ∈ Λ} : X×Y →
X ×Y = {Xλ × Y, pλλ′ ,×1,Λ} satisfies conditions (A2), (AS), (B1)∗ and
(B2)∗.
(A2) Let λ ∈ Λ and let W ∈ Cov(Xλ × Y ) be a normal covering of
Xλ × Y . Choose a stacked covering U ×(VU )U∈U ∈ Cov(Xλ × Y ) refining
W, where U ∈ Cov(Xλ). By (A2) for X , there is a λ′ ≥ λ, such that, for
all λ2 ≥ λ1 ≥ λ′, (pλλ1pλ1λ2 , pλλ2) ≤ U holds. Now, we obtain

((pλλ1 × 1)(pλ1λ2 × 1), pλλ2 × 1) = ((pλλ1pλ1λ2)× 1, pλλ2 × 1) ≤
≤ U ×(VU )U∈U ≤ W ,

which establishes (A2).
(AS) is proved in the same manner as (A2).
(B1)∗ Let W ∈ Cov(X × Y ) be given. Choose a stacked covering
U ×(VU )U∈U ∈ Cov(X × Y ) refining W, where U ∈ Cov(X). Applying
(B1)∗ for p to U , we get λ ∈ Λ and U1 ∈ Cov(Xλ) such that p−1

λ U1 ≤ U .
We now put W1 = U1×(V ′U ′)U ′∈U1 ∈ Cov(Xλ × Y ), where V ′U ′ = VU ,
for some U ∈ U with property p−1

λ (U ′) ⊆ U . Then (pλ × 1)−1W1 ≤
U ×(VU )U∈U ≤ W, which proves (B1)∗.
(B2)∗ Let λ ∈ Λ and let W ∈ Cov(Xλ × Y ) be a normal covering of
Xλ × Y . Choose a stacked covering U ×(VU )U∈U ∈ Cov(Xλ × Y ) refining
W, where U ∈ Cov(Xλ). Obviously, st((pλ × 1)(X × Y ),U ×(VU )U∈U ) =
st(pλ(X),U)× Y . By (B2)∗ for p, there is a λ′ ≥ λ such that pλλ′(Xλ′) ⊆
st(pλ(X),U). Consequently,

(pλλ′ × 1)(Xλ′ × Y ) ⊆ st(pλ(X),U)× Y =

= st((pλ × 1)(X × Y ),U ×(VU )U∈U ) ⊆ st((pλ × 1)(X × Y ),W) .

We have just proved that p× 1 is an ungauged approximate resolution in
the sense of [8]. Using the construction described in ([8], Theorem 2 and
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Theorem 7) we can associate with p×1 an induced approximate resolution,
which satisfies all the required conditions.

Remark 4.2. Theorem 4.1 improves the main theorem in [22], since
there are no assumptions on p. However, the connection between the
meshes Uλ and Vµ gets lost.

It is well-known fact that the product of two finitistic spaces need not
be finitistic ([2], Example 2.1.). However, the following holds.

Corollary 4.3. Let X be a finitistic space and Y a finite-dimensional
compact Hausdorff space. Then X × Y is a finitistic space.

Proof. Let X be a finitistic space. Then, by Theorem 3.5, X admits
an approximate resolution p = {pλ : λ ∈ Λ} : X → X = {Xλ,Uλ, pλλ′ ,Λ},
where all Xλ are finite-dimensional polyhedra. Since Y is a compact Haus-
dorff space there exists an approximate resolution q = {qµ : µ ∈ M} :
X × Y → Z = {Zµ,Vµ, qµµ′ ,M}, such that each Zµ is some Xλ × Y ,
each qµµ′ is some pλλ′ × 1 and each qµ is some pλ × 1. Each Xλ is a
finite-dimensional paracompact space and Y is a finite-dimensional com-
pact Hausdorff space which implies dim(Xλ× Y ) ≤ dim Xλ + dim Y ([16],
Corollary 26-5). Hence, the approximate resolution q = {qµ : µ ∈ M} :
X × Y → Z = {Zµ,Vµ, qµµ′ ,M} consists of finite-dimensional spaces,
which implies that X × Y is finitistic.

For paracompact finitistic spaces, the assertion of Corollary 4.3 was
proved in [2] (Theorem 2.2).

Corollary 4.4. Let X be a space with dim X = m and let Y be a
compact Hausdorff space with dim Y = n. Then dim(X × Y ) ≤ m + n.

§5. Characterization of some classes of P-like spaces

Let P be a (nonempty) class of Hausdorff spaces. A space X is called
P-like provided for every normal covering U ∈ Cov(X), there exist a mem-
ber P ∈ P , a normal covering V ∈ Cov(P ) and a mapping f : X → P such
that f−1 V ≤ U and f(X) = P .

Proposition 5.1. Let P be a class of spaces and let p={pλ : λ∈Λ} :
X → X = {Xλ,Uλ, pλλ′ ,Λ} be an approximate resolution of a space X

consisting of P-like spaces. If pλ(X) = Xλ, for all λ ∈ Λ, then X is a
P-like space.

Proof. Let U ∈ Cov(X). By property (B1)∗, there exist a λ ∈ Λ
and a V ∈ Cov(Xλ) such that p−1

λ V ≤ U . Since Xλ is P-like, there exist a
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P ∈ P, a W ∈ Cov(P ) and a mapping g : Xλ → P such that g−1W ≤ V
and g(Xλ) = P . Put f = gpλ : X → P . Clearly, f−1W ≤ U and
f(X) = P .

Proposition 5.2. Let p = {pλ : λ ∈ Λ} : X → X = {Xλ,Uλ, pλλ′ , Λ}
be an approximate resolution, where all the spaces Xλ are normal. If
pλλ′(Xλ′) = Xλ, for all λ ≤ λ′, then also pλ(X) = Xλ, for all λ ∈ Λ.

Proof. Assume that for a certain λ ∈ Λ we have pλ(X) 6= Xλ.
Choose a point x ∈ Xλ \ pλ(X) and put U = Xλ \ {x}. U is an open
set, which contains pλ(X). Since Xλ is normal, there exists an open set
V ⊆ Xλ such that pλ(X) ⊆ pλ(X) ⊆ V ⊆ V ⊆ U . By (B3)∗ (which,
for normal spaces, is equivalent to (B2)), there is a λ′ ≥ λ such that
pλλ′(Xλ′) ⊆ V . Then pλλ′(Xλ′) ⊆ V ⊆ Xλ \ {x}, which contradicts the
assumption pλλ′(Xλ′) = Xλ.

Remark 5.3. Let p = {pλ : λ ∈ Λ} : X → X = {Xλ,Uλ, pλλ′ , Λ}
be an approximate resolution of a pseudocompact space X, where all the
spaces Xλ are compact polyhedra and all the bonding maps are surjections.
Then all the projections pλ are also surjections.

An immediate consequence of Propositions 5.1 and 5.2 is the following
proposition.

Proposition 5.4. Let P be a class of normal spaces and let p = {pλ :
λ ∈ Λ} : X → X = {Xλ,Uλ, pλλ′ , Λ} be an approximate resolution of a
topological space X, where each Xλ ∈ P and all the bonding maps are
dense. Then X is a P-like space.

Theorem 5.5. The following characterizations hold.

(i) A Tychonoff space X is P-like, P being the class of all compact poly-
hedra, if and only if X is pseudocompact.

(ii) A space X is P-like, P being the class of all polyhedra P with dim P≤n,
if and only if X has dim X ≤ n.

(iii) A space X is P-like, P being the class of all finite-dimensional poly-
hedra, if and only if X is finitistic.
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