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An asymptotic formula concerning Lehmer numbers

By JAMES P. JONES (Calgary) and PETER KISS (Eger)

Dedicated to Professor Lajos Tamdssy on his 70th birthday

Abstract. Let Lp, n=0,1,2,..., be a Lehmer sequence defined by L,, = (a™ —
B™)/(a — B) for n odd and Ly, = (a™ — f™)/(a? — B?) for n even, where (a + )2 = A

and a8 = —B are fixed rational integers and |a| > |8|. Let m be an integer > 1 and
define the sequence (M) of integers by My, = Ly /Ly for n > 0. We prove that
log | M1 - Ms -+ M| m—1 2+O(10g1\])
e ™
log[M1, Ma, ..., My] 6(1l—w)(m— T] p’%) N
p|m

for sufficiently large N, where w = log((A, B))/2 - log |a| and [M1, M2, ...]| denotes the
least common multiple of M7y, Ms,.... This result is a generalization and an improve-
ment of a formula given by J. P. BEZIVIN.

1. Introduction

Let R,, (n=0,1,2,...), be a second order linear recursive sequence
of integers defined by

Ry=C-Ry1+D-Ro_y (n>1),

where Ry = 0, R; = 1 and C, D are given non-zero integer parameters
with C2 44D # 0. If v and § are the roots of the polynomial 2% — Cz — D
then, as it is well known,
,Yn —§n

v —9
for any n > 0. We assume |y| > || and /4 is not a root of unity, i.e. the

sequence is not degenerate. For C' = D = 1 the sequence is the Fibonacci
sequence and we denote it by wu,.

R, =
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For the Fibonacci sequence Y. V. MATIYASEVICH and R. K. GUy [6]

proved that
lim \/6-10g(u1 SUg e Up) -

n—oo \[ logluy,us, ..., u,]
where [u1,us,...] denotes the least common multiple of the numbers u,
ug,.... For general second order recurrences with (C,D) = 1, P. Kiss

and F. MATYASs [4] obtained a similar result with error term which was
improved, for any C, D, by S. AKIYAMA [1] showing that

O (6(1—w’)-log|R1-Rg---RN|)1/2:7T+O( 1 )

log[Rl,Rg,...,RN] logN

log((C*, D))

2-log|v|
J. P. BEZIVIN [2] investigated another type of sequence. Let m > 1
be a given integer and let G,,, n =0,1,2,..., be a sequence defined by

for any sufficiently large N, where w' =

mn __ §mn

Ryn _
Rn ,yn —on
It is easy to see that the terms of this sequence are also integers and

that the terms satisfy a linear recurrence relation of order m. Bézivin
proved that if (C, D) = 1, then

G, =

(m=1)- 11~ )
@) im LBl Ca Ol T

n— 00 log[G17G27 s 7Gn] N 6- Z Sp(d) ) SO(%) ' %
d|m

where ¢ is Euler’s function.

In this paper we extend Bézivin’s result to more general sequences
and give an error term for the limit.

Let A and B be non-zero integers with A 4+ 4B # 0 and denote by

a, (3 the roots of the polynomial 22 — Az — B. The sequence L, (n=
0,1,2,...), defined by

% for n odd

o —

(3) Ln - am — Bn ¢
m or n even

is called a Lehmer sequence, or sequence of Lehmer numbers, with param-
eters A, B. It can be seen that the terms of this sequence are integers since
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(a+ 3)? and af3 are integers. Furthermore L,, # 0 for n > 0 if /3 is not
a root of unity and L; is divisible by L; if j | 4.
We will prove

Theorem. Let A # 0, B # 0 and m > 1 be given integers with
A+ 4B # 0. Let L, be a Lehmer sequence with parameters A, B and
suppose that o/ is not a root of unity and that |«| > |3|. Further let M,
be a sequence of integers defined by

Lmn
Then
g My MMyl m=1 (N
(®) . el
log[M17M27"'7MN] 6(1-’(1])(7’)’1,— H m) N
plm
log((A, B
for any sufficiently large N, where w = M.
2 - log |

This theorem remains valid if we replace L,, by a general second order
linear recurrence.

Corollary. Let R, be a non degenerate second order linear recurrence
defined by parameters C, D and initial terms Ry = 0 and R; # 0. Let
m > 1 be a fixed integer and define a sequence M,, of integers by

Rmn

Ry,
Then for this sequence M,, estimate (4) also holds with w = (log(C?, D))/
(2 - log|vl)-

Remark 1. We note that, using (4), we can give an asymptotic formula
for the number 7 similar to (1) but with a better error term.

M, =

(n>0).

Remark 2. From estimate (4), limit (2) also follows since w = 0 if A
and B (or C and D) are relatively prime. It can be seen that

ZSO(d)'“’(%)'% 'Hp B _Hp+1
d>1

for any m > 1.
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2. Auxiliary results concerning Lehmer numbers

In the proof of our Theorem we use some properties of Lehmer num-
bers. Most of these properties were obtained by D. H. LEHMER in [5].

Let L, be a non degenerate Lehmer sequence with parameters A and
B. Assume that |a] > |3|. If p is a prime and p { B, then there are terms
in the sequence divisible by p. We denote by r(p) the rank of apparition of
p in the sequence Ly, i.e. 7(p) > 0 is a natural number for which p | L,
but p { L, for 0 < n < r(p). Let e(p) be the exponent of p for which

pe(p) | L'r’(p) but pe(p)+1 J[Lr(p)-

Lemma 1. For any prime p with pt B and any integer k > 0,
pe®)Tk | L, if and only if p* - 7(p) | n. (See [5]).

Lemma 2. For any prime p with p{ B we have r(p) < p+1, (See [5]).

Lemma 3. Ifp is a prime, p | B and p{ A, then p{ L,, for any n > 0,
(See [5]).

If n = r(p) for some prime p, then we say pP) is a primitive prime
power divisor of the Lucas number L,. In the following we shall denote
the product of the primitive prime power divisors of a Lehmer number L,

by PP(Ly),
PP(L,) = H pe(P),

r(p)=n
For the primitive part of the Lehmer numbers we have

Lemma 4. If (A, B) =1 and n > 12, then

n/t
1— (_/f)
(e

where ¢ and u are the Euler and Mébius functions.

log(PP(Ln)) = ¢(n) -log |a| + > u(t) - log +O(logn)

t|n

PRrROOF. Let ®,(a, 3) denote the n'" cyclotomic polynomial in o and
0 for any integer n > 1 and pair «, 3 of complex numbers, that is

O, (c, B) = [ [ (™ = /1@
tin

From some results of C. L. STEWART (Lemma 6 and 7 in [7]), for n > 12
we have

PP(Ly,) = M| @ (e, B)],
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where A\,, =1 or \,, = 1/P(n/(3,n)) and P(N) denotes the greatest prime
divisor of the natural number N. From these equations

log(PP(L,)) = 3 u(t) -log [a™" — 5"/*| + log A, =

tin
3 n/t
o

=Zu(t) —loglal+ ) p(t) - log

tin tin

+ log A\,

follows. It implies the lemma since
log A, = O(logn)
and, as it is well known,
Sont) 5 =)
t|n
We note that this lemma also follows from the lemmas of [3].

We give an estimate for the product of the terms of the sequence
defined in the Theorem.

Lemma 5. Let M, be the sequence defined in the theorem. Then

(m —1) -log|a|

log | M - My -+ My| = 5

N2+ O(N -log N)

for any sufficiently large N.
PrOOF. From (3) and a result of C.L. Stewart (Lemma 6 in [8])

L] = Jaf+Oos™

follows, for any sufficiently large n. But them

N
log | My - My -+ My| = Zlog (‘a|(m—1)n+0(logn)> _

n=1

N
= log|a| - (m — l)w + ZO(IOgn) =

n=1
1) - log o

_ (m- 5 N2+ O(N -log N)

since

Zlog = log(N!) = O(N -logN).
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3. An asymptotic formula for Euler’s ¢ function
We establish an estimate concerning Euler’s ¢ function which we need
in the proof of our Theorem.

Lemma 6. For any fixed positive integer m we hawe

3m D 9
ZSO(W”L)Zp Hm z” + O(z - logx)

n<lx plm

if x is sufficiently large.

ProOOF. First let m = p where p is a prime. Then

> o) =(p-1)) en)+p>_ e(n) =

n<x n<lx n<lx
ptn pln
=pY> o)=Y o) =p> on)—> on)+ > ¢)
n<x n<x n<x n<x n<x
ptn pln
=(p-1)) _en)+ > olpn).
n<x ”S%

Continuing this process and using the estimation

o) S pln) = Sy + Ol -logr).

n<x

with a suitable integer k we get

> o(pn) = (p—1 Z > el p(pn) =

n<x 1= 0n<— ngl%

k—1 k—1
3(p—1) x? x z?
= —+0 — - log(x/p +0
. (Z 2y el ) Jrot
Define k£ by
_ x

Pl 1 < p.

og T

Then for any sufficiently large x

T

p2k

=O(z-logx),
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and
k=1 2 1— L 2
2 p kP 2
1=0 p
and
kel
— log(z/p') = O(x - log z) .
i—o P
So by (6)
3(p—-1) p°
(7) Zgo(pn): (7r2 )~p2_1x2+0(x-logx):
n<x
_ p 22 + O(x - log )
™ p+1

which establishes the validity of the lemma for m = p.
If m is a prime power, m = p® with e > 1, then

®) Y en) =@ —p) > en)+p° ) en)=

n<zx n<x n<x
pin pln

=p°> o(n)—p~! (Z OEDY @(n)> =

n<x

n<x n<Z

From this, using (7) and (5), we get

. 3pe71(p_1) ) 3pe+1 T 2
S otorn) et s (5) Ot town =

n<x
e

_3p° P

2
=3 p+1x +O(z-logz).

So the lemma holds if m is a prime power.
Now suppose that the lemma is true for some integer m and let ¢¢ be
a prime power for which ¢ { m. Then

Y wlmgn) =(a° =41 Y p(mn) +¢° ) p(mn) =

n<lx n<x n<x
qtn qn
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=q¢° > @(mn) =g "> o(mn) + ¢ p(mn) =

n<x n<x n<x
qn
= (¢°—q“) Y _p(mn) +¢"" > p(mgn) =
n<x n<Z
-9
= (¢° =) Y p(mn) + Y w(mg°n)
n<x n<i
- q

From this, similarly as above, with an integer k£ we get

k—1
9 > elmgn)=(¢°—¢) > Y p(m p(mqn).
n<x 1=0 % <£k
q =q
If k is determined by ¢! < Toe ez < ¢*, then by our assumption
k—1 3m » 9
> 3 et =25 (1,25 ) Lm0 (L2t -
=0 <X plm
q’
3m p 2 q2
plm
and also
72
e(mgn) = O (q2k> O(z -log x)
ngqik

follows. So by (9)

3mq® q P 9
n) = - . L Oz -1
E p(mg°n) 2 ] | | P z“+ O(z - logz)

n<x
from which we get the lemma by mathematical induction.

Lemma 7. Let Q > 1 be a given integer. Then

Z So(n):%(npil)x + O(x - log z)

n<x

(@n)=1
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for any sufficiently large x.

Proor. If Q = p° is a prime power, then by Lemma 6 and the first
equality in (8) with e = 1 we have

3 ot = Yt = ;b (St - T o0 -

n<x n<x n<lx n<x
(Qmn)=1 pin pln
1
=— (Z ppn) —p- Y so(px)> =
p n<x n<Z
=p
1 3 (p , P [z
=— = x2 - = + O(x -logz) =
p—1 m™ \p+1 p+1\p
3 p

_ 2
= P.p+1x + O(x - log z).

Thus the lemma holds if () has only one prime factor. From this we can
complete the proof by induction on the number of prime divisors of @),
similar to what was done in the proof of Lemma 6.

Lemma 8. Let m > 1 and Q > 1 be integers for which (m,Q) = 1.

Then
3m P 9
Z p(mn) = p( H m) + O(z - log z).

n<x p|mQ
(Q,n)=1

Proor. First let Q = ¢°, i.e. Q) is a power of a prime q. Then by
Lemma 6 we have

ST plmn) = 3 p(mn) = 3 p(mn) — 3 @(mgn) =

n<x n<x n<x n<i
(Qn)=1 qfn —q
3m p \ . 3mg p \a?
= — _— — — O . ]. -
72 (Hp+1>x 72 (Hp+1 q2+ (w-log z)
plm plmq
3m D 5
pimq

and so the lemma is true if () has only one prime factor. From this the
lemma follows by induction on the number of prime factors of Q).
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4. Proof of the theorem

Let L,, (n = 0,1,2,...) and M, (n = 1,2,...) be the sequences
mentioned in the statement of the theorem.
If z=(A,B) and A = zA,, B = zB; with (A, B;) = 1, then for the

roots of the characteristic polynomial 22 — /A - & — B of L,, we have

VA+ A+ 4B VAL + A +4B;
o= 2 :\/z 5 :\/Eal

and

=Vzh

ﬁ:\/z\/A1—\/A1+4Bl
2
and so by (3)
I _{\/En_l-L;I, for n odd

- n—2
vz T+ L, forneven

where L] is a Lehmer sequenced defined by relatively prime parameters
Ay, By. For the sequence M,, we get

L/

Lmn (m—l)n+€ mn
(10) M, = T =z . L_ﬁz
where e =0 or e = —1 (¢ = —1 if m is even and n is odd). Let

/

L
M, = L"/m (for n=1,2,...).

If p | M), for an integer n > 1 and p > m, then by Lemmas 1 and 3,
r(p) | mn and r(p) { n, so p¢®) | M! and (r(p) is of the form r(p) = d-n/,
where d | m, d > 1. Furthermore if r(p) is of the form r(p) = d - n’ with
p>m,d|m,d>1,then p® | M’ and if p¢®+F | M’ for some n > 1
and k > 0, then p* | n.

Let N be a sufficiently integer and let

(11) M(N):[MivMév""MI/V]:Pl(N)'PZ(N)7
where

(120 AN =[] pe<p>+k<p>:< 11 pe<P>).< 11 pk<p>)

p|M(N) p|M(N) p|M(N)
p>m p>m p>m
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and
(13) P(N)= [] »'™.
p|M(N)
p<m

First we give an estimation for the logarithm of the first product in
(12). By the above mentioned results, using Lemma 4, we have

(14) log< 1T pe@) = 1og<H PP ( 'dn>> =

pIM(N) d|m
p>m d>1
n<N
5 dn
¢
~ogleul) - X o) + 3ty tog (1= (2) © )+
dlm dlm t|dn
d>1 d>1
n<N n<N
—l—O(Z 10g(dn)>,
N

where we assume that the divisors dn are distinct. Let

S

msz‘{"

i=1
and let S7 and S5 be sets of integers defined by
Sy ={dn:d|m, d>1, (myn)=1, n< N}
and
ng{dn:d\m, d>1, pfi+1|dn for some 1, ngN}.
Then

(15) Y eldn) = @ldn)+ Y @(dn)

dlm dn€eSy dné€eSs

d>1
n<N

By Lemma 7, using

(16) > (d) =m,
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we get
a7 den):(Zw(d)) S o)
dneS1 n<N
d>1 (m,n)=1

2 p+1
p|m
c Cy . 1 . . .
Let dn € Sy. Then dn = pliﬁl . Z-j3+ -d'-n' for some j with 1 < j <s,
where {p;,,...,pi,} C{p1,...,ps}, and d’ is a divisor of CLC =m/
it .pijj
/ / / N /
(m',n") =1and n’ < ——— = N’. By (16) and Lemma 8 we have
Diy - - Di
ci, +1 Cz +1
S5 ) -
d'|m n' <N’
(m',n')=1
cii +1 i.+1
3pi11 .. .pi‘J D N2
- ng(d/) ) ; H +1] 7 |+
d’'|\m’ p|m p (p’b1 <. p’LJ)
+O(N -logN) = o ! 1T P_ 1 N2+ O(N -log N)
ST Pt ¢
and so
(18) > ¢(dn)
dn€Ss
3m P 9
= — —_— N O(N -log N
plm

where C; denotes the extended summation over all j tuples of primes
P1,---,Ps. But

(19) ZZ

j=1 C;

N i _yrett
— j_H(1+p) =11 1,
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thus by (15), (17), (18) and (19) we get

(20) S pldn) =

n<N

On the other hand

O( E 10gdn> = O(log(N!)) = O(N -log N)
d|n
n<N

and using an estimation like one in [3], we get

dn
t

> > () -log 1—<ﬁ) = O(N -log N)

dlm t|dn @

d>1

n<N

and so by (14) and (20)

1
(21) 10g< H pe(P)> 3 (:Tg|a1|<m Hp+1)N2+O(N log N)

p|M(N) plm
p>m

follows.
Now we consider the second product in (12). If p | M(N) and k(p) > 1
for a prime p, then by Lemma 1 there is an integer n < mN for which

pF®P)r(p) | n. But by Lemma 2p > r(p) — 1 and so p*®)r(p) > (r(p) — 1) -
r(p) > mN if r(p) > vmN + 1. From this k(p) = 0 follows for primes p
for which r(p) > vVmN + 1 and we have

(22) log< H pk(p)> zlog( H pk(p)>+0(logN).

p|M(N) r(p)<vVmN

p>m p>m
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If k(p) > 1 and p*®P++®) | [/ for some 0 < n < mN, then p*®) | n and
k(p) -logp <log(mN). This implies the estimate

(23) log( H pk(p)> < Z logmN = (logmN) - Z 1.

p
ISy r(p)<v/mN r(p)svmiN

But there are O(n/logn) primes p for which r(p) = n and so

n N
(24) Z 1=0 Z logn :O<10gN)'
p n<vmN

r(p)SVmN
From (22), (23) and (24) we get

(25) 10g< 11 pk(p)> = O(N).

p|M(N)
p>m

If p is a prime, p < m and p/®) | M(N) to some exponent f(p), then
p/® =0 (\a\mN) and f(p) -logp = O(N). So by (13)
(26) log Po(N) = O(N)

follows.
From (11), (12), (21), (25) and (26) we get the estimate

3 - log |a | D 9
plm
But then by (10) we have

log[MlaMZa"'7MN] ZIOgM(N)+O(N) =

_ %%'O‘l‘ m—]] z% N? + O(Nlog N).
plm
From this, by Lemma 5, the theorem follows since & = /z a1 and hence
log|a| 1
loglan] ~ | _ oz _
2 - log ||

The Corollary follows from the theorem since the sequence R,, is al-
most a Lehmer sequence with parameters A = C?, B = D. Multiplication
of the terms by R; and sometimes by C' introduces only O(N) error in our
estimations.
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