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On additive decompositions with
uniqueness properties of rational integers

By J. FEHÉR (Pécs), B. KOVÁCS and CS. SÁRVÁRI (Pécs)

In memoriam Béla Kovács

1. Introduction

1.1. Definition. The system S = {S0, S1, . . . } of sets is called an S-
system if 0 ∈ Si ⊂ Z, 1 < card Si < ∞ (i = 0, 1, . . . ) and every integer
n ∈ Z admits a unique decomposition of the form

(1.2) n =
L∑

i=0

si (si ∈ Si, L ≥ 1) .

The simplest examples of S-systems are the so-called canonical number sys-
tems defined as follows: given a fixed integer q > 1, Si := (−q)i {0, 1, . . . ,
q − 1}.

It is well-known that such decompositions with card S ≥ 2 and N0

instead of Z were characterized completely by N. G. de Bruijn [1]. His
characterization has useful applications e.g. in the investigations of certain
arithmetic functions [2]. However, the decompositions defined in 1.1 can-
not be described in such a simple manner. The following theorem seems
to be a good characterization from several viewpoints.

1.3. Theorem. Let A,B ⊂ Z, 0 ∈ A, 0 ∈ B and 1 < card B < ∞.
Furthermore assume that each integer n admits a unique decomposition
n = a + b (a ∈ A, b ∈ B). Then there exists M ∈ N such that

Ā = {0̄, a2, . . . , aH}, B̄ = {0̄, b2, . . . , bR} ⊂ ZM
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where ZM is the additive group of all modM -cosets k + M · Z and

ZM = Ā+B̄ (H ·R = M) and B = {0, b2, . . . , bR}, A = 0̄∪a2∪· · ·∪aH .

After the proof of Theorem 1.3 we are going to show an application.

1.4. Definition. The function f : Z→ C is said to be S-additive (with
respect to a given system S) if f(n) =

∑L
i=0 f(si) with the decomposition

(1.2) of the integer n.

Given an S-system, the set of all S-additive functions is a linear space
over C, the linear functions f(n) = c ·n are S-additive with respect to any
S-system. It is also clear that f(0) = 0 for every S-additive function f .

For a polynomial P (z) = akzk + · · · + a1z + a0 ∈ C[z] and function
f : Z→ C we set

P (E)f(n) := akf(n + k) + · · ·+ a1f(n + 1) + a0f(n) .

1.5. Theorem. Given an S-system and a polynomial P (z) ∈ C[z] of
at least first degree, the S-additive solutions of the equation

(1.6) P (E)f(n) = 0 (∀n ∈ Z)

are of the form f(n) = cn + g(n) where g(n) is a periodic S-additive
function.

An analogous result with N0 instead of Z and under a stronger hy-
pothesis on the decompositions is given in [2].

2. Proof of Theorem 1.31

Suppose that A+B=Z is a normal direct decomposition (i.e. 0∈A∩B
and the sums of the form a + b (a ∈ A, b ∈ B) are unique). Let b∗ be the
module of the least element of B and let B′ = B + b∗(:= {b+ b∗ | b ∈ B}).
Then A + B′ = Z is also a normal direct decomposition. Thus we may
assume that B consists of non-negative elements and br is the greatest one
among them.

Let us color the point in the real line corresponding to the integer x
by red if x ⊂ A and by blue if x 6= A. It is clear that x is blue if and only
if x = a + b (a ∈ A, b ∈ B) and b 6= 0.

1This proof has been communicated to us by B�ela Kov�acs in a private letter (1987).
Apparently, he was not aware of the fact that the problem apppearing in the theorem
had already been proposed by N. G. de Bruijn in [4] (Problem 12) and V. T. S�os [5]
had given a solution similar to the one to be described here.
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Let us consider the intervals (open from the left and closed from the
right)

IT := (Tbr, (T + 1)br] (T ∈ Z) .

(a) If the colorings of IT and IL are the same then the colorings of
IT+1 and IL+1 are also the same. Suppose — contrarily to the statement
— that cT+1 = (T + 1)br + h0 is red, cL+1 = (L + 1)br + h0 is blue for
some 0 < h0 ≤ br and h0 = 1 or (T + 1)br + h and (L + 1)br + h have the
colors for 0 < h < h0. Then the colorings of the intervals [cT+1− br, cT+1)
and [cL+1 − br, cL+1) coincide. Since the point cL+1 is blue, there exists
0 < k < br such that cL+1−br is red and br−k ∈ B. But then cT+1−br+k
is red and hence cT+1 − br + k is blue, a contradiction.

(b) One can show in a similar manner that if IT and IL have the same
colorings then the colorings of IT−1 and IL−1 are the same, too.

(c) Since the intervals IT have only finitely many colorings, there exist
T0 and a minimal integer M such that the colorings of IT0 and IT0+M are
the same. By observations (a) and (b), the coloring of the whole line
is (mod Mbr)-periodic.

(d) Construction. Consider the red points in the interval (0,Mbr] and
let us denote them by a1 < a2 < · · · < aH . Since the point 0 is colored
red, aH = Mbr. Therefore A = a1 ∪ a2 ∪ · · · ∪ 0̄ where each ai (resp. 0̄) is
a (mod Mbr)-coset and Ā = {a1, . . . , aH−1, 0̄}. Since B̄ = {0̄, b2, . . . , br},
it is clear that the decomposition ZMbr = Ā + B̄ is normal direct.

3. Proof of Theorem 1.5

We need the following two lemmas.

3.1. Lemma. Let P (z) = akzk +· · ·+a1z+a0 = akzs0
∏h

j=1(z−%j)sj

(0 6= %j ∈ C) be a given polynomial with complex coefficients and let
f : Z→ C. Then the solutions of the equation

P (E)f(n) = 0 (∀n ∈ Z)

are exactly the functions

f(n) =
n∑

j=1

qj(n)%n
j

where each qj (j = 1, . . . , n) is an arbitrary polynomial of degree at most
(sj − 1) with complex coefficients.

Proof. See e.g. in [3].
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3.2. Lemma. Let %1, %2, . . . , %r be distinct complex numbers (r ≥ 1)
and q1, . . . , qr polynomials with complex coefficients, respectively. If

q1(n)%n
1 + · · ·+ qr(n)%n

r = 0 (∀n ∈ Z)

then
q1 = q2 = · · · = qr = 0 .

Proof. See e.g. in [3].

Let us now consider those blocks Si from the given S-system {S0, S1,
. . . } which are indispensable to the decomposition (1.2) of the numbers
1, 2, . . . , k. Let B be the direct sum of these blocks and let A denote the
direct sum of the remaining ones. Then the decomposition Z = A + B is
normal direct and 0, 1, . . . , k ∈ B. By Theorem 1.3 there exists an integer
D > k such that D · Z ⊂ A. On the other hand, from the additivity with
respect to the given S-system of the function f it follows

(3.3) f(a + b) = f(a) + f(b) (∀a ∈ A and ∀b ∈ B) .

The solutions of (1.6) are of the form

(3.4) f(n) = q0(n)1n + q1(n)%n
1 + · · ·+ qT (n)%n

T

where P (z) = akzα(z − 1)s0
∏T

j=1(z − %j)sj , (%j 6∈ {0, 1}). Then

(3.5) f(ND) = q0(ND) + q1(ND)(%D
1 )N + · · ·+ qT (ND)(%D

T )N .

Let %D
j = δj (j = 1, . . . , T ). Then

f(ND + r) = q0(ND + r) +
T∑

j=1

qj(ND + r)δN
j %j .

By the additivity

(3.7) f(ND + r)− f(ND)− f(r) = 0 (∀N ∈ Z; r = 1, . . . , k) .

From (3.5), (3.6) and (3.7) we get the condition

Q
(r)
0 (N) +

h∑

i=1

Q
(r)
i (N)τN

i = 0 (∀N ∈ Z; r = 1, . . . , k)

where each Q
(r)
i is a polynomial of the variable N and τ1, . . . , τh are distinct

complex numbers not taking the values 0 and 1. By Lemma 3.2,

Q
(r)
j = 0 (j = 0, . . . , h; r = 1, . . . , k) .
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This means that

(3.9) Q
(r)
j (z) = q`(z + r)%r

` − q`(z) + · · ·+ qν(z + r)%r
ν − qν(z) = 0 .

We show that qi = 0 (i = `, . . . , ν). Suppose the contrary and let max
deg qi = m. Let am,j denote the coefficient of the term of degree m in qj .
From (3.9) we infer

(3.10)
am,`(%r

` − 1) + · · ·+ am,ν(%r
ν − 1) = 0

r = 1, . . . , ν − ` + 1 ≤ k .

Since the determinant of (3.10) cannot be 0, we have am,j = 0 (j =
`, . . . , ν), a contradiction. Finally, considering the detailed form of the
condition Q

(r)
0 = 0, we get

(3.11) q0(z + r)− q0(z)− f(r) + q1(z + r)%r
1 − q1(z) + . . .

· · ·+ qu(z + r)%r
u − qu(z) = 0 .

We show that q0 = constant or deg q0 = 1 and qi = constant (i = 1, . . . , u).
Indeed, if

(a) deg q0 ≥ 1 and max deg qi ≥ deg q0 then we get a contradiction in
a similar way as above from the fact that q0(z + r) − q0(z) − f(r) = 0 or
deg(q0(z + r)− q0(z)f(r)) < deg q0.

(b) If deg q0 ≥ 1 and max deg qi < deg q0 or qi = 0 (i = 1, . . . , u) then
there exists 1 ≤ r ≤ k such that Q

(r)
0 6= 0 which is impossible.

(c) The assumptions q0 = constant and max deg qi > 0 lead to a
contradiction similarly as in (b).

Remark that we have %D
i = 1 for the roots %i of the polynomial Q

(r)
0 .

Therefore

f(n) = c · n +
D−1∑

j=0

bj%
jn where % = exp(πi/D)

and the coefficients c, bj (j = 0, 1, . . . , D − 1) are complex numbers with
the following properties:

c = 0 if P (1) 6= 0 or P ′(1) 6= 0 ,(i)

bj = 0 if P (%j) 6= 0 ,(ii)
D−1∑

j=0

bj = 0 since f(0) = 0 .(iii)

It is clear that the function g(n) =
∑D−1

j=0 bj%
jn is periodic.
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