An asymptotic formula concerning Lehmer numbers

By JAMES P. JONES (Calgary) and PÉTER KISS (Eger)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Abstract

Let $L_{n}, n=0,1,2, \ldots$, be a Lehmer sequence defined by $L_{n}=\left(\alpha^{n}-\right.$ $\left.\beta^{n}\right) /(\alpha-\beta)$ for n odd and $L_{n}=\left(\alpha^{n}-\beta^{n}\right) /\left(\alpha^{2}-\beta^{2}\right)$ for n even, where $(\alpha+\beta)^{2}=A$ and $\alpha \beta=-B$ are fixed rational integers and $|\alpha| \geq|\beta|$. Let m be an integer >1 and define the sequence $\left(M_{n}\right)$ of integers by $M_{n}=L_{m n} / L_{n}$ for $n>0$. We prove that $$
\frac{\log \left|M_{1} \cdot M_{2} \cdots M_{N}\right|}{\log \left[M_{1}, M_{2}, \ldots, M_{N}\right]}=\frac{m-1}{6(1-w)\left(m-\prod_{p \mid m} \frac{p}{p+1}\right)} \pi^{2}+O\left(\frac{\log N}{N}\right)
$$ for sufficiently large N, where $w=\log ((A, B)) / 2 \cdot \log |\alpha|$ and $\left[M_{1}, M_{2}, \ldots\right]$ denotes the least common multiple of M_{1}, M_{2}, \ldots. This result is a generalization and an improvement of a formula given by J. P. BÉzivin.

1. Introduction

Let $R_{n},(n=0,1,2, \ldots)$, be a second order linear recursive sequence of integers defined by

$$
R_{n}=C \cdot R_{n-1}+D \cdot R_{n-2} \quad(n>1),
$$

where $R_{0}=0, R_{1}=1$ and C, D are given non-zero integer parameters with $C^{2}+4 D \neq 0$. If γ and δ are the roots of the polynomial $x^{2}-C x-D$ then, as it is well known,

$$
R_{n}=\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta}
$$

for any $n \geq 0$. We assume $|\gamma| \geq|\delta|$ and γ / δ is not a root of unity, i.e. the sequence is not degenerate. For $C=D=1$ the sequence is the Fibonacci sequence and we denote it by u_{n}.

[^0] for Scientific Research and the National Scientific and Engineering Research Canada.

For the Fibonacci sequence Y. V. Matiyasevich and R. K. Guy [6] proved that

$$
\lim _{n \rightarrow \infty} \sqrt{\frac{6 \cdot \log \left(u_{1} \cdot u_{2} \cdots u_{n}\right)}{\log \left[u_{1}, u_{2}, \ldots, u_{n}\right]}}=\pi
$$

where $\left[u_{1}, u_{2}, \ldots\right]$ denotes the least common multiple of the numbers u_{1}, u_{2}, \ldots. For general second order recurrences with $(C, D)=1$, P. Kiss and F. MÁtyÁs [4] obtained a similar result with error term which was improved, for any C, D, by S. Akiyama [1] showing that

$$
\begin{equation*}
\left(\frac{6\left(1-w^{\prime}\right) \cdot \log \left|R_{1} \cdot R_{2} \cdots R_{N}\right|}{\log \left[R_{1}, R_{2}, \ldots, R_{N}\right]}\right)^{1 / 2}=\pi+0\left(\frac{1}{\log N}\right) \tag{1}
\end{equation*}
$$

for any sufficiently large N, where $w^{\prime}=\frac{\log \left(\left(C^{2}, D\right)\right)}{2 \cdot \log |\gamma|}$.
J. P. BÉzivin [2] investigated another type of sequence. Let $m>1$ be a given integer and let $G_{n}, n=0,1,2, \ldots$, be a sequence defined by

$$
G_{n}=\frac{R_{m n}}{R_{n}}=\frac{\gamma^{m n}-\delta^{m n}}{\gamma^{n}-\delta^{n}}
$$

It is easy to see that the terms of this sequence are also integers and that the terms satisfy a linear recurrence relation of order m. Bézivin proved that if $(C, D)=1$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\log \left|G_{1} \cdot G_{2} \cdots G_{n}\right|}{\log \left[G_{1}, G_{2}, \ldots, G_{n}\right]}=\frac{(m-1) \cdot \prod_{p \mid m}\left(1-\frac{1}{p^{2}}\right)}{6 \cdot \sum_{\substack{d \mid m \\ d>1}} \varphi(d) \cdot \varphi\left(\frac{m}{d}\right) \cdot \frac{d}{m}} \pi^{2} \tag{2}
\end{equation*}
$$

where φ is Euler's function.
In this paper we extend Bézivin's result to more general sequences and give an error term for the limit.

Let A and B be non-zero integers with $A+4 B \neq 0$ and denote by α, β the roots of the polynomial $x^{2}-\sqrt{A} x-B$. The sequence $L_{n},(n=$ $0,1,2, \ldots)$, defined by

$$
L_{n}=\left\{\begin{array}{cc}
\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} & \text { for } n \text { odd } \tag{3}\\
\frac{\alpha^{n}-\beta^{n}}{\alpha^{2}-\beta^{2}} & \text { for } n \text { even }
\end{array}\right.
$$

is called a Lehmer sequence, or sequence of Lehmer numbers, with parameters A, B. It can be seen that the terms of this sequence are integers since
$(\alpha+\beta)^{2}$ and $\alpha \beta$ are integers. Furthermore $L_{n} \neq 0$ for $n>0$ if α / β is not a root of unity and L_{i} is divisible by L_{j} if $j \mid i$.

We will prove
Theorem. Let $A \neq 0, B \neq 0$ and $m>1$ be given integers with $A+4 B \neq 0$. Let L_{n} be a Lehmer sequence with parameters A, B and suppose that α / β is not a root of unity and that $|\alpha| \geq|\beta|$. Further let M_{n} be a sequence of integers defined by

$$
M_{n}=\frac{L_{m n}}{L_{n}} \quad(n>0)
$$

Then

$$
\begin{equation*}
\frac{\log \left|M_{1} \cdot M_{2} \cdots M_{N}\right|}{\log \left[M_{1}, M_{2}, \ldots, M_{N}\right]}=\frac{m-1}{6(1-w) \cdot\left(m-\prod_{p \mid m} \frac{p}{p+1}\right)} \pi^{2}+O\left(\frac{\log N}{N}\right) \tag{4}
\end{equation*}
$$

for any sufficiently large N, where $w=\frac{\log ((A, B))}{2 \cdot \log |\alpha|}$.
This theorem remains valid if we replace L_{n} by a general second order linear recurrence.

Corollary. Let R_{n} be a non degenerate second order linear recurrence defined by parameters C, D and initial terms $R_{0}=0$ and $R_{1} \neq 0$. Let $m>1$ be a fixed integer and define a sequence M_{n} of integers by

$$
M_{n}=\frac{R_{m n}}{R_{n}} \quad(n>0)
$$

Then for this sequence M_{n} estimate (4) also holds with $w=\left(\log \left(C^{2}, D\right)\right) /$ $(2 \cdot \log |\gamma|)$.

Remark 1. We note that, using (4), we can give an asymptotic formula for the number π similar to (1) but with a better error term.

Remark 2. From estimate (4), limit (2) also follows since $w=0$ if A and B (or C and D) are relatively prime. It can be seen that

$$
\left(\sum_{\substack{d \mid m \\ d>1}} \varphi(d) \cdot \varphi\left(\frac{m}{d}\right) \cdot \frac{d}{m}\right) \cdot \prod_{p \mid m} \frac{p^{2}}{p^{2}-1}=m-\prod_{p \mid m} \frac{p}{p+1}
$$

for any $m>1$.

2. Auxiliary results concerning Lehmer numbers

In the proof of our Theorem we use some properties of Lehmer numbers. Most of these properties were obtained by D. H. Lehmer in [5].

Let L_{n} be a non degenerate Lehmer sequence with parameters A and B. Assume that $|\alpha| \geq|\beta|$. If p is a prime and $p \nmid B$, then there are terms in the sequence divisible by p. We denote by $r(p)$ the rank of apparition of p in the sequence L_{n}, i.e. $r(p)>0$ is a natural number for which $p \mid L_{r(p)}$ but $p \nmid L_{n}$ for $0<n<r(p)$. Let $e(p)$ be the exponent of p for which $p^{e(p)} \mid L_{r(p)}$ but $p^{e(p)+1} \nmid L_{r(p)}$.

Lemma 1. For any prime p with $p \nmid B$ and any integer $k \geq 0$, $p^{e(p)+k} \mid L_{n}$ if and only if $p^{k} \cdot r(p) \mid n$. (See [5]).

Lemma 2. For any prime p with $p \nmid B$ we have $r(p) \leq p+1$, (See [5]).
Lemma 3. If p is a prime, $p \mid B$ and $p \nmid A$, then $p \nmid L_{n}$ for any $n>0$, (See [5]).

If $n=r(p)$ for some prime p, then we say $p^{e(p)}$ is a primitive prime power divisor of the Lucas number L_{n}. In the following we shall denote the product of the primitive prime power divisors of a Lehmer number L_{n} by $P P\left(L_{n}\right)$,

$$
P P\left(L_{n}\right)=\prod_{r(p)=n} p^{e(p)}
$$

For the primitive part of the Lehmer numbers we have
Lemma 4. If $(A, B)=1$ and $n>12$, then

$$
\log \left(P P\left(L_{n}\right)\right)=\varphi(n) \cdot \log |\alpha|+\sum_{t \mid n} \mu(t) \cdot \log \left|1-\left(\frac{\beta}{\alpha}\right)^{n / t}\right|+O(\log n)
$$

where φ and μ are the Euler and Möbius functions.
Proof. Let $\Phi_{n}(\alpha, \beta)$ denote the $n^{\text {th }}$ cyclotomic polynomial in α and β for any integer $n>1$ and pair α, β of complex numbers, that is

$$
\Phi_{n}(\alpha, \beta)=\prod_{t \mid n}\left(\alpha^{n / t}-\beta^{n / t}\right)^{\mu(t)}
$$

From some results of C. L. Stewart (Lemma 6 and 7 in [7]), for $n>12$ we have

$$
P P\left(L_{n}\right)=\lambda_{n}\left|\Phi_{n}(\alpha, \beta)\right|,
$$

where $\lambda_{n}=1$ or $\lambda_{n}=1 / P(n /(3, n))$ and $P(N)$ denotes the greatest prime divisor of the natural number N. From these equations

$$
\begin{aligned}
& \log \left(P P\left(L_{n}\right)\right)=\sum_{t \mid n} \mu(t) \cdot \log \left|\alpha^{n / t}-\beta^{n / t}\right|+\log \lambda_{n}= \\
& \quad=\sum_{t \mid n} \mu(t) \cdot \frac{n}{t} \cdot \log |\alpha|+\sum_{t \mid n} \mu(t) \cdot \log \left|1-\left(\frac{\beta}{\alpha}\right)^{n / t}\right|+\log \lambda_{n}
\end{aligned}
$$

follows. It implies the lemma since

$$
\log \lambda_{n}=O(\log n)
$$

and, as it is well known,

$$
\sum_{t \mid n} \mu(t) \cdot \frac{n}{t}=\varphi(n)
$$

We note that this lemma also follows from the lemmas of [3].
We give an estimate for the product of the terms of the sequence defined in the Theorem.

Lemma 5. Let M_{n} be the sequence defined in the theorem. Then

$$
\log \left|M_{1} \cdot M_{2} \cdots M_{N}\right|=\frac{(m-1) \cdot \log |\alpha|}{2} N^{2}+O(N \cdot \log N)
$$

for any sufficiently large N.
Proof. From (3) and a result of C.L. Stewart (Lemma 6 in [8])

$$
\left|L_{n}\right|=|\alpha|^{n+O(\log n)}
$$

follows, for any sufficiently large n. But them

$$
\begin{aligned}
\log \left|M_{1} \cdot M_{2} \cdots M_{N}\right| & =\sum_{n=1}^{N} \log \left(|\alpha|^{(m-1) n+O(\log n)}\right)= \\
& =\log |\alpha| \cdot(m-1) \frac{N(N+1)}{2}+\sum_{n=1}^{N} O(\log n)= \\
& =\frac{(m-1) \cdot \log |\alpha|}{2} N^{2}+O(N \cdot \log N)
\end{aligned}
$$

since

$$
\sum_{n=1}^{N} \log (n)=\log (N!)=O(N \cdot \log N)
$$

3. An asymptotic formula for Euler's φ function

We establish an estimate concerning Euler's φ function which we need in the proof of our Theorem.

Lemma 6. For any fixed positive integer m we hawe

$$
\sum_{n \leq x} \varphi(m n)=\frac{3 m}{\pi^{2}}\left(\prod_{p \mid m} \frac{p}{p+1}\right) x^{2}+O(x \cdot \log x)
$$

if x is sufficiently large.
Proof. First let $m=p$ where p is a prime. Then

$$
\begin{aligned}
\sum_{n \leq x} \varphi(p n) & =(p-1) \sum_{\substack{n \leq x \\
p \nmid n}} \varphi(n)+p \sum_{\substack{n \leq x \\
p\rceil n}} \varphi(n)= \\
& =p \sum_{n \leq x} \varphi(n)-\sum_{\substack{n \leq x \\
p \nmid n}} \varphi(n)=p \sum_{n \leq x} \varphi(n)-\sum_{n \leq x} \varphi(n)+\sum_{\substack{n \leq x \\
p\rceil n}} \varphi(n) \\
& =(p-1) \sum_{n \leq x} \varphi(n)+\sum_{n \leq \frac{x}{p}} \varphi(p n) .
\end{aligned}
$$

Continuing this process and using the estimation

$$
\begin{equation*}
\sum_{n \leq x} \varphi(n)=\frac{3}{\pi^{2}} x^{2}+O(x \cdot \log x) \tag{5}
\end{equation*}
$$

with a suitable integer k we get

$$
\begin{align*}
& \sum_{n \leq x} \varphi(p n)=(p-1) \sum_{i=0}^{k-1} \sum_{n \leq \frac{x}{p^{i}}} \varphi(n)+\sum_{n \leq \frac{x}{p^{k}}} \varphi(p n)= \tag{6}\\
& \quad=\frac{3(p-1)}{\pi^{2}}\left(\sum_{i=0}^{k-1} \frac{x^{2}}{p^{2 i}}+O\left(\sum_{i=0}^{k-1} \frac{x}{p^{i}} \cdot \log \left(x / p^{i}\right)\right)\right)+O\left(\frac{x^{2}}{p^{2 k}}\right) .
\end{align*}
$$

Define k by

$$
p^{k-1} \leq \sqrt{\frac{x}{\log x}}<p^{k}
$$

Then for any sufficiently large x

$$
\frac{x^{2}}{p^{2 k}}=O(x \cdot \log x),
$$

and

$$
\sum_{i=0}^{k-1} \frac{x^{2}}{p^{2 i}}=x^{2} \cdot \frac{1-\frac{1}{p^{2 k}}}{1-\frac{1}{p^{2}}}=\frac{p^{2}}{p^{2}-1} x^{2}+O(x \cdot \log x)
$$

and

$$
\sum_{i=0}^{k-1} \frac{x}{p^{i}} \log \left(x / p^{i}\right)=O(x \cdot \log x)
$$

So by (6)

$$
\begin{align*}
\sum_{n \leq x} \varphi(p n) & =\frac{3(p-1)}{\pi^{2}} \cdot \frac{p^{2}}{p^{2}-1} x^{2}+O(x \cdot \log x)= \tag{7}\\
& =\frac{3 p}{\pi^{2}} \cdot \frac{p}{p+1} x^{2}+O(x \cdot \log x)
\end{align*}
$$

which establishes the validity of the lemma for $m=p$.
If m is a prime power, $m=p^{e}$ with $e \geq 1$, then

$$
\begin{align*}
\sum_{n \leq x} \varphi\left(p^{e} n\right) & =\left(p^{e}-p^{e-1}\right) \cdot \sum_{\substack{n \leq x \\
p \nmid n}} \varphi(n)+p^{e} \sum_{\substack{n \leq x \\
p \backslash n}} \varphi(n)= \tag{8}\\
& =p^{e} \sum_{n \leq x} \varphi(n)-p^{e-1}\left(\sum_{n \leq x} \varphi(n)-\sum_{\substack{n \leq x \\
n \backslash n}} \varphi(n)\right)= \\
& =\left(p^{e}-p^{e-1}\right) \sum_{n \leq x} \varphi(n)+p^{e-1} \sum_{n \leq \frac{x}{p}} \varphi(p n)
\end{align*}
$$

From this, using (7) and (5), we get

$$
\begin{aligned}
\sum_{n \leq x} \varphi\left(p^{e} n\right) & =\frac{3 p^{e-1}(p-1)}{\pi^{2}} x^{2}+\frac{3 p^{e+1}}{\pi^{2}(p+1)}\left(\frac{x}{p}\right)^{2}+O(x \cdot \log x)= \\
& =\frac{3 p^{e}}{\pi^{2}} \cdot \frac{p}{p+1} x^{2}+O(x \cdot \log x)
\end{aligned}
$$

So the lemma holds if m is a prime power.
Now suppose that the lemma is true for some integer m and let q^{e} be a prime power for which $q \nmid m$. Then

$$
\sum_{n \leq x} \varphi\left(m q^{e} n\right)=\left(q^{e}-q^{e-1}\right) \sum_{\substack{n \leq x \\ q \nmid n}} \varphi(m n)+q^{e} \sum_{\substack{n \leq x \\ q \mid n}} \varphi(m n)=
$$

$$
\begin{aligned}
& =q^{e} \sum_{n \leq x} \varphi(m n)-q^{e-1} \sum_{n \leq x} \varphi(m n)+q^{e-1} \sum_{\substack{n \leq x \\
q \mid n}} \varphi(m n)= \\
& =\left(q^{e}-q^{e-1}\right) \sum_{n \leq x} \varphi(m n)+q^{n-1} \sum_{n \leq \frac{x}{q}} \varphi(m q n)= \\
& =\left(q^{e}-q^{e-1}\right) \sum_{n \leq x} \varphi(m n)+\sum_{n \leq \frac{x}{q}} \varphi\left(m q^{e} n\right) .
\end{aligned}
$$

From this, similarly as above, with an integer k we get

$$
\begin{equation*}
\sum_{n \leq x} \varphi\left(m q^{e} n\right)=\left(q^{e}-q^{e-1}\right) \cdot \sum_{i=0}^{k-1} \sum_{n \leq \frac{x}{q^{i}}} \varphi(m n)+\sum_{n \leq \frac{x}{q^{k}}} \varphi\left(m q^{e} n\right) \tag{9}
\end{equation*}
$$

If k is determined by $q^{k-1} \leq \sqrt{\frac{x}{\log x}}<q^{k}$, then by our assumption

$$
\begin{aligned}
\sum_{i=0}^{k-1} \sum_{n \leq \frac{x}{q^{i}}} \varphi(m n) & =\frac{3 m}{\pi^{2}}\left(\prod_{p \mid m} \frac{p}{p+1}\right) \cdot \sum_{i=0}^{k-1} \frac{x^{2}}{q^{2 i}}+O\left(\sum_{i=0}^{k-1} \frac{x}{q^{i}} \log \frac{x}{q_{i}}\right)= \\
& =\frac{3 m}{\pi^{2}}\left(\prod_{p \mid m} \frac{p}{p+1}\right) x^{2} \cdot \frac{q^{2}}{q^{2}-1}+0(x \cdot \log x)
\end{aligned}
$$

and also

$$
\sum_{n \leq \frac{x}{q^{k}}} \varphi\left(m q^{e} n\right)=O\left(\frac{x^{2}}{q^{2 k}}\right)=O(x \cdot \log x)
$$

follows. So by (9)

$$
\sum_{n \leq x} \varphi\left(m q^{e} n\right)=\frac{3 m q^{e}}{\pi^{2}}\left(\frac{q}{q+1} \cdot \prod_{p \mid m} \frac{p}{p+1}\right) x^{2}+O(x \cdot \log x)
$$

from which we get the lemma by mathematical induction.
Lemma 7. Let $Q \geq 1$ be a given integer. Then

$$
\sum_{\substack{n \leq x \\(Q, n)=1}} \varphi(n)=\frac{3}{\pi^{2}}\left(\prod_{p \mid Q} \frac{p}{p+1}\right) x^{2}+O(x \cdot \log x)
$$

for any sufficiently large x.
Proof. If $Q=p^{e}$ is a prime power, then by Lemma 6 and the first equality in (8) with $e=1$ we have

$$
\begin{aligned}
\sum_{\substack{n \leq x \\
(Q, n)=1}} \varphi(n) & =\sum_{\substack{n \leq x \\
p \nmid n}} \varphi(n)=\frac{1}{p-1}\left(\sum_{n \leq x} \varphi(p n)-p \cdot \sum_{\substack{n \leq x \\
p \backslash n}} \varphi(n)\right)= \\
& =\frac{1}{p-1}\left(\sum_{n \leq x} \varphi(p n)-p \cdot \sum_{n \leq \frac{x}{p}} \varphi(p x)\right)= \\
& =\frac{1}{p-1} \cdot \frac{3}{\pi^{2}}\left(\frac{p^{2}}{p+1} x^{2}-\frac{p^{3}}{p+1}\left(\frac{x}{p}\right)^{2}\right)+O(x \cdot \log x)= \\
& =\frac{3}{\pi^{2}} \cdot \frac{p}{p+1} x^{2}+O(x \cdot \log x)
\end{aligned}
$$

Thus the lemma holds if Q has only one prime factor. From this we can complete the proof by induction on the number of prime divisors of Q, similar to what was done in the proof of Lemma 6.

Lemma 8. Let $m \geq 1$ and $Q \geq 1$ be integers for which $(m, Q)=1$. Then

$$
\sum_{\substack{n \leq x \\(Q, n)=1}} \varphi(m n)=\frac{3 m}{\pi^{2}}\left(\prod_{p \mid m Q} \frac{p}{p+1}\right) x^{2}+O(x \cdot \log x)
$$

Proof. First let $Q=q^{e}$, i.e. Q is a power of a prime q. Then by Lemma 6 we have

$$
\begin{gathered}
\sum_{\substack{n \leq x \\
(Q, n)=1}} \varphi(m n)=\sum_{\substack{n \leq x \\
q \nmid n}} \varphi(m n)=\sum_{n \leq x} \varphi(m n)-\sum_{n \leq \frac{x}{q}} \varphi(m q n)= \\
=\frac{3 m}{\pi^{2}}\left(\prod_{p \mid m} \frac{p}{p+1}\right) x^{2}-\frac{3 m q}{\pi^{2}}\left(\prod_{p \mid m q} \frac{p}{p+1}\right) \frac{x^{2}}{q^{2}}+O(x \cdot \log x)= \\
=\frac{3 m}{\pi^{2}}\left(\prod_{p \mid m q} \frac{p}{p+1}\right) x^{2}+O(x \cdot \log x)
\end{gathered}
$$

and so the lemma is true if Q has only one prime factor. From this the lemma follows by induction on the number of prime factors of Q.

4. Proof of the theorem

Let $L_{n},(n=0,1,2, \ldots)$ and $M_{n},(n=1,2, \ldots)$ be the sequences mentioned in the statement of the theorem.

If $z=(A, B)$ and $A=z A_{1}, B=z B_{1}$ with $\left(A_{1}, B_{1}\right)=1$, then for the roots of the characteristic polynomial $x^{2}-\sqrt{A} \cdot x-B$ of L_{n} we have

$$
\alpha=\frac{\sqrt{A}+\sqrt{A+4 B}}{2}=\sqrt{z} \cdot \frac{\sqrt{A_{1}}+\sqrt{A_{1}+4 B_{1}}}{2}=\sqrt{z} \alpha_{1}
$$

and

$$
\beta=\sqrt{z} \frac{\sqrt{A_{1}}-\sqrt{A_{1}+4 B_{1}}}{2}=\sqrt{z} \beta_{1}
$$

and so by (3)

$$
L_{n}= \begin{cases}\sqrt{z}^{n-1} \cdot L_{n}^{\prime}, & \text { for } n \text { odd } \\ \sqrt{z}^{n-2} \cdot L_{n}^{\prime}, & \text { for } n \text { even }\end{cases}
$$

where L_{n}^{\prime} is a Lehmer sequenced defined by relatively prime parameters A_{1}, B_{1}. For the sequence M_{n} we get

$$
\begin{equation*}
M_{n}=\frac{L_{m n}}{L_{n}}=\sqrt{z}^{(m-1) n+\varepsilon} \cdot \frac{L_{m n}^{\prime}}{L_{n}^{\prime}} \tag{10}
\end{equation*}
$$

where $\varepsilon=0$ or $\varepsilon=-1$ ($\varepsilon=-1$ if m is even and n is odd $)$. Let

$$
M_{n}^{\prime}=\frac{L_{m n}^{\prime}}{L_{n}^{\prime}} \quad(\text { for } n=1,2, \ldots)
$$

If $p \mid M_{n}^{\prime}$ for an integer $n \geq 1$ and $p>m$, then by Lemmas 1 and 3, $r(p) \mid m n$ and $r(p) \nmid n$, so $p^{e(p)} \mid M_{n}^{\prime}$ and $\left(r(p)\right.$ is of the form $r(p)=d \cdot n^{\prime}$, where $d \mid m, d>1$. Furthermore if $r(p)$ is of the form $r(p)=d \cdot n^{\prime}$ with $p>m, d \mid m, d>1$, then $p^{e(p)} \mid M_{n}^{\prime}$, and if $p^{e(p)+k} \mid M_{n}^{\prime}$, for some $n \geq 1$ and $k \geq 0$, then $p^{k} \mid n$.

Let N be a sufficiently integer and let

$$
\begin{equation*}
M(N)=\left[M_{1}^{\prime}, M_{2}^{\prime}, \ldots, M_{N}^{\prime}\right]=P_{1}(N) \cdot P_{2}(N) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{1}(N)=\prod_{\substack{p \mid M(N) \\ p>m}} p^{e(p)+k(p)}=\left(\prod_{\substack{p \mid M(N) \\ p>m}} p^{e(P)}\right) \cdot\left(\prod_{\substack{p \mid M(N) \\ p>m}} p^{k(p)}\right) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}(N)=\prod_{\substack{p \mid M(N) \\ p \leq m}} p^{f(p)} \tag{13}
\end{equation*}
$$

First we give an estimation for the logarithm of the first product in (12). By the above mentioned results, using Lemma 4, we have

$$
\begin{gather*}
\log \left(\prod_{\substack{p \mid M(N) \\
p>m}} p^{e(p)}\right)=\log \left(\prod_{\substack{d \mid m \\
d>1 \\
n \leq N}} P P\left(L_{d n}^{\prime}\right)\right)= \tag{14}\\
=\left(\log \left|\alpha_{1}\right|\right) \cdot \sum_{\substack{d \mid m \\
d>1 \\
n \leq N}} \varphi(d n)+\sum_{\substack{d \mid m \\
d>1 \\
n \leq N}} \sum_{t \mid d n} \mu(d) \cdot \log \left(1-\left(\frac{\beta}{\alpha}\right)^{\frac{d n}{t}}\right)+ \\
+O\left(\sum_{\substack{d \mid m \\
n \leq N}} \log (d n)\right)
\end{gather*}
$$

where we assume that the divisors $d n$ are distinct. Let

$$
m=\prod_{i=1}^{s} p_{1}^{c_{i}}
$$

and let S_{1} and S_{2} be sets of integers defined by

$$
S_{1}=\{d n: d \mid m, d>1,(m, n)=1, n \leq N\}
$$

and

$$
S_{2}=\left\{d n: d\left|m, d>1, p_{i}^{c_{i}+1}\right| d n \quad \text { for some } \quad i, n \leq N\right\}
$$

Then

$$
\begin{equation*}
\sum_{\substack{d \mid m \\ d>1 \\ n \leq N}} \varphi(d n)=\sum_{d n \in S_{1}} \varphi(d n)+\sum_{d n \in S_{2}} \varphi(d n) \tag{15}
\end{equation*}
$$

By Lemma 7, using

$$
\begin{equation*}
\sum_{d \mid m} \varphi(d)=m \tag{16}
\end{equation*}
$$

we get

$$
\begin{align*}
\sum_{d n \in S_{1}} \varphi(d n)=\left(\sum_{\substack{d \mid m \\
d>1}} \varphi(d)\right) \cdot & \sum_{\substack{n \leq N \\
(m, n)=1}} \varphi(n)= \tag{17}\\
& =\frac{3(m-1)}{\pi^{2}}\left(\prod_{p \mid m} \frac{p}{p+1}\right) N^{2}+O(N \cdot \log N)
\end{align*}
$$

Let $d n \in S_{2}$. Then $d n=p_{i_{1}}^{c_{i_{1}}+1} \cdots p_{i_{j}}^{c_{i_{j}}+1} \cdot d^{\prime} \cdot n^{\prime}$ for some j with $1 \leq j \leq s$, where $\left\{p_{i_{1}}, \ldots, p_{i_{j}}\right\} \subseteq\left\{p_{1}, \ldots, p_{s}\right\}$, and d^{\prime} is a divisor of $\frac{m}{p_{i_{1}}^{c_{i_{1}}} \ldots p_{i_{j}}^{c_{i_{j}}}}=m^{\prime}$ $\left(m^{\prime}, n^{\prime}\right)=1$ and $n^{\prime} \leq \frac{N}{p_{i_{1}} \ldots p_{i_{j}}}=N^{\prime}$. By (16) and Lemma 8 we have

$$
\begin{gathered}
\sum_{d^{\prime} \mid m^{\prime}}\left(\sum_{\substack{n^{\prime} \leq N^{\prime} \\
\left(m^{\prime}, n^{\prime}\right)=1}} \varphi\left(p_{i_{1}}^{c_{i_{1}}+1} \ldots p_{i_{j}}^{c_{i_{j}}+1} \cdot d^{\prime} n^{\prime}\right)\right)= \\
=\left(\sum_{d^{\prime} \mid m^{\prime}} \varphi\left(d^{\prime}\right)\right)\left(\frac{3 p_{i_{1}}^{c_{i_{1}}+1} \ldots p_{i_{j}}^{c_{i_{j}}+1}}{\pi^{2}}\left(\prod_{p \mid m} \frac{p}{p+1}\right) \cdot \frac{N^{2}}{\left(p_{i_{1}} \ldots p_{i_{j}}\right)^{2}}\right)+ \\
+O(N \cdot \log N)=\frac{3 m}{\pi^{2}} \cdot \frac{1}{p_{i_{1}} \cdots p_{i_{j}}} \cdot\left(\prod_{p \mid m} \frac{p}{p+1}\right) N^{2}+O(N \cdot \log N)
\end{gathered}
$$

and so

$$
\begin{align*}
& \sum_{d n \in S_{2}} \varphi(d n)= \tag{18}\\
& \quad=\frac{3 m}{\pi^{2}}\left(\prod_{p \mid m} \frac{p}{p+1}\right)\left(\sum_{j=1}^{s} \sum_{C_{j}} \frac{1}{p_{i_{1} \ldots p_{i_{j}}}}\right) N^{2}+O(N \cdot \log N)
\end{align*}
$$

where C_{j} denotes the extended summation over all j tuples of primes p_{1}, \ldots, p_{s}. But

$$
\begin{equation*}
\sum_{j=1}^{s} \sum_{C_{j}} \frac{1}{p_{i_{1}} \ldots p_{i_{j}}}=\prod_{p \mid m}\left(1+\frac{1}{p}\right)-1=\prod_{p \mid m} \frac{p+1}{p}-1 \tag{19}
\end{equation*}
$$

thus by (15), (17), (18) and (19) we get

$$
\begin{equation*}
\sum_{\substack{d \mid m \\ d>1 \\ n \leq N}} \varphi(d n)= \tag{20}
\end{equation*}
$$

$$
=\frac{3 N^{2}}{\pi^{2}}\left((m-1)\left(\prod_{p \mid m} \frac{p}{p+1}\right)+m-m \cdot \prod_{p \mid m} \frac{p}{p+1}\right)+O(N \cdot \log N)
$$

$$
=\frac{3}{\pi^{2}}\left(m-\prod_{p \mid m} \frac{p}{p+1}\right) N^{2}+O(N \cdot \log N)
$$

On the other hand

$$
O\left(\sum_{\substack{d \mid n \\ n \leq N}} \log d n\right)=O(\log (N!))=O(N \cdot \log N)
$$

and using an estimation like one in [3], we get

$$
\sum_{\substack{d \mid m \\ d>1 \\ n \leq N}} \sum_{t \mid d n} \mu(t) \cdot \log \left(1-\left(\frac{\beta}{\alpha}\right)^{\frac{d n}{t}}\right)=O(N \cdot \log N)
$$

and so by (14) and (20)
(21) $\log \left(\prod_{\substack{p \mid M(N) \\ p>m}} p^{e(p)}\right)=\frac{3 \cdot \log \left|\alpha_{1}\right|}{\pi^{2}}\left(m-\prod_{p \mid m} \frac{p}{p+1}\right) N^{2}+O(N \cdot \log N)$
follows.
Now we consider the second product in (12). If $p \mid M(N)$ and $k(p) \geq 1$ for a prime p, then by Lemma 1 there is an integer $n \leq m N$ for which $p^{k(p)} r(p) \mid n$. But by Lemma $2 p \geq r(p)-1$ and so $p^{k(p)} r(p) \geq(r(p)-1)$. $r(p)>m N$ if $r(p) \geq \sqrt{m N}+1$. From this $k(p)=0$ follows for primes p for which $r(p) \geq \sqrt{m N}+1$ and we have

$$
\begin{equation*}
\log \left(\prod_{\substack{p \mid M(N) \\ p>m}} p^{k(p)}\right)=\log \left(\prod_{\substack{r(p) \leq \sqrt{m N} \\ p>m}} p^{k(p)}\right)+O(\log N) . \tag{22}
\end{equation*}
$$

If $k(p) \geq 1$ and $p^{e(p)+k(p)} \mid L_{n}^{\prime}$ for some $0<n<m N$, then $p^{k(p)} \mid n$ and $k(p) \cdot \log p \leq \log (m N)$. This implies the estimate

$$
\begin{equation*}
\log \left(\prod_{\substack{r(p) \leq \sqrt{m N} \\ p>m}} p^{k(p)}\right) \leq \sum_{\substack{p \\ r(p) \leq \sqrt{m N}}} \log m N=(\log m N) \cdot \sum_{r(p) \leq \sqrt{m N}} 1 \tag{23}
\end{equation*}
$$

But there are $O(n / \log n)$ primes p for which $r(p)=n$ and so

$$
\begin{equation*}
\sum_{\substack{p \\ r(p) \leq \sqrt{m N}}} 1=O\left(\sum_{n \leq \sqrt{m N}} \frac{n}{\log n}\right)=O\left(\frac{N}{\log N}\right) \tag{24}
\end{equation*}
$$

From (22), (23) and (24) we get

$$
\begin{equation*}
\log \left(\prod_{\substack{p \mid M(N) \\ p>m}} p^{k(p)}\right)=O(N) \tag{25}
\end{equation*}
$$

If p is a prime, $p<m$ and $p^{f(p)} \mid M(N)$ to some exponent $f(p)$, then $p^{f(p)}=O\left(|\alpha|^{m N}\right)$ and $f(p) \cdot \log p=O(N)$. So by (13)

$$
\begin{equation*}
\log P_{2}(N)=O(N) \tag{26}
\end{equation*}
$$

follows.
From (11), (12), (21), (25) and (26) we get the estimate

$$
\log M(N)=\frac{3 \cdot \log \left|\alpha_{1}\right|}{\pi^{2}}\left(m-\prod_{p \mid m} \frac{p}{p+1}\right) N^{2}+O(N \cdot \log N)
$$

But then by (10) we have

$$
\begin{aligned}
\log \left[M_{1}, M_{2}, \ldots, M_{N}\right] & =\log M(N)+O(N)= \\
= & \frac{3 \cdot \log \left|\alpha_{1}\right|}{\pi^{2}}\left(m-\prod_{p \mid m} \frac{p}{p+1}\right) N^{2}+O(N \log N)
\end{aligned}
$$

From this, by Lemma 5, the theorem follows since $\alpha=\sqrt{z} \alpha_{1}$ and hence

$$
\frac{\log |\alpha|}{\log \left|\alpha_{1}\right|}=\frac{1}{1-\frac{\log z}{2 \cdot \log |\alpha|}}
$$

The Corollary follows from the theorem since the sequence R_{n} is almost a Lehmer sequence with parameters $A=C^{2}, B=D$. Multiplication of the terms by R_{1} and sometimes by C introduces only $O(N)$ error in our estimations.

References

[1] S. Akiyama, Lehmer numbers and an asymptotic formula for π, J. Number Theory 36 (1990), 328-331.
[2] J.P. BÉzivin, Plus petit commun multiple des termes consécutifs d'une suite récurrente linéaire, Collect. Math. 40 (1989), 1-11.
[3] P. Kiss, Primitive divisors of Lucas numbers, Applications of Fibonacci Numbers (A.N Philippou et al., Eds.),, Kluwer Acad. Publ., 1988, pp. 29-38.
[4] P. Kiss and F. MÁtyás, An asymptotic formula for π, J. Number Theory 31 (1989), 255-259.
[5] D.H. Lehmer, An extended theory of Lucas functions, Ann. of Math. 31 (1930), 419-448.
[6] Y.V. Matiyasevič and R.K. Guy, A new formula for π, Amer. Math. Monthly 93 (1986), 631-635.
[7] C.L. Stewart, On divisors of Fermat, Fibonacci, Lucas and Lehmer numbers, Proc. London Math. Soc. 35 (1977), 425-447.
[8] C.L. Stewart, On divisors of terms of linear recurrence sequences, J. für Reine und Angew. Math. 333 (1982), 12-31.

```
JAMES P. JONES
DEPARTMENT OF MATHEMATICS AND STATISTICS
THE UNIVERSITY OF CALGARY
2500 UNIVERSITY DRIVE N.W.
CALGARY, ALBERTA, T2N 1N4
CANADA
PÉTER KISS
DEPARTMENT OF MATHEMATICS
ESZTERHÁZY KÁROLY UNIVERSITY
LEÁNYKA U. 4
3301 EGER
HUNGARY
```


[^0]: Research supported (partially) by the Hungarian National Foundation (Grant \#1641)

