Publ. Math. Debrecen 46 / 3-4 (1995), 333–338

On additive decompositions with uniqueness properties of rational integers

By J. FEHÉR (Pécs), B. KOVÁCS and CS. SÁRVÁRI (Pécs)

In memoriam Béla Kovács

1. Introduction

1.1. Definition. The system $S = \{S_0, S_1, ...\}$ of sets is called an *S*-system if $0 \in S_i \subset \mathbb{Z}$, $1 < \operatorname{card} S_i < \infty$ (i = 0, 1, ...) and every integer $n \in \mathbb{Z}$ admits a unique decomposition of the form

(1.2)
$$n = \sum_{i=0}^{L} s_i \qquad (s_i \in S_i, \ L \ge 1).$$

The simplest examples of S-systems are the so-called *canonical number systems* defined as follows: given a fixed integer q > 1, $S_i := (-q)^i \{0, 1, \ldots, q-1\}$.

It is well-known that such decompositions with card $S \ge 2$ and \mathbb{N}_0 instead of \mathbb{Z} were characterized completely by N. G. de BRUIJN [1]. His characterization has useful applications e.g. in the investigations of certain arithmetic functions [2]. However, the decompositions defined in 1.1 cannot be described in such a simple manner. The following theorem seems to be a good characterization from several viewpoints.

1.3. Theorem. Let $A, B \subset \mathbb{Z}, 0 \in A, 0 \in B$ and $1 < \operatorname{card} B < \infty$. Furthermore assume that each integer n admits a unique decomposition n = a + b ($a \in A, b \in B$). Then there exists $M \in \mathbb{N}$ such that

$$\bar{A} = \{\bar{0}, \overline{a_2}, \dots, \overline{a_H}\}, \quad \bar{B} = \{\bar{0}, \overline{b_2}, \dots, \overline{b_R}\} \subset \mathbb{Z}_M$$

where \mathbb{Z}_M is the additive group of all mod *M*-cosets $k + M \cdot \mathbb{Z}$ and

 $\mathbb{Z}_M = \bar{A} + \bar{B} (H \cdot R = M) \text{ and } B = \{0, b_2, \dots, b_R\}, A = \bar{0} \cup \overline{a_2} \cup \dots \cup \overline{a_H}.$

After the proof of Theorem 1.3 we are going to show an application.

1.4. Definition. The function $f : \mathbb{Z} \to \mathbb{C}$ is said to be S-additive (with respect to a given system S) if $f(n) = \sum_{i=0}^{L} f(s_i)$ with the decomposition (1.2) of the integer n.

Given an S-system, the set of all S-additive functions is a linear space over \mathbb{C} , the linear functions $f(n) = c \cdot n$ are S-additive with respect to any S-system. It is also clear that f(0) = 0 for every S-additive function f.

For a polynomial $P(z) = a_k z^k + \cdots + a_1 z + a_0 \in \mathbb{C}[z]$ and function $f : \mathbb{Z} \to \mathbb{C}$ we set

$$P(E)f(n) := a_k f(n+k) + \dots + a_1 f(n+1) + a_0 f(n).$$

1.5. Theorem. Given an S-system and a polynomial $P(z) \in \mathbb{C}[z]$ of at least first degree, the S-additive solutions of the equation

(1.6)
$$P(E)f(n) = 0 \quad (\forall n \in \mathbb{Z})$$

are of the form f(n) = cn + g(n) where g(n) is a periodic S-additive function.

An analogous result with \mathbb{N}_0 instead of \mathbb{Z} and under a stronger hypothesis on the decompositions is given in [2].

2. Proof of Theorem 1.3^1

Suppose that $A+B=\mathbb{Z}$ is a normal direct decomposition (i.e. $0 \in A \cap B$ and the sums of the form a + b ($a \in A$, $b \in B$) are unique). Let b^* be the module of the least element of B and let $B' = B + b^*$ (:= { $b+b^* \mid b \in B$ }). Then $A + B' = \mathbb{Z}$ is also a normal direct decomposition. Thus we may assume that B consists of non-negative elements and b_r is the greatest one among them.

Let us color the point in the real line corresponding to the integer x by red if $x \subset A$ and by blue if $x \neq A$. It is clear that x is blue if and only if x = a + b ($a \in A$, $b \in B$) and $b \neq 0$.

¹This proof has been communicated to us by BÉLA KOVÁCS in a private letter (1987). Apparently, he was not aware of the fact that the problem apppearing in the theorem had already been proposed by N. G. de BRUIJN in [4] (Problem 12) and V. T. Sós [5] had given a solution similar to the one to be described here.

Let us consider the intervals (open from the left and closed from the right)

$$I_T := (Tb_r, (T+1)b_r] \quad (T \in \mathbb{Z}).$$

(a) If the colorings of I_T and I_L are the same then the colorings of I_{T+1} and I_{L+1} are also the same. Suppose — contrarily to the statement — that $c_{T+1} = (T+1)b_r + h_0$ is red, $c_{L+1} = (L+1)b_r + h_0$ is blue for some $0 < h_0 \le b_r$ and $h_0 = 1$ or $(T+1)b_r + h$ and $(L+1)b_r + h$ have the colors for $0 < h < h_0$. Then the colorings of the intervals $[c_{T+1} - b_r, c_{T+1})$ and $[c_{L+1} - b_r, c_{L+1})$ coincide. Since the point c_{L+1} is blue, there exists $0 < k < b_r$ such that $c_{L+1} - b_r$ is red and $b_r - k \in B$. But then $c_{T+1} - b_r + k$ is red and hence $c_{T+1} - b_r + k$ is blue, a contradiction.

(b) One can show in a similar manner that if I_T and I_L have the same colorings then the colorings of I_{T-1} and I_{L-1} are the same, too.

(c) Since the intervals I_T have only finitely many colorings, there exist T_0 and a minimal integer M such that the colorings of I_{T_0} and I_{T_0+M} are the same. By observations (a) and (b), the coloring of the whole line is (mod Mb_r)-periodic.

(d) Construction. Consider the red points in the interval $(0, Mb_r]$ and let us denote them by $a_1 < a_2 < \cdots < a_H$. Since the point 0 is colored red, $a_H = Mb_r$. Therefore $A = \overline{a_1} \cup \overline{a_2} \cup \cdots \cup \overline{0}$ where each $\overline{a_i}$ (resp. $\overline{0}$) is a (mod Mb_r)-coset and $\overline{A} = \{\overline{a_1}, \ldots, \overline{a_{H-1}}, \overline{0}\}$. Since $\overline{B} = \{\overline{0}, \overline{b_2}, \ldots, \overline{b_r}\}$, it is clear that the decomposition $\mathbb{Z}_{Mb_r} = \overline{A} + \overline{B}$ is normal direct.

3. Proof of Theorem 1.5

We need the following two lemmas.

3.1. Lemma. Let $P(z) = a_k z^k + \cdots + a_1 z + a_0 = a_k z^{s_0} \prod_{j=1}^h (z - \varrho_j)^{s_j}$ $(0 \neq \varrho_j \in \mathbb{C})$ be a given polynomial with complex coefficients and let $f : \mathbb{Z} \to \mathbb{C}$. Then the solutions of the equation

$$P(E)f(n) = 0 \quad (\forall n \in \mathbb{Z})$$

are exactly the functions

$$f(n) = \sum_{j=1}^{n} q_j(n) \varrho_j^n$$

where each q_j (j = 1, ..., n) is an arbitrary polynomial of degree at most $(s_j - 1)$ with complex coefficients.

PROOF. See e.g. in [3].

3.2. Lemma. Let $\varrho_1, \varrho_2, \ldots, \varrho_r$ be distinct complex numbers $(r \ge 1)$ and q_1, \ldots, q_r polynomials with complex coefficients, respectively. If

$$q_1(n)\varrho_1^n + \dots + q_r(n)\varrho_r^n = 0 \quad (\forall n \in \mathbb{Z})$$

then

$$q_1 = q_2 = \cdots = q_r = 0.$$

PROOF. See e.g. in [3].

Let us now consider those blocks S_i from the given S-system $\{S_0, S_1, \ldots\}$ which are indispensable to the decomposition (1.2) of the numbers $1, 2, \ldots, k$. Let B be the direct sum of these blocks and let A denote the direct sum of the remaining ones. Then the decomposition $\mathbb{Z} = A + B$ is normal direct and $0, 1, \ldots, k \in B$. By Theorem 1.3 there exists an integer D > k such that $D \cdot \mathbb{Z} \subset A$. On the other hand, from the additivity with respect to the given S-system of the function f it follows

(3.3)
$$f(a+b) = f(a) + f(b) \quad (\forall a \in A \text{ and } \forall b \in B).$$

The solutions of (1.6) are of the form

(3.4)
$$f(n) = q_0(n)1^n + q_1(n)\varrho_1^n + \dots + q_T(n)\varrho_T^n$$

where $P(z) = a_k z^{\alpha} (z-1)^{s_0} \prod_{j=1}^T (z-\varrho_j)^{s_j}, \ (\varrho_j \notin \{0,1\}).$ Then

(3.5)
$$f(ND) = q_0(ND) + q_1(ND)(\varrho_1^D)^N + \dots + q_T(ND)(\varrho_T^D)^N.$$

Let $\varrho_j^D = \delta_j \ (j = 1, \dots, T)$. Then

$$f(ND+r) = q_0(ND+r) + \sum_{j=1}^T q_j(ND+r)\delta_j^N \varrho_j$$

By the additivity

(3.7)
$$f(ND+r) - f(ND) - f(r) = 0 \quad (\forall N \in \mathbb{Z}; r = 1, ..., k).$$

From (3.5), (3.6) and (3.7) we get the condition

$$Q_0^{(r)}(N) + \sum_{i=1}^h Q_i^{(r)}(N)\tau_i^N = 0 \quad (\forall N \in \mathbb{Z}; \ r = 1, \dots, k)$$

where each $Q_i^{(r)}$ is a polynomial of the variable N and τ_1, \ldots, τ_h are distinct complex numbers not taking the values 0 and 1. By Lemma 3.2,

$$Q_j^{(r)} = 0$$
 $(j = 0, ..., h; r = 1, ..., k).$

This means that

(3.9)
$$Q_j^{(r)}(z) = q_\ell(z+r)\varrho_\ell^r - q_\ell(z) + \dots + q_\nu(z+r)\varrho_\nu^r - q_\nu(z) = 0.$$

We show that $q_i = 0$ $(i = \ell, ..., \nu)$. Suppose the contrary and let max deg $q_i = m$. Let $a_{m,j}$ denote the coefficient of the term of degree m in q_j . From (3.9) we infer

(3.10)
$$a_{m,\ell}(\varrho_{\ell}^r - 1) + \dots + a_{m,\nu}(\varrho_{\nu}^r - 1) = 0$$
$$r = 1, \dots, \nu - \ell + 1 \le k.$$

Since the determinant of (3.10) cannot be 0, we have $a_{m,j} = 0$ $(j = \ell, ..., \nu)$, a contradiction. Finally, considering the detailed form of the condition $Q_0^{(r)} = 0$, we get

(3.11)
$$q_0(z+r) - q_0(z) - f(r) + q_1(z+r)\varrho_1^r - q_1(z) + \dots$$

 $\dots + q_u(z+r)\varrho_u^r - q_u(z) = 0.$

We show that $q_0 = \text{constant}$ or deg $q_0 = 1$ and $q_i = \text{constant}$ (i = 1, ..., u). Indeed, if

(a) deg $q_0 \ge 1$ and max deg $q_i \ge \deg q_0$ then we get a contradiction in a similar way as above from the fact that $q_0(z+r) - q_0(z) - f(r) = 0$ or $\deg(q_0(z+r) - q_0(z)f(r)) < \deg q_0$.

(b) If deg $q_0 \ge 1$ and max deg $q_i < \deg q_0$ or $q_i = 0$ (i = 1, ..., u) then there exists $1 \le r \le k$ such that $Q_0^{(r)} \ne 0$ which is impossible.

(c) The assumptions $q_0 = \text{constant}$ and $\max \deg q_i > 0$ lead to a contradiction similarly as in (b).

Remark that we have $\rho_i^D = 1$ for the roots ρ_i of the polynomial $Q_0^{(r)}$. Therefore

$$f(n) = c \cdot n + \sum_{j=0}^{D-1} b_j \varrho^{jn}$$
 where $\varrho = \exp(\pi i/D)$

and the coefficients c, b_j (j = 0, 1, ..., D - 1) are complex numbers with the following properties:

(i)
$$c = 0$$
 if $P(1) \neq 0$ or $P'(1) \neq 0$,

(ii)
$$b_j = 0$$
 if $P(\varrho^j) \neq 0$,

(iii)
$$\sum_{j=0}^{D-1} b_j = 0 \text{ since } f(0) = 0.$$

It is clear that the function $g(n) = \sum_{j=0}^{D-1} b_j \varrho^{jn}$ is periodic.

338 J. Fehér, B. Kovács and Cs. Sárvári : On additive decompositions ...

Acknowledgement. We are very indebted to Prof. VERA T. Sós for her consent that this proof due to BÉLA KOVÁCS should be published as an original result.

References

- N. G. DE BRUIJN, On bases of the sets of integers, Publicationes Mathematicae, Debrecen 1 (1950), 232-242.
- [2] J. FEHÉR, Bemerkungen über R-additive Funktionen, Annales Univ. Sci. Budapest, Sectio Mathematica 29 (1986), 272–281.
- [3] A. O. GELFORD, Isčislenie konečnich raznostej, Nauka, Moscow, 1967.
- [4] Matematikai Lapok **1** (1950), 153.
- [5] Matematikai Lapok **3** (1950), 392–393.

JÁNOS FEHÉR DEPT. OF MATHEMATICS JPTE UNIVERSITY, PÉCS IFJÚSÁG ÚT 6 H-7624 PÉCS HUNGARY

BÉLA KOVÁCS

CSABA SÁRVÁRI DEPT. OF MATH. AND INFORMATICS PMMF, PÉCS RÓKUS U. 2 H-7624 PÉCS HUNGARY

(Received June 23, 1994)