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y-Berwald spaces of dimension two and associated
heterochronic systems

By P. L. ANTONELLI (Edmonton) and M. MATSUMOTO (Kyoto)

Abstract. This paper classifies all two-dimensional y-Berwald spaces. Such Fins-
ler geometries arise in time-sequencing change models in the evolution of colonial or-
ganisms.

0. Introduction

Let N(p, q) denote the fundamental function of a two-dimensional
Minkowski space, gij(p, q) the metric tensor and let ψ(x, y, p, q) denote a
fixed function (positively) homogeneous of degree one in p, q (i.e. ẋ, ẏ). In
the biological works about modelling colonial animals with two morpho-
types or castes [5], [6] one defines the Associated Heterochronic System
(AHS) to be the dynamical system

d2xi

ds2
+ (δi

jψk + δi
kψj)

dxj

ds

dxk

ds
= gij ∂̇jψ,

where x1 = x, x2 = y, are log-biomass variables for each type ψk =
∂̇kψ and ds = (gij ẋ

iẋj)1/2 measures total size increment. The left-hand
side represents the time-sequencing change, along the straight-line growth
curves which are geodesics for the metric function N(p, q), and is in fact
a projective parameter change of the original geodesics [2], [7], [8]. The
right-hand side expresses the vertical gradient influence (i.e. external and
environmental) which causes a colonial organism to change the internal
ecology of its two member castes (i.e. subpopulations) through the hor-
monal alteration of its genetically defined program of growth and differen-
tiation [5], [6].
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In the present paper, we address the important question of when an
AHS is identical to the geodesic spray of a Finsler metric function F defined
only in terms of ψ and N(p, q). In the case, ψ = a1p + a2q, ai constant,
it is known that F (x, y, p, q) = ea1x+a2y · N(p, q), [1], [2], [3], [4]. The
main result proved here is that this is the only possibility given that ψ is
independent of x and y. In this instance, the AHS must be the geodesic
spray of a y-Berwald space, which is a Finsler space with the Berwald
connection coefficients independent of x and y (these would be adapted
coordinates in such a space).

Our theorem is proved in Section 1, some difficult examples are pro-
vided in the second section. The AHS is a little understood dynamics.
We hope the present work and the references will be helpful to readers
interested in further discussions.

1. Two-dimensional y-Berwald spaces

We consider an n-dimensional Finsler space Fn with the fundamental
function L(x; y). If we put

Li = ∂L/∂xi, L(i) = ∂L/∂yi,

we have for the Berwald connection (Gi
j , G

i
jk)

(1.1) Li = L(r)G
r
i .

Then we get

(1.2) Liy
i := L0 = 2L(r)G

r, (2Gr = Gr
i y

i).

Next (1.1) gives

(1.3) Li(j) − Lj(i) = L(r)(j)G
r
i − L(r)(i)G

r
j .

We shall restrict our discussion to the two-dimensional case only.
Then (1.3) gives the single equation

L1(2) − L2(1) := M = L(1)(2)G
1
1 + L(2)(2)G

2
1 − L(1)(1)G

1
2 − L(2)(1)G

2
2.

Using the notation (p, q) = (y1, y2) and the Weierstrass invariant [2]

W = Lpp/q2 = −Lpq/pq = Lqq/p2,

the above is written in the form

(1.4) M = −2G1Wq + 2G2Wp,
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on account of 2Gr = Gr
i y

i. Then, (1.4) together with (1.2) leads to

(1.5) 2G1L = L0p− LqM/W, 2G2L = L0q + LpM/W.

Definition. A Finsler space is called y-Berwald, if there exists a cover-
ing by coordinate neighborhoods in each of which the Berwald connection
coefficients Gi

jk are functions of yi alone.

From the well-known equations

Gi
j = Gi

jkyk, 2Gi = Gi
jy

j , Gi
j = ∂Gi/∂yj , Gi

jk = ∂Gi
j/∂yk,

it is obvious that Gi
jk in Definition can be changed to Gi or Gi

j .

We shall deal with a y-Berwald space of two dimensions. Then (1.1)
yields Lij = Lj(r)G

r
i and

(1.6) Lj(r)G
r
i − Li(r)G

r
j = 0.

Since (1.1) gives

Lj(r) =
(
L(s)G

s
j

)
(r)

= L(s)(r)G
s
j + L(s)G

s
jr,

(1.6) is written in the form

L(s)

(
Gs

jrG
r
i −Gs

irG
r
j) = 0,

which is only the single equation

(1.7) LpH
1 + LqH

2 = 0,

where we put

(1.7a) Hs(p, q) = Gs
1rG

r
2 −Gs

2rG
r
1.

Then, (1.7) together with Lpp + Lqq = L yields

(1.8) Lp/L = K1, Lq/L = K2,

where we put

(1.8a) K1(p, q) = H2/(pH2 − qH1), K2(p, q) = −H1/(pH2 − qH1).

For Ki we get

(K1)q = {H1H2 + q(H2H1
q −H1H2

q )}/(pH2 − qH1)2,

(K2)p = {H1H2 − p(H2H1
p −H1H2

p )}/(pH2 − qH1)2.

Thus we have (K1)q = (K2)p, i.e., Ki is a gradient vector field in the
(p, q)-space, on account of the homogeneity of Hs. Thus we have a function
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K(p, q) satisfying K1 = Kp and K2 = Kq. Thus (1.8) can be integrated to
obtain

(1.9) L(x, y; p, q) = ef(x,y)N(p, q),

where f(x, y) is some function of (x, y) and N = eK(p,q).
Consequently, the space under consideration must be conformal to a

locally Minkowski space M2 with the fundamental function N.
Now we shall return to (1.1); on account of (1.9) it is written as

fx = (NpG
1
1 + NqG

2
1)/N, fy = (NpG

1
2 + NqG

2
2)/N.

The left-hand sides of these equations are functions of (x, y), while the
right-hand sides are functions of (p, q) from our assumption. Hence these
must be constant: fx = a1, fy = a2,
so that

(1.10) f(x, y) = a1x + a2y + a.

Then the formula (1.5) yields

(1.11)
2G1 = p(a1p + a2q)− (a1Nq − a2Np)Nq/wN,

2G2 = q(a1p + a2q) + (a1Nq − a2Np)Np/wN,

where w is the Weierstrass invariant of M2 :

(1.12) w = Npp/q2 = −Npq/pq = Nqq/p2.

Consequently, Gi are functions of (p, q) alone and the space is y-Berwald.

Theorem. Any y-Berwald space of dimension two is conformal to a
locally Minkowski space M2 and the fundamental function L(x, y; p, q) is
written in an adapted coordinate system (x, y) of M2 as L = ef(x,y)N(p, q),
f = a1x+ a2y + a with constant a’s, where N is the fundamental function
of M2 in (x, y).

Remark 1. In the Riemannian case we have the notion of “isothermal
coordinates” in the two-dimensional case. In such a coordinate system the
fundamental function L(x, y; p, q) can be written as

L = ef(x,y)
√

p2 + q2

as above. (Therefore, the equation (1.9) is not a condition for the Rie-
mannian case.)

Consequently our theorem shows
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Corollary. Let R2 be a two-dimensional Riemannian space with the
fundamental form ds2 = e2f(x,y)(dx2 + dy2) in an isothermal coordinate
system (x, y). All the Christofell symbols of R2 are constant in (x, y), if
and only if f(x, y) = a1x + a2y + a with constant a’s.

It is clear that the condition “y-Berwald” is equivalent to “constant-
Berwald” for Riemannian metrics.

Remark 2. It seems that the notion of a y-Berwald space was first
introduced in 1991 by the first author [1]. Contrasting with this notion, a
Finsler space with Gi

jk = Gi
jk(x) is called a Berwald space and we have an

extensive literature on these spaces. As is well-known [2], a Berwald space
can be characterized in terms of the Cartan connection CΓ : A Finsler
space is a Berwald space, if and only if the connection coefficients Γ∗

i

jk of
CΓ are functions of xi alone. Thus we have an interesting question from
the standpoint of geometry: How about Γ∗

i

jk of y-Berwald spaces?
It follows immediately from the well-known equation yjΓ∗

i

jk = Gi
k [2]

that Γ∗
i

jk = Γ∗
i

jk(y) implies Gi
jk = Gi

jk(y); the space is y-Berwald.
In the two-dimensional case the inverse is also true. In fact, as already

shown, L(x, y; p, q) of y-Berwald space F 2 is written as L = ef(x,y)N(p, q)
in an adapted coordinate system (x, y), where N(p, q) is the fundamen-
tal function of a locally Minkowski space M2. Since F 2 is conformal to
M2, F 2 has the common tensor Ci

jk(p, q) with M2 [2], (3.4.1.3′). Then
the components of the tensor

Ci
jk;0 = {∂Ci

jk/∂xh − (∂Ci
jk/∂yr)Gr

h}yh

+ Cr
jkGi

r − Ci
rkGr

j − Ci
jrG

r
k

are also functions of (p, q) alone. Hence the equation Γ∗
i

jk = Gi
jk−Ci

jk;0 [2],
(2.5.2.7) shows Γ∗

i

jk = Γ∗
i

jk(y). Therefore we have

Proposition. (1) If a Finsler space Fn is covered by coordinate neigh-

borhoods in each of which the coefficients Γ∗
i

jk of the Cartan connection are

functions of yi alone, then Fn is a y-Berwald space. (2) A two-dimensional
Finsler space F 2 is a y-Berwald space, if and only if there exists a covering

of coordinate neighborhoods in each of which Γ∗
i

jk are functions of yi alone.

2. Examples

As shown in [7], (2.7) or [8], just before (1.6), the equation of the
geodesics is written, in a two-dimensional Finsler space with coordinates
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(x, y), in the form

y′′ = 2y′G1(x, y; 1, y′)− 2G2(x, y; 1, y′), y′ = dy/dx.

Hence, in a y-Berwald space this is of the form y′′ = f(y′), and it may
well be that a y-Berwald metric will be found by the metrization of such
a differential equation.

In expectation of this hope we shall consider the following examples.

Example 1. We first deal with the differential equation

(2.1) y′′ + y′ + 1 = 0.

Let us find the two-dimensional Finsler metric L(x, y; p, q) whose geodesics
are given by (2.1).

The solution of (2.1) is written as

(2.2) y := φ(x) = ae−x − x + b,

with arbitrary constants (a, b). This is the finite equation of the family of
geodesics.

Following the method shown in [7] or [8], we find successively functions
α(x, y, z), β(x, y, z), u(x, y, z), U(x; a, b), V (x, y, z) and B(x, y, z) :

z := y′ = −ae−x − 1, α := a = −ex(z + 1), β := b = x + y + z + 1,

u := y′′ = −(z + 1), U := exp
∫

uz(x, φ, φx)dx = e−x,

V := U(x; α, β) = e−x.

Consequently we get

(2.3) B(x, y, z) := H(α, β)/V (x, y, z) = exH(α, β),

where H is an arbitrary function. Then the associated fundamental func-
tion A(x, y, z) := L(x, y; 1, z) is written in the form

(2.4)
A = A∗(x, y, z) + C(x, y) + D(x, y)z,

A∗ =
∫∫

B(x, y, z)(dz)2,

where C and D are arbitrary functions but should be chosen to satisfy

(2.5) Cy −Dx = A∗zzu + A∗yzz + A∗xz −A∗y.

Finally we obtain the fundamental function

(2.6) L(x, y; p, q) = pA(x, y, q/p).
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Now, let us take H(α, β) = 1 for simplicity. Then we have

A∗ = exz2/2, Cy −Dx = −ex.

Choosing C = 0 and D = ex, we finally obtain A = ex(z2/2 + z) and the
metric

(2.7) L(x, y; p, q) = ex(q2/2p + q).

This is certainly a y-Berwald metric according to the above Theorem;
in fact Gi are given by (1.11) as follows:

(2.8)
2G1 = p2{1− 2(p + q)2/q(2p + q)},
2G2 = pq{1− (p + q)/(2p + q)}.

Example 2. We shall be concerned with the differential equation

(2.9) y′′ + (y′)2 + y′ = 0,

of the Liouville type. The solution is written as

(2.10) y = log |ae−x + b|,
with arbitrary constants (a, b).

Similarly as in Example 1, we have

z = −a/(a + bex), α = −zex+y, β = (z + 1)ey,

u = −(z2 + z), U = e−x(ae−x + b)−2, V = e−(x+2y).

Thus we get

(2.11) B = ex+2yH(α, β).

We are especially interested in H(α, β) = αn.

(1◦) n 6= −1,−2. Then double integration leads to

A∗ = (−1)nzn+2 exp {(n+1)x+(n+2)y}/(n+1)(n+2), Cy−Dx = 0.

Taking C = D = 0, we get A = A∗. Thus, within the constant factor
(−1)n/(n + 1)(n + 2) we obtain

(2.12) L(x, y; p, q) = qn+2p−n−1 exp {(n + 1)x + (n + 2)y}.
Though this is obviously a y-Berwald metric, it is only a locally Minkowski
metric, because in (x̄, ȳ) = (e−x, ey) we have the metric of the form L =
(−1)n+1(q̄)n+2(p̄)−n−1, and the geodesics (2.10) reduce to straight lines
ȳ = ax̄ + b.
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(2◦) n = −1. Then we have

A∗ = −zey(log |z| − 1), Cy −Dx = ey.

Taking C = ey and D = 0, we obtain

(2.13) L(x, y; p, q) = ey(p + q − q log |q/p|).
This is, of course, a y-Berwald metric: Gi are written as

(2.14)

2G1N = pq(p + q + p log |q/p|),
2G2N = q2(3p + 2q + p2/q − q log |q/p|),

N = p + q − q log |q/p|.

(3◦) n = −2. Then we have

A∗ = −e−x log |z|, Cy −Dx = e−x.

Choosing C = 0 and D = −e−x, we obtain

(2.15) L(x, y; p, q) = e−x(p log |q/p|+ q).

This y-Berwald metric has Gi of the form

(2.16)

2G1 = −p2 − (p + q)2p/N,

2G2 = −pq + (p + q)pq(log |q/p| − 1)/N,

N = p log |q/p|+ q.

Thus we obtain two y-Berwald metrics (2.13) and (2.15). They are
both projectively flat, because they have the common geodesics with the
locally Minkowski metric (2.12).
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