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A note on the idealizer of a subring.
By L. FUuCHS in Budapest.

A familiar notion in group theory is the normalizer of a subgroup H
of G defined as the greatest subgroup of G in which A is a normal sub-
group. The corresponding concept in ring theory: the “idealizer” of a sub-
ring has been recently introduced in a special case by Prof. L. KALMAR').
The purpose of the present note is to give an application of this new con-
cept and to show that it is a useful notion in algebra.

By the idealizer of a subring T of a commutative ring R we shall mean
the greatest subring S of R in which T is an ideal. This definition of idea=-
lizer may be reformulated in a more direct way if we introduce the ring-re-
sidual 7:o of a subring T by an arbitrary set o of elements of R: let T:o
be the set of all x€R satisfying xeCT. (The ring-residual is readily seen to
be a subgroup of R*.) Now the idealizer may alternatively be defined as the
ring-residual T:7. It is immediate that the ring-residual and hence the idea-
lizer always exists.

Let R be a commutative ring and Q the quotient-ring?) of R. Any ideal
A of R may be considered as a subring of Q and so we may form the
idealizer of A in Q. This is a subring /(A) of Q containing R.

Theorem 1. A ring R is integrally closed®) in its quotient-ring if and
only if R is the idealizer of each finite regular ideal*) A of R.

1) L. Kaumir, Uber die Cantorsche Theorie der reellen Zahlen. Publicationes Ma~
thematicae, 1 (1930), pp. 150 —159.

?) The quotient-ring Q of R contains, besides the elements of R, all fractions a/b
with g, b in R such that & is regular (no divisor of zero). [The usual definition of quoti-
ent-rings (e.g. B. L. vaAN DER WAERDEN, Moderne Algebra, vol. 1 (1937), p. 45, or W.
Krurr, Idealthecrie (1935), p. 19) leaves out of consideration the degenerated case of rings
without regular elements; in this case the quotient-ring is empty according to the usual
definition, while by completion with the term “besides the elements of R” it coincides
with the original ring R.]

8) By definition, R is infegrally closed in its quotient-ring Q, if an algebraic equation
x4 xn-14-...4¢c,=0 with xeQ, ¢1,...,6,eR* implies x e R. Here R* denotes a least
overring of R with a unit element (if }¢R, R* = R), that is, R* consists of all pairs (r, n) (reR,
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In the proof we may restrict ourselves to the case if R contains at least
one regular element, since otherwise the statement is trivial.

Let R be integrally closed, hence having a unit element, and Iet
A=(a,,..., a,) be a finite regular ideal of R. If x belongs to A:4=1I(A),
then each element of xA is of the form rya,+...+4r,0, with r€R'=R.
Therefore xa,—=r,;a,+...+r,,a, with r,€R, and hence the determinant
4 =|r,—&;x| (where ¢, is equal to 0 or 1 according as ik or i=k)
is an annihilator of A. Consequently, by the regularity of A, we get 4=0.
Hence we have an zlgebraic equation for x with coefficients in R and lead-
ing term x*; thus x is integral over R. By integral closure, x€ R, that is,
I{(A)=R.

Conversely, if the idealizer of each finite regular ideal is R, then for
each x€Q satisfying an algebraic equation x*4¢, x*1+4-...4¢c,=0 (¢;€R"),
we form the (fraciional®)) ideal A = (1, x, ..., x*!) which is finite and re-
gular. Now xA=(x, x%,...,x")=(x, %%, ..., —x"1—,..—¢,) CA, and sin-
ce by hypothesis A:A=R, we find x€R, i.e. R is integrally closed, in fact.
The proof is completed.

We define a prime ideal P of R to be complete if it is divisorless and
at the same time /(P)=R; we may then prove

Theorem 2. Let A be an ideal of an integral domain R with maximal
condition. If all prime overideals of A are complete, then A may be represented
uniquely as the product of prime ideals.

For the proof we may proceed on the lines of B. L. VAN DER WAER
DEN’S proof in his cited book?®) § 102. It is only to be noted that for a com-
plete prime ideal P always P.P~'=R holds. Indeed, otherwise P.P™ =P,
and this would imply P~'C P:P=1I(P)=R, i e., P~'=R whichisabsurd,
considering that P~ for each prime ideal P necessarily contains elements
not in RS).

(Received December 8, 1949.)

n a rational integer) with the ccmposition rules (ry, ny) -~ (rs, ) = (ry 4 19, ny + ny) and
(ry, 1y) (re, Ns) = (ry Ty + Ng 1y -+ Ry re, 0y N5). The subrings (7, 0) and (0, n) can be identified
with R and the ring of all rational integers, respectively, so that (r, n) = r 4 n is actually
a sum in R* Our definition of integral closure coincides with vaAN DER WAERDEN's ter-
minology (Moderne Algebra, vol. Il (1940), pp. 76—177) for rings with maximal condition.
It is immediate that, whenever R contains at least one regular element, integral closure
implies the existence of a unit element as the root of the equation x2— x=0.

4) An ideal A is finife, if it has a finite base and is regular if it contains at least
one regular element.

5) A fractional ideal may be made into an integral ideal by multiplication by a re-
gular element. Hence if /(A) = R holds for all finite integral regular ideals A, then the
same must hold for all fractional ideals of the same type.

8) See loc. cit.?), § 102, Hilfssatz 3.
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