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Ω-nets, Scott open sets and topologies
on function spaces

By S. D. ILIADIS (Patras) and B. K. PAPADOPOULOS (Xanthi)

Introduction

In this paper we show that the basic results concerning the Scott
open and closed sets, compact and bounded sets, compact-open and Is-
bell topologies, splitting and jointly continuous topologies and continuous
convergence remain true if we replace these notions by the corresponding
“Ω-notions”, where Ω is a fixed class of directed sets. For each of the above
notions it is possible to define different generalizations and the problem
is to find the appropriate ones which satisfy the corresponding basic rela-
tions. We define “Ω-notions” using the nets (with directed sets from Ω) in
the set of all closed subsets of a topological space.

In what follows, we denote by Ω a class of directed sets. A class Ω is
called cofinal closed if every cofinal subset of an element of Ω belongs to
Ω. A net in a space X is a map S : Λ → X, where Λ is a directed set.
The net S is also denoted by {xλ, λ ∈ Λ}, where xλ = S(λ). If Λ ∈ Ω,
then this net is called Ω-net. If {Aλ, λ ∈ Λ} is a net in the set P(Y ) of
all subsets of a space Y , then the upper limit of this net (see, for example,
[K]), which is denoted by limΛ(Aλ), is the set of all cluster points of Y ,
that is, the points y of Y such that for every λ0 ∈ Λ and for every open
neighbourhood U of y in Y there exists an element λ ∈ Λ, λ ≥ λ0, for
which Aλ ∩ U 6= ∅.

We denote by O(Y ) and K(Y ) the set of all open and the set of all
closed subsets of a space Y , respectively. For two spaces Y and Z we
denote by C(Y, Z) the set of all continuous maps of Y into Z. By S
we denote the Sierpinski space, that is, the set {0, 1} with the topology
τ(S) ≡ {∅, {0, 1}, {0}}. The sets Q(Y ), K(Y ) and C(Y,S) can be identified
as follows: every element U of O(Y ) we identify with the element Y \ U
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of K(Y ) and with the element f of C(Y,S) for which f(U) ⊆ {0} and
f(Y \ U) ⊆ {1}. Then for every topology on one of the above sets we
can consider the corresponding topology on the other sets. By Cl(M)
and |M | we denote the closure and cardinality of a subset M of a space,
respectively.

We identify an ordinal α with the set of all ordinals less than α and
a cardinal β with the least ordinal of cardinality β.

I. Ω-Scott open sets and Ω-Bounded subsets

In this section we denote by Y a fixed topological space. The following
definition of the Scott topology τs on the set O(Y ) was given in [D-K]: A
subset H of O(Y ) is an element of τs if and only if: (α) H contains every
open set of Y containing an element of H, and (β) for every collection of
open sets whose union belongs to H there are finitely many elements of
this collection whose union also belongs to H.

In [I-P] the characterization of Scott open and Scott closed subsets of
O(Y ) and K(Y ) was given using the notion of the upper limit of a net in
K(Y ). Using these chraracterizations we can give the following definition.

1. Ω-Scott subsets. A subset L of K(Y ) is called Ω-Scott open if the
following conditions are true: (α) if L ∈ L, K ∈ K(Y ) and K ⊆ L, then
K ∈ L, and (β) if {Kλ, λ ∈ Λ} is an Ω-net in K(Y ) and limΛ(Kλ) ∈ L,
then there exists an element λ0 ∈ Λ such that Kλ ∈ L for every λ ∈ Λ,
λ ≥ λ0.

It is easy to verify that the set of all Ω-Scott open subsets is a topology
on the set K(Y ). This topology is called Ω-Scott topology .

1.1. Theorem. The following statements are true:
(1) A subset F of K(Y ) is Ω-Scott closed if and only if: (α) if K ∈ F and

K ⊆ L ∈ K(Y ), then L ∈ F, and (β) if {Kλ, λ ∈ Λ} is an Ω-net K(Y )
and Kλ ∈ F for every λ ∈ Λ, then limΛ(Kλ) ∈ F.

(2) A subset H of O(Y ) is Ω-Scott open if and only if: (α) if V ∈ H and
V ⊆ U ∈ O(Y ), then U ∈ H, and (β) if {Vλ, λ ∈ Λ} is an Ω-net in
O(Y ) and Y \ limΛ(Y \ Vλ) ∈ H, then there exists an element λ0 ∈ Λ
such that Vλ ∈ H for every λ ∈ Λ, λ ≥ λ0.

(3) A subset K of O(Y ) is Ω-Scott closed if and only if: (α) if U ∈ K,
V ∈ O(Y ) and V ⊆ U , then V ∈ K, and (β) if {Vλ, λ ∈ Λ} is an
Ω-net in O(Y ) and Vλ ∈ K for every λ ∈ Λ, then Y \ limΛ(Y \Vλ) ∈ K.

The proof of this theorem is similar to the proof of Theorem 10
of [I–P].
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2. (α, β)-Scott open sets. In this section we give another natural
generalization of the notion of a Scott open set and prove that this gener-
alization, “almost always”, is a particular case of the notion of an Ω-Scott
open set.

Let α be an infinite cardinal and β be a cardinal or symbol ∞ such
that α < β. (We suppose that γ 6= ∞ and γ < ∞ for every cardinal γ).
A subset H of O(Y ) is called (α, β)-Scott open if: (α) H contains every
open set of Y containing an element of H, and (β) for every collection
{Uµ : µ ∈ M} of open sets of Y , whose union belongs to H, where |M | < β,
there exists a subset N ⊆ M with |N | < α such that

⋃{Uµ : µ ∈ N} ∈ H.
As for the Scott open sets, the set of all (α, β)-Scott open sets of O(Y )

is a topology calling (α, β)-Scott topology on O(Y ). It is easy to see that
the Scott topology coincides with the (ω,∞)-Scott topology on O(Y ).

We observe that a subset L of K(Y ) is (α, β)-Scott open if and only
if: (α) if L ∈ L, K ∈ K(Y ) and K ⊆ L, then K ∈ L, and (β) if for a
collection {Kµ : µ ∈ M} of elements of K(Y ), where |M | < β, we have⋂{Kµ : µ ∈ M} ∈ L, then there exists a subset N ⊆ M with |N | < α
such that

⋂{Kµ : µ ∈ N} ∈ L.

2.1. Theorem. Suppose that α is regular and for every γ < β cardi-
nality of the set of all subsets of the set γ of cardinality less than α, is less
than or equal to β. Then there exists a class Ω of directed sets such that
the Ω-Scott topology coincides with (α, β)-Scott topology on K(Y ).

Proof. Let Ω be the class of all directed sets Λ with |Λ| < β having
the property: for every subset Λ′ ⊆ Λ with |Λ′| < α there exists an element
λ0 ∈ Λ such that λ ≤ λ0 for every λ ∈ Λ′. We prove that (α, β)-Scott
topology coincides with the Ω-Scott topology on K(Y ).

Let L be an (α, β)-Scott open set. We prove that L is Ω-Scott open.
Obviously, it is sufficient to prove property (β) of Section 1.

Let {Kλ, λ ∈ Λ} be an Ω-net in K(Y ) and let limΛ(Kλ) ∈ L. We
must prove that there exists an element λ0 ∈ Λ such that Kλ ∈ L for
every λ ∈ Λ, λ ≥ λ0. For every λ ∈ Λ we set K ′

λ = Cl(
⋃{K ′

λ′ : λ′ ≥ λ}).
Obviously K ′

λ1
⊆ K ′

λ2
if λ2 ≤ λ1. It is also easy to verify that limΛ(K ′

λ) =⋂{K ′
λ : λ ∈ Λ} and limΛ(K ′

λ) = limΛ(Kλ). Hence limΛ(K ′
λ =

⋂{K ′
λ : λ ∈

Λ} ∈ L. Since L is (α, β)-Scott open and |Λ| < β there exists a subset
Λ′ ⊆ Λ with |Λ′| < α such that

⋂{K ′
λ : λ ∈ Λ′} ∈ L. Since λ ∈ Ω, there

exists an element λ0 ∈ Λ such that λ ≤ λ0 for every λ ∈ Λ′. This means
that K ′

λ0
⊆ ⋂{Kλ : λ ∈ Λ′}. Hence K ′

λ0
∈ L. Since Kλ ⊆ K ′

λ0
for every

λ ≥ λ0 we have Kλ ∈ L. Thus L is Ω-Scott open.
Conversely, let L be an Ω-Scott open subset of K(Y ). We prove that

L is (α, β)-Scott open. It is sufficient to prove that if {Kµ : µ ∈ M} is a
collection of elements of K(Y ), where |M | < β and

⋂{Kµ : µ ∈ M} ∈ L,
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then there exists a subset N ⊆ M with |N | < α such that
⋂{Kµ : µ ∈

N} ∈ L. Let Λ be the set of all subsets of M of cardinality less than α
directed by inclusion. By conditions of the theorem, Λ ∈ Ω. Consider
the net {Kλ, λ ∈ Λ} in K(Y ), where Kλ =

⋂ {Kµ : µ ∈ λ}. It is easy
to verify that limΛ(Kλ) =

⋂{Kλ : λ ∈ Λ} =
⋂{Kµ : µ ∈ M}. Hence

limΛ(Kλ) ∈ L. Since L is Ω-Scott open and Λ ∈ Ω, there exists λ0 ∈ Λ
such that Kλ ∈ L for every λ ∈ λ, λ ≥ λ0. Setting N = λ0 we have
|N | < α and Kλ =

⋂{Kµ : µ ∈ N} ∈ L. Thus L is (α, β)-Scott open.

2.2. Problem. Is Theorem 2.1 true for every infinite (regular) cardinal
α and cardinal β for which α < β?

We observe that under hypothesis CH this theorem is true if we sup-
pose only that α is regular.

3. Ω-Bounded subsets. A subset B of Y is called bounded if and only
if for every open cover of Y there exists a finite subcollection of this cover,
the union of elements of which contains the set B.

Let α be an infinite cardinal and β be a cardinal or symbol ∞ such
that α < β. A subset B of Y is called (α, β)-bounded if for every open
cover U of Y which |U| < β there exists a subfamily of U of cardinality
less than α covering the set B. About the notions boundedness and (α, β)-
boundedness see, for example [L1]. (We observe that, in general, the above
notion of (α, β)-bounded set does not coincide (for limit α and β) with the
notion of (α, β)-bounded set given in [L1]).

3.1. Theorem. A subset B of Y is bounded if and only if for every
net {Kλ, λ ∈ Λ} in K(Y ) such that limΛ(Kλ) = ∅, there exists an element
λ0 ∈ Λ for which Kλ ∩B = ∅ for every λ ∈ Λ, λ ≥ λ0.

Proof. Let B be a bounded subset of Y and let {Kλ, λ ∈ Λ} be a
net in K(Y ) such that limΛ(Kλ) = ∅. Then for every y ∈ Y there exist
an open neighbourhood Uy of y in Y and an element λy ∈ Λ such that
Kλ ∩ Uy = ∅ for every λ ≥ λy.

Since B is bounded and Y =
⋃{Uy : y ∈ Y }, there exist y1, . . . , yn∈Y

such that
B ⊆

⋃
{Uyi : i = 1, . . . , n}.

Let λ0 be an element of Λ such that λ0 ≥ λyi for every i = 1, . . . , n.
Then for every λ ≥ λ0, we have Uyi ⊆ Y \Kλ and hence

B ⊆
⋃
{Uyi : i = 1, . . . , n} ⊆ Y \Kλ.

Thus Kλ ∩B = ∅ for every λ ∈ Λ, λ ≥ λ0.
Conversely, suppose that the subset B satisfies the condition of the

theorem. We prove that B is bounded. Let U be an open cover of the
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space Y . Let Λ be the set of all finite subsets of U directed by inclusion
and let {Kλ, λ ∈ Λ} be the net in K(Y ) for which Y \Kλ is the union of
elements of λ. Obviously Kλ1 ⊆ Kλ2 if λ2 ⊆ λ1. From this it follows that
limΛ(Kλ) =

⋂{Kλ : λ ∈ Λ}.
Since

⋂{Kλ : λ ∈ Λ} = Y \ (
⋃{Y \ Kλ : λ ∈ Λ}) = Y \ (

⋃{U :
U ∈ U}) = ∅, we have limΛ(Kλ) = ∅. By assumption there exists an
element λ0 ∈ Λ for which Kλ ∩ B = ∅ for every λ ∈ λ, λ ≥ λ0. Hence
B ⊆ Y \Kλ0 =

⋃{U : U ∈ λ0}. Thus B is bounded.
In particular, from Theorem 3.1 we have: A space X is compact if

and only if for every net {Kλ, λ ∈ Λ} in K(X) such that limΛ(Kλ) = ∅
there exists an element λ0 ∈ Λ for which Kλ = ∅ for every λ ∈ Λ, λ ≥ λ0.

Using Theorem 3.1 we can give the following definitions.

3.2. Definitions. A subset B of Y is called Ω-bounded in Y if for every
Ω-net {Kλ, λ ∈ Λ} in K(Y ) such that limΛ(Kλ) = ∅ there exists an element
λ0 ∈ Λ for which Kλ ∩B = ∅ for every λ ∈ Λ, λ ≥ λ0.

A space X is called Ω-compact if for every Ω-net {Kλ, λ ∈ Λ} in K(X)
such that limΛ(Kλ) = ∅ there exists an element λ0 ∈ Λ for which Kλ = ∅
for every λ ∈ Λ, λ ≥ λ0. (We use the same term as in [V] while, in general,
the above notion of Ω-compact space does not coincide with the notion of
Ω-compact space given in [V]. However, it is not difficult to prove that
these notions coincide if Ω is cofinal closed).

By Theorem 3.1 it follows that if Ω is the class of all directed sets,
then the notions of Ω-boundedness and Ω-compactness coincide with the
notions boundedness and compactness, respectively. In general, the Ω-
boundedness preserves many properties of the boundedness. Such proper-
ties, for example, are the following:
(1) A subset B of Y is Ω-bounded if and only if B is Ω-bounded in Cl(B).
(2) If B is closed and Ω-bounded in Y , then B is Ω-compact.
(3) If B is Ω-bounded in Y and B′ ⊆ B, then the subset B′ is Ω-bounded.
(4) If B1, . . . , Bn is Ω-bounded in Y , then the subset

⋃{Bi : i = 1, . . . , n}
is also Ω-bounded.

(5) If the subset B of Y is Ω-compact then B is Ω-bounded.
(6) By properties (3) and (4) it follows that the notion of Ω-boundedness

is a boundedness in the since of [H].

3.3. Theorem. Let K be an Ω-compact subset of Y . Then the set

H ≡ {U ∈ O(Y ) : K ⊆ U},
is an Ω-Scott open subset of O(Y ).

Proof. Obviously, if V ∈ H and V ⊆ U ∈ O(Y ), then U ∈ H.
Let {Vλ, λ ∈ Λ} be an Ω-net in O(Y ) and Y \ limΛ(Y \ Vλ) ∈ H. Then,



144 S. D. Iliadis and B. K. Papadopoulos

K ⊆ Y \ limΛ(Y \ Vλ), that is, K ∩ limΛ(Y \ Vλ) = ∅. Let Kλ = K ∩ (Y \
Vλ), λ ∈ Λ. Then {Kλ, λ ∈ Λ} is a net in K(K). Obviously, limΛ(Kλ) ⊆
K∩ limΛ(Y \Vλ) (the first upper limit is considered in the space K and the
second in Y ) and hence limΛ(Kλ) = ∅. Since the space K is Ω-compact
there exists an element λ0 ∈ Λ such that Kλ = ∅ for every λ ≥ λ0. Hence
K ⊆ Vλ and Vλ ∈ H for every λ ≥ λ0. By Theorem 1.1, H is an Ω-Scott
open set of O(Y ).

3.4. Theorem. Let α and β be as in Theorem 2.1. Then there exists a
class Ω of directed sets such that a subset B of a space X is (α, β)-bounded
if and only if it is Ω-bounded.

The proof of this theorem is similar to the proof of Theorem 3.1.
We observe that if α and β are as in Theorem 3.4, then there exists a

class Ω of directed sets such that a space X is (α, β)-compact if and only
if it is Ω-compact.

4. Strong Ω-Scott sets. We recall that a subset H of O(Y ) is called
strong Scott open (see [L-P]) if the following conditions are satisfied: (α)
if U ∈ H and U ⊆ V ∈ O(Y ), then V ∈ H and (β) for every open cover of
Y , there exists finitely many elements of this cover, whose union belongs
to H. The set of all strong Scott open sets is a topology a calling strong
Scott topology on the set O(Y ). (See [L-P].)

We observe that a subset L of the set K(Y ) belongs to the strong
Scott topology on this set if and only if: (α) if L ∈ L, K ∈ L and K ⊆ L,
then K ∈ L, and (β) if for a collection {Kµ : µ ∈ M} of elements of K(Y )
we have

⋂{Kµ : µ ∈ M} = ∅, then there exists a finite subcollection, the
intersection of elements of which belongs to L.

As in Section 2 we give another natural generalization of the notion
of strong Scott open set.

Let α and β be as in Section 2. A subset H of O(Y ) is called strong
(α, β)-Scott open if the following conditions are satisfied: (α) if U ∈ H
and U ⊆ V ∈ O(Y ), then V ∈ H, and (β) for every open cover of Y
of cardinality less than β, there exists a subcollection of cardinality less
than α, the union of elements of which belongs to H. Obviously, the set of
all strong (α, β)-Scott open sets is a topology calling Strong (α, β)-Strong
topology on O(Y ).

4.1. Theorem. A subset L of K(Y ) is open in the strong Scott topol-
ogy if and only if the following conditions are satisfied: (α) if L ∈ L,
K ∈ K(Y ) and K ⊆ L, then K ∈ L, and (β) if {Kλ, λ ∈ Λ} is a net in
K(Y ) and limΛ(Kλ) = ∅, then there exists an element λ0 ∈ Λ such that
Kλ ∈ L for every λ ∈ Λ, λ ≥ λ0.

The proof of this theorem is similar to the proof of Theorem 3.1.
Using Theorem 4.1 we can give the following definition.
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4.2. Definition. A subset L of K(Y ) is called strong Ω-Strong open if
the following conditions are satisfied: (α) if L ∈ L, K ∈ K(Y ) and K ⊆ L,
then K ∈ L, and (β) if {Kλ, λ ∈ Λ} is an Ω-net in K(Y ) and limΛ(Kλ) = ∅,
then there exists an element λ0 ∈ Λ such that Kλ ∈ L for every λ ∈ Λ,
λ ≥ λ0.

We observe that the set of all strong Ω-Scott open sets is a topology
calling strong Ω-Scott topology on K(Y ). Obviously, the strong Ω-Scott
topology on O(Y ) consists of the sets of the form

H = {U ∈ O(Y ) : Y \ U ∈ L},
where L is a strong Ω-Scott open set of K(Y ).

Obviously, if Ω is the class of all directed sets, then by Theorem 4.1
every strong Ω-Scott open set is strong Scott open.

4.3. Theorem. Let α and β be as in Theorem 2.1. Then there exists
a class Ω of directed sets such that the strong Ω-Scott topology coincides
with the strong (α, β)-Scott topology on K(Y ).

The proof of this theorem is similar to the proof of Theorem 2.1.

4.4. Theorem. Let B be an Ω-bounded subset of Y . Then the set

H ≡ {U ∈ O(Y ) : B ⊆ U}.
is strong Ω-Scott open in O(Y ).

The proof of this theorem is similar to the proof of Theorem 3.3.

II. Ω-splitting and Ω-jointly continuous topologies

In this section we define some topologies on the set C(Y, Z) using the
“Ω-notions” defined in Section I and prove some relations between them.

By Y and Z we denote two fixed topological spaces. If τ is a topology
on the set C(Y, Z), then the corresponding topological space is denoted by
Cτ (Y, Z).

Let X be a space and F : X × Y → Z be a continuous map. By
Fx, where x ∈ X, we denote the continuous map of Y into Z for which
Fx(y) = F (x, y) for every y ∈ Y . By F̂ we denote the map of X into the
set C(Y, Z) for which F̂ (x) = Fx for every x ∈ X.

Let G be a map of the space X into the set C(Y, Z). By G̃ we denote
the map of the space X × Y into the space Z for which G̃(x, y) = G(x)(y)

for every (x, y) ∈ X × Y . It is easy to verify that ˆ̃G = G and ˜̂
F = F .

We recall that a topology τ on C(Y, Z) is called (see [A-D]) splitting
(respectively, jointly continuous) if for every space X, the continuity of
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a map F : X × Y → Z (respectively, of a map G : X → Cτ (Y,Z))
implies that of the map F̂ : X → Cτ (Y,Z) (respectively, of the map
G̃ : X × Y → Z).

If in the above definitions of splitting and jointly continuous topologies
the space X belongs to a given class A of spaces, then we have the notions
of A-splitting and A-jointly continuous topologies. (See [G-I-P]).

For every Λ ∈ Ω we consider the set Sp(Λ) ≡ Λ ∪ {∞}, where ∞
is a symbol such that λ 6= ∞, for every λ ∈ Λ. On the set Sp(Λ) we
define a topology as follows (see [A-D]): a subset U of Sp(Λ) is open if and
only if either ∞ /∈ U or ∞ ∈ U and there exists an element λ0 ∈ Λ such
that λ ∈ U for every λ ∈ Λ, λ ≥ λ0. By Sp(Ω) we denote the family of all
spaces Sp(Λ), where Λ ∈ Ω. Instead of “Sp(Ω)-splitting” or “Sp(Ω)-jointly
continuous” we write “Ω-splitting” or “Ω-jointly continuous”, respectively.

By C∗ we denote the class of all pairs ({fλ, λ ∈ Λ}, f) where {fλ, λ ∈
Λ} is a net in C(Y, Z), which converges continuously to f ∈ C(Y, Z) (see
[F] and [K]). If τ is a topology on C(Y, Z), then by C(τ) we denote the class
of all pairs ({fλ, λ ∈ Λ}, f), where {fλ, λ ∈ Λ} is a net in C(Y, Z), which
topologically converges to f ∈ C(Y, Z). By C∗Ω (respectively, by (C(τ))Ω)
we denote the subclass of all elements ({fλ, λ ∈ Λ}, f) of C∗ (respectively,
of (C(τ)) for which Λ ∈ Ω.

For every set X and for every class C of pairs ({xλ, λ ∈ Λ}, x), where
x ∈ X and {xλ, λ ∈ Λ} is a net in X we denote by τ(C) the topology on
X such that U ∈ τ(C) if and only if for every element ({xλ, λ ∈ λ}, x) ∈ C
where x ∈ U there exists an element λ0 ∈ Λ such that xλ ∈ U for every
λ ∈ Λ, λ ≥ λ0.

We recall now the chraracterization of continuous convergence on
C(Y, Z) which was given in [I-P]. A net {fλ, λ ∈ Λ} in C(Y, Z) converges
continuously to f ∈ C(Y,Z) if and only if the following condition holds:

lim
Λ

(f−1
λ (K)) ⊆ f−1(K),

for every closed subset K of Z.
The following criteria are given in [A-D]:

(1) A topology τ on C(Y,Z) is splitting if and only if C∗ ⊆ C(τ).
(2) A topology τ on C(Y, Z) is jointly continuous if and only if C(τ) ⊆ C∗.

We observe that from the above criteria it follows that there exists
at most one topology on C(Y,Z), which is simultaneously splitting and
jointly continuous.

The next theorem shows that analogous criteria are true for the Ω-
splitting and Ω-jointly continuous topologies on C(Y, Z). The ineterest
of this theorem relies on the fact that, in general, there exist a lot of
topologies on C(Y, Z), which are simultaneously Ω-splitting and Ω-jointly
continuous.
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1. Theorem. The following are true:
(1) A topology τ on C(Y,Z) is Ω-splitting if and only if

C∗Ω ⊆ (C(τ))Ω.

(2) A topology τ on C(Y, Z) is Ω-jointly continuous if and only if (C(τ))Ω
⊆ C∗Ω.

(3) The topology τ(C∗Ω) is the greatest Ω-splitting topology on C(Y, Z)
(see [G-I-P]), that is,

τ(C∗Ω) = τ(Sp(Ω)).

Proof. The proofs of the statements (1) and (2) of the theorem are
similar to the proofs of the corresponding results (criteria (1) and (2)) of
[A-D].

(3). Let τ = τ(C∗Ω). By the definition of the topology τ(C∗Ω), C∗Ω ⊆
(C(τ))Ω. By statement (1), the topology τ is an Ω-splitting topology on
C(Y, Z). Let τ1 be an Ω-splitting topology on C(Y, Z). By (1) we have
C∗Ω ⊆ (C(τ1))Ω ⊆ C(τ1). Hence τ(C∗Ω) ⊆ τ(C(τ1)) = τ1. Thus τ(C∗Ω) is the
greatest Ω-splitting topology, that is, τ(C∗Ω) = τ(Sp(Ω)).

2. Definitions. As it is well-known the topology τco on C(Y, Z) for
which the sets

(K,U) = {f ∈ C(Y, Z) : f(K) ⊆ U},
compose a subbasis of open sets, where K is an compact subset of Y and
U is an open subset of Z, is called compact-open topology on C(Y, Z). If in
the above definition instead of compact we consider as Ω-compact subsets,
we get the Ω-compact open topology on C(Y, Z) which is denoted by τΩ

co.
The topology τis on C(Y, Z) for which the sets

(H, U) = {f ∈ C(Y, Z) : f−1(U) ∈ H}
compose a subbasis of open sets, where H is a Scott open set of O(Y ) and
U is an open subset of Z, is called Isbell topology on C(Y, Z). If in the
above definition instead of Scott open we consider Ω-Scott open sets, we
get the Ω-Isbell topology on C(Y,Z) which is denoted by τΩ

is .
We observe that if H is an Ω-Scott open set of O(Y ), L = {K(Y ) :

Y \ F ∈ H}, U ∈ O(Y ) and K = Y \ U , then

(H, U) = (L,K) = {f ∈ C(Y, Z) : f−1(K) ∈ L}.
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3. Theorem. The Ω-Isbell topology on C(Y,Z) is Ω-splitting.

Proof. By Theorem 1, it is sufficient to prove that C∗Ω ⊆ (C(τ))Ω.
Let {fλ, λ ∈ Λ} be an Ω-net in C(Y, Z) and f ∈ C(Y, Z) such that
limΛ(f−1

λ (K)) ⊆ f−1(K) for each closed subset K of Z, that is ({fλ, λ ∈
Λ}, f) ∈ C∗Ω. We prove that the Ω-net {fλ, λ ∈ Λ} converges to f with
respect to the Ω-Isbell topology. Let f ∈ (L,K), where L is a Scott
open set of K(Y ) and K is closed in Z. Then f−1(K) ∈ L and hence
limΛ(f−1

λ (K)) ∈ L. So there exists a λ0 ∈ Λ such that for every λ ≥ λ0,
f−1

λ (K) ∈ L, which means that the Ω-net {fλ : λ ∈ Λ} converges to f
witht respect to the Ω-Isbell topology.

4. Theorem. The topology τΩ
co is contained in the topology τΩ

is .

Proof. It is sufficient to observe that (K, U) = (H, U) for every Ω-
compact subset K of Y and for every open subset U of Z, where H = {U ∈
O(Y ) : K ⊆ U}.

5. Corollary. The Ω-compact-open topology on C(Y, Z) is Ω-split-
ting.

6. Definition. A space X is called locally Ω-compact if for every x ∈
X and for every open neighbourhood V containing x there exists an Ω-
compact neighbourhood U of x in X such that x ∈ U ⊆ V .

7. Theorem. If Y is a locally Ω-compact space, then the Ω-compact
open topology on C(Y, Z) is Ω-jointly continuous.

Proof. Let G be a continuous map of a space X ≡ Sp(Λ) into the
space Cτ (Y,Z), where Λ ∈ Ω and τ ≡ τΩ

co. We prove that the map G̃ of
X × Y into Z is continuous. It is sufficient to prove that G̃ is continuous
at the points (∞, y) of X × Y .

Let (∞, y) ∈ X × Y and U be an open neighbourhood of G̃(∞, y) =
G(∞)(y) in Z. Since Y is locally Ω-compact and the map G(∞) is con-
tinuos there exists an Ω-compact neighbourhood of K of y in Y such that
K ⊆ (G(∞))−1(U). Hence the set (K, U) is an open neighbourhood of
G(∞) in Cτ (Y, Z). Since G is continuous there exists an open neighbour-
hood W of ∞ in X such that G(W ) ⊆ (K, U). There exists an element
λ0 ∈ Λ such that λ ∈ W for every λ ∈ Λ, λ ≥ λ0. Hence G(λ) ∈ (K, U),
that is, G(λ)(K) ⊆ U for every λ ≥ λ0.

The subset W×V of X×Y where V ⊆ K, is an open neighbourhood of
y in Y , is an open neighbourhood of (∞, y) in X×Y . Let (x, y′) ∈ W ×V .
Then G̃(x, y′) = G(x)(y′) ∈ U , that is, G̃(W × V ) ⊂ U . Hence the map G̃
is continuous. Thus, the topology τΩ

co is Ω-jointly continuous.
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8. Theorem. A space Y is corecompact if and only if for every net
{Kλ, λ ∈ Λ} in K(Y ), which converges in the Scott topology to a closed
set K of Y , we have limΛ(Kλ) ⊆ K.

Proof. The proof of this theorem immediately follows by the fact
that the space Y is corecompact if and only if the Isbell topology on the
set C(Y,S) is jointly continuous. (See [L-P]).

Using the above theorem we give the following definition.

9. Definition. A space Y is Ω-corecompact if for every Ω-net {Kλ, λ ∈
Λ} in K(Y ), which converges in the Scott topology to a closed set K of Y ,
we have limΛ(Kλ) ⊆ K.

10. Theorem. Let Y be an Ω-corecompact space. Then the Ω-Isbell
topology on C(Y, Z) is Ω-jointly continuous.

Proof. It is sufficient to prove that (C(τ))Ω ⊆ C∗Ω. Let {fλ, λ ∈ Λ}
be an Ω-net, which converges to f ∈ C(Y, Z) with respect to the Ω-Isbell
topology. We prove that ({fλ, λ ∈ Λ}, f) ∈ C∗Ω, that is, limΛ(f−1

λ (K)) ⊆
f−1(K) for each closed K of Z. Obviously for each closed set K of Z
the Ω-net {f−1

λ (K), λ ∈ Λ} converges to f−1(K) with respect to the Ω-
Scott topology. Since Y is corecompact, by Theorem 8, limΛ(f−1

λ (K)) ⊆
f−1(K). Thus the Ω-Isbell topology is Ω-jointly continuous.

11. Definition. The topology τΩ
b on C(Y, Z) for which the sets

(B, U) = {f ∈ C(Y, Z) : f(B) ⊆ U}
compose a subbasis of open sets, where B is an Ω-bounded subset of Y and
U is an open subset of Z, is called Ω-bounded topology . (For the bounded
topology τb on C(Y, Z) see [L2]).

12. Theorem. If Y is locally Ω-compact, then the topology τΩ
b on

C(Y, Z) is Ω-jointly continuous.

Proof. By property (5) of Section 3.2, we have that τΩ
co ⊆ τΩ

b . Since
the space Y is locally Ω-compact by Theorem 7 the topology τΩ

co is Ω-jointly
continuous and hence τΩ

b is also Ω-jointly continuous.

13. Definition. A space X is called locally Ω-bounded if every x ∈ X
has an Ω-bounded neighbourhood U in X.

14. Theorem. If Y is locally Ω-bounded, then the Ω-bounded topol-
ogy on C(Y, Z) is Ω-jointly continuous.

The proof of this theorem is similar to the proof of Theorem 7.
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15. Definition. The topology on C(Y, Z) for which the sets

(H, U) = {f ∈ C(Y, Z) : f−1(U) ∈ H}
compose a subbasis of open sets, where H is a strong Ω-Scott open set
of O(Y ), is called strong Ω-Isbell topology on C(Y, Z). This topology is
denoted by τΩ

s-is.

16. Theorem. If Y is locally Ω-bounded, then the strong Ω-Isbell
topology on C(Y, z) is Ω-jointly continuous.

Proof. By Theorem 4.4 the topology τΩ
b is contained in the topology

τΩ
s-is and hence by Theorem 14, τΩ

s-is is Ω-jointly continuous.
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