On additive decompositions with uniqueness properties of rational integers

By J. FEHÉR (Pécs), B. KOVÁCS and CS. SÁRVÁRI (Pécs)
In memoriam Béla Kovács

1. Introduction

1.1. Definition. The system $S=\left\{S_{0}, S_{1}, \ldots\right\}$ of sets is called an S system if $0 \in S_{i} \subset \mathbb{Z}, 1<\operatorname{card} S_{i}<\infty(i=0,1, \ldots)$ and every integer $n \in \mathbb{Z}$ admits a unique decomposition of the form

$$
\begin{equation*}
n=\sum_{i=0}^{L} s_{i} \quad\left(s_{i} \in S_{i}, L \geq 1\right) \tag{1.2}
\end{equation*}
$$

The simplest examples of S-systems are the so-called canonical number systems defined as follows: given a fixed integer $q>1, S_{i}:=(-q)^{i}\{0,1, \ldots$, $q-1\}$.

It is well-known that such decompositions with card $S \geq 2$ and \mathbb{N}_{0} instead of \mathbb{Z} were characterized completely by N. G. de Bruisn [1]. His characterization has useful applications e.g. in the investigations of certain arithmetic functions [2]. However, the decompositions defined in 1.1 cannot be described in such a simple manner. The following theorem seems to be a good characterization from several viewpoints.
1.3. Theorem. Let $A, B \subset \mathbb{Z}, 0 \in A, 0 \in B$ and $1<\operatorname{card} B<\infty$. Furthermore assume that each integer n admits a unique decomposition $n=a+b(a \in A, b \in B)$. Then there exists $M \in \mathbb{N}$ such that

$$
\bar{A}=\left\{\overline{0}, \overline{a_{2}}, \ldots, \overline{a_{H}}\right\}, \quad \bar{B}=\left\{\overline{0}, \overline{b_{2}}, \ldots, \overline{b_{R}}\right\} \subset \mathbb{Z}_{M}
$$

where \mathbb{Z}_{M} is the additive group of all $\bmod M$-cosets $k+M \cdot \mathbb{Z}$ and
$\mathbb{Z}_{M}=\bar{A}+\bar{B}(H \cdot R=M)$ and $B=\left\{0, b_{2}, \ldots, b_{R}\right\}, \quad A=\overline{0} \cup \overline{a_{2}} \cup \cdots \cup \overline{a_{H}}$.
After the proof of Theorem 1.3 we are going to show an application.
1.4. Definition. The function $f: \mathbb{Z} \rightarrow \mathbb{C}$ is said to be S-additive (with respect to a given system S) if $f(n)=\sum_{i=0}^{L} f\left(s_{i}\right)$ with the decomposition (1.2) of the integer n.

Given an S-system, the set of all S-additive functions is a linear space over \mathbb{C}, the linear functions $f(n)=c \cdot n$ are S-additive with respect to any S-system. It is also clear that $f(0)=0$ for every S-additive function f.

For a polynomial $P(z)=a_{k} z^{k}+\cdots+a_{1} z+a_{0} \in \mathbb{C}[z]$ and function $f: \mathbb{Z} \rightarrow \mathbb{C}$ we set

$$
P(E) f(n):=a_{k} f(n+k)+\cdots+a_{1} f(n+1)+a_{0} f(n) .
$$

1.5. Theorem. Given an S-system and a polynomial $P(z) \in \mathbb{C}[z]$ of at least first degree, the S-additive solutions of the equation

$$
\begin{equation*}
P(E) f(n)=0 \quad(\forall n \in \mathbb{Z}) \tag{1.6}
\end{equation*}
$$

are of the form $f(n)=c n+g(n)$ where $g(n)$ is a periodic S-additive function.

An analogous result with \mathbb{N}_{0} instead of \mathbb{Z} and under a stronger hypothesis on the decompositions is given in [2].

2. Proof of Theorem 1.3^{1}

Suppose that $A+B=\mathbb{Z}$ is a normal direct decomposition (i.e. $0 \in A \cap B$ and the sums of the form $a+b(a \in A, b \in B)$ are unique). Let b^{*} be the module of the least element of B and let $B^{\prime}=B+b^{*}\left(:=\left\{b+b^{*} \mid b \in B\right\}\right)$. Then $A+B^{\prime}=\mathbb{Z}$ is also a normal direct decomposition. Thus we may assume that B consists of non-negative elements and b_{r} is the greatest one among them.

Let us color the point in the real line corresponding to the integer x by red if $x \subset A$ and by blue if $x \neq A$. It is clear that x is blue if and only if $x=a+b(a \in A, b \in B)$ and $b \neq 0$.

[^0]Let us consider the intervals (open from the left and closed from the right)

$$
I_{T}:=\left(T b_{r},(T+1) b_{r}\right] \quad(T \in \mathbb{Z})
$$

(a) If the colorings of I_{T} and I_{L} are the same then the colorings of I_{T+1} and I_{L+1} are also the same. Suppose - contrarily to the statement - that $c_{T+1}=(T+1) b_{r}+h_{0}$ is red, $c_{L+1}=(L+1) b_{r}+h_{0}$ is blue for some $0<h_{0} \leq b_{r}$ and $h_{0}=1$ or $(T+1) b_{r}+h$ and $(L+1) b_{r}+h$ have the colors for $0<h<h_{0}$. Then the colorings of the intervals [$c_{T+1}-b_{r}, c_{T+1}$) and $\left[c_{L+1}-b_{r}, c_{L+1}\right)$ coincide. Since the point c_{L+1} is blue, there exists $0<k<b_{r}$ such that $c_{L+1}-b_{r}$ is red and $b_{r}-k \in B$. But then $c_{T+1}-b_{r}+k$ is red and hence $c_{T+1}-b_{r}+k$ is blue, a contradiction.
(b) One can show in a similar manner that if I_{T} and I_{L} have the same colorings then the colorings of I_{T-1} and I_{L-1} are the same, too.
(c) Since the intervals I_{T} have only finitely many colorings, there exist T_{0} and a minimal integer M such that the colorings of $I_{T_{0}}$ and $I_{T_{0}+M}$ are the same. By observations (a) and (b), the coloring of the whole line is $\left(\bmod M b_{r}\right)$-periodic.
(d) Construction. Consider the red points in the interval $\left(0, M b_{r}\right]$ and let us denote them by $a_{1}<a_{2}<\cdots<a_{H}$. Since the point 0 is colored red, $a_{H}=M b_{r}$. Therefore $A=\overline{a_{1}} \cup \overline{a_{2}} \cup \cdots \cup \overline{0}$ where each $\overline{a_{i}}$ (resp. $\overline{0}$) is a $\left(\bmod M b_{r}\right)$-coset and $\bar{A}=\left\{\overline{a_{1}}, \ldots, \overline{a_{H-1}}, \overline{0}\right\}$. Since $\bar{B}=\left\{\overline{0}, \overline{b_{2}}, \ldots, \overline{b_{r}}\right\}$, it is clear that the decomposition $\mathbb{Z}_{M b_{r}}=\bar{A}+\bar{B}$ is normal direct.

3. Proof of Theorem 1.5

We need the following two lemmas.
3.1. Lemma. Let $P(z)=a_{k} z^{k}+\cdots+a_{1} z+a_{0}=a_{k} z^{s_{0}} \prod_{j=1}^{h}\left(z-\varrho_{j}\right)^{s_{j}}$ $\left(0 \neq \varrho_{j} \in \mathbb{C}\right)$ be a given polynomial with complex coefficients and let $f: \mathbb{Z} \rightarrow \mathbb{C}$. Then the solutions of the equation

$$
P(E) f(n)=0 \quad(\forall n \in \mathbb{Z})
$$

are exactly the functions

$$
f(n)=\sum_{j=1}^{n} q_{j}(n) \varrho_{j}^{n}
$$

where each $q_{j}(j=1, \ldots, n)$ is an arbitrary polynomial of degree at most $\left(s_{j}-1\right)$ with complex coefficients.

Proof. See e.g. in [3].
3.2. Lemma. Let $\varrho_{1}, \varrho_{2}, \ldots, \varrho_{r}$ be distinct complex numbers $(r \geq 1)$ and q_{1}, \ldots, q_{r} polynomials with complex coefficients, respectively. If

$$
q_{1}(n) \varrho_{1}^{n}+\cdots+q_{r}(n) \varrho_{r}^{n}=0 \quad(\forall n \in \mathbb{Z})
$$

then

$$
q_{1}=q_{2}=\cdots=q_{r}=0
$$

Proof. See e.g. in [3].
Let us now consider those blocks S_{i} from the given S-system $\left\{S_{0}, S_{1}\right.$, $\ldots\}$ which are indispensable to the decomposition (1.2) of the numbers $1,2, \ldots, k$. Let B be the direct sum of these blocks and let A denote the direct sum of the remaining ones. Then the decomposition $\mathbb{Z}=A+B$ is normal direct and $0,1, \ldots, k \in B$. By Theorem 1.3 there exists an integer $D>k$ such that $D \cdot \mathbb{Z} \subset A$. On the other hand, from the additivity with respect to the given S-system of the function f it follows

$$
\begin{equation*}
f(a+b)=f(a)+f(b) \quad(\forall a \in A \text { and } \forall b \in B) . \tag{3.3}
\end{equation*}
$$

The solutions of (1.6) are of the form

$$
\begin{equation*}
f(n)=q_{0}(n) 1^{n}+q_{1}(n) \varrho_{1}^{n}+\cdots+q_{T}(n) \varrho_{T}^{n} \tag{3.4}
\end{equation*}
$$

where $P(z)=a_{k} z^{\alpha}(z-1)^{s_{0}} \prod_{j=1}^{T}\left(z-\varrho_{j}\right)^{s_{j}},\left(\varrho_{j} \notin\{0,1\}\right)$. Then

$$
\begin{equation*}
f(N D)=q_{0}(N D)+q_{1}(N D)\left(\varrho_{1}^{D}\right)^{N}+\cdots+q_{T}(N D)\left(\varrho_{T}^{D}\right)^{N} \tag{3.5}
\end{equation*}
$$

Let $\varrho_{j}^{D}=\delta_{j}(j=1, \ldots, T)$. Then

$$
f(N D+r)=q_{0}(N D+r)+\sum_{j=1}^{T} q_{j}(N D+r) \delta_{j}^{N} \varrho_{j} .
$$

By the additivity

$$
\begin{equation*}
f(N D+r)-f(N D)-f(r)=0 \quad(\forall N \in \mathbb{Z} ; r=1, \ldots, k) \tag{3.7}
\end{equation*}
$$

From (3.5), (3.6) and (3.7) we get the condition

$$
Q_{0}^{(r)}(N)+\sum_{i=1}^{h} Q_{i}^{(r)}(N) \tau_{i}^{N}=0 \quad(\forall N \in \mathbb{Z} ; r=1, \ldots, k)
$$

where each $Q_{i}^{(r)}$ is a polynomial of the variable N and $\tau_{1}, \ldots, \tau_{h}$ are distinct complex numbers not taking the values 0 and 1. By Lemma 3.2,

$$
Q_{j}^{(r)}=0 \quad(j=0, \ldots, h ; r=1, \ldots, k)
$$

This means that

$$
\begin{equation*}
Q_{j}^{(r)}(z)=q_{\ell}(z+r) \varrho_{\ell}^{r}-q_{\ell}(z)+\cdots+q_{\nu}(z+r) \varrho_{\nu}^{r}-q_{\nu}(z)=0 \tag{3.9}
\end{equation*}
$$

We show that $q_{i}=0(i=\ell, \ldots, \nu)$. Suppose the contrary and let max $\operatorname{deg} q_{i}=m$. Let $a_{m, j}$ denote the coefficient of the term of degree m in q_{j}. From (3.9) we infer

$$
\begin{gather*}
a_{m, \ell}\left(\varrho_{\ell}^{r}-1\right)+\cdots+a_{m, \nu}\left(\varrho_{\nu}^{r}-1\right)=0 \tag{3.10}\\
r=1, \ldots, \nu-\ell+1 \leq k
\end{gather*}
$$

Since the determinant of (3.10) cannot be 0 , we have $a_{m, j}=0(j=$ $\ell, \ldots, \nu)$, a contradiction. Finally, considering the detailed form of the condition $Q_{0}^{(r)}=0$, we get

$$
\begin{align*}
q_{0}(z+r)-q_{0}(z)-f(r)+q_{1}(z+ & r) \varrho_{1}^{r}-q_{1}(z)+\ldots \tag{3.11}\\
& \cdots+q_{u}(z+r) \varrho_{u}^{r}-q_{u}(z)=0
\end{align*}
$$

We show that $q_{0}=$ constant or $\operatorname{deg} q_{0}=1$ and $q_{i}=\operatorname{constant}(i=1, \ldots, u)$. Indeed, if
(a) $\operatorname{deg} q_{0} \geq 1$ and $\max \operatorname{deg} q_{i} \geq \operatorname{deg} q_{0}$ then we get a contradiction in a similar way as above from the fact that $q_{0}(z+r)-q_{0}(z)-f(r)=0$ or $\operatorname{deg}\left(q_{0}(z+r)-q_{0}(z) f(r)\right)<\operatorname{deg} q_{0}$.
(b) If $\operatorname{deg} q_{0} \geq 1$ and $\max \operatorname{deg} q_{i}<\operatorname{deg} q_{0}$ or $q_{i}=0(i=1, \ldots, u)$ then there exists $1 \leq r \leq k$ such that $Q_{0}^{(r)} \neq 0$ which is impossible.
(c) The assumptions $q_{0}=$ constant and $\max \operatorname{deg} q_{i}>0$ lead to a contradiction similarly as in (b).

Remark that we have $\varrho_{i}^{D}=1$ for the roots ϱ_{i} of the polynomial $Q_{0}^{(r)}$. Therefore

$$
f(n)=c \cdot n+\sum_{j=0}^{D-1} b_{j} \varrho^{j n} \quad \text { where } \quad \varrho=\exp (\pi i / D)
$$

and the coefficients $c, b_{j}(j=0,1, \ldots, D-1)$ are complex numbers with the following properties:

$$
\begin{gather*}
c=0 \text { if } P(1) \neq 0 \text { or } P^{\prime}(1) \neq 0, \tag{i}\\
b_{j}=0 \text { if } P\left(\varrho^{j}\right) \neq 0 \tag{ii}\\
\sum_{j=0}^{D-1} b_{j}=0 \text { since } f(0)=0 \tag{iii}
\end{gather*}
$$

It is clear that the function $g(n)=\sum_{j=0}^{D-1} b_{j} \varrho^{j n}$ is periodic.

Acknowledgement. We are very indebted to Prof. Vera T. Sós for her consent that this proof due to Béla Kovács should be published as an original result.

References

[1] N. G. de Bruijn, On bases of the sets of integers, Publicationes Mathematicae, Debrecen 1 (1950), 232-242.
[2] J. Fehér, Bemerkungen über R-additive Funktionen, Annales Univ. Sci. Budapest, Sectio Mathematica 29 (1986), 272-281.
[3] A. O. Gelford, Isčislenie konečnich raznostej, Nauka, Moscow, 1967.
[4] Matematikai Lapok 1 (1950), 153.
[5] Matematikai Lapok 3 (1950), 392-393.

```
JÁNOS FEHÉR
DEPT. OF MATHEMATICS
JPTE UNIVERSITY, PÉCS
IFJÚSÁG ÚT 6
H-7624 PÉCS
HUNGARY
BÉLA KOVÁCS
CSABA SÁRVÁRI
DEPT. OF MATH. AND INFORMATICS
PMMF, PÉCS
RÓKUS U. 2
H-7624 PÉCS
HUNGARY
```


[^0]: ${ }^{1}$ This proof has been communicated to us by BÉla Kovács in a private letter (1987). Apparently, he was not aware of the fact that the problem apppearing in the theorem had already been proposed by N. G. de Bruijn in [4] (Problem 12) and V. T. Sós [5] had given a solution similar to the one to be described here.

