Year: 2020 | Vol.: 96 | Fasc.: 3-4

Title: On k-antichains in the unit n-cube

Author(s): Christos Pelekis and Václav Vlasák

A chain in the unit *n*-cube is a set $C \subset [0,1]^n$ such that for every $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{y} = (y_1, \ldots, y_n)$ in C, we either have $x_i \leq y_i$ for all $i \in [n]$, or $x_i \geq y_i$ for all $i \in [n]$. We consider subsets A, of the unit *n*-cube $[0,1]^n$, that satisfy

 $\operatorname{card}(A \cap C) \le k$, for all chains $C \subset [0, 1]^n$,

where k is a fixed positive integer. We refer to such a set A as a k-antichain. We show that the (n-1)-dimensional Hausdorff measure of a k-antichain in $[0,1]^n$ is at most kn and that the bound is asymptotically sharp. Moreover, we conjecture that there exist k-antichains in $[0,1]^n$ whose (n-1)-dimensional Hausdorff measure equals kn, and we verify the validity of this conjecture when n = 2.

Address:

Christos Pelekis Institute of Mathematics Czech Academy of Sciences Žitná 25 115 67 Praha 1 Czech Republic

Address:

Václav Vlasák Faculty of Mathematics and Physics Charles University Sokolovská 83 18675 Praha 8 Czech Republic