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Nonoscillation theorems for second order
quasilinear differential equations

By HORNG-JAAN LI (Chang-Hua) and CHEH-CHIH YEH (Chung-Li)

Abstract. Some nonoscillation criteria are obtained for second order quasilinear
differential equations of the form

(E) [r(t)|u′(t)|p−2u′(t)]′ + c(t)|u(t)|p−2u(t) = 0,

where p > 1, r(t) ∈ C1([t0,∞); (0,∞)) and c(t) ∈ C([t0,∞);R). These results extend
some nonoscillation criteria of Hille, Wintner, Potter, Moore, Willett for the equation

[r(t)u′(t)]′ + c(t)u(t) = 0

to equation (E).

1. Introduction

In this paper, we consider the following second order quasilinear dif-
ferential equation

(E) [r(t)|u′(t)|p−2u′(t)]′ + c(t)|u(t)|p−2u(t) = 0,

where p > 1 is a constant, r(t)∈C1([t0,∞); (0,∞)) and c(t)∈C([t0,∞);R)
for some t0 ≥ 0. If p = 2, then equation (E) reduces to the linear differen-
tial equation

(E1) [r(t)u′(t)]′ + c(t)u(t) = 0.

A solution of (E) is a function u ∈ C1([ t0,∞),R) with r|u′|p−2u′ ∈
C1[t0,∞) and satisfies equation (E) on [t0,∞). In [1], Elbert established
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the existence and uniqueness of solutions to the initial value problem for
(E) on [t0,∞). It follows from (E) that any constant multiple of a solution
of (E) is also a solution. A solution u(t) of (E) is said to be nonoscillatory
if there is a number T ≥ t0 such that u(t) 6= 0 for t ≥ T . Equation (E) is
said to be nonoscillatory if all its solutions are nonoscillatory.

There is a striking similarity in the oscillatory behavior between the
second order quasilinear differential equation (E) and the corresponding
linear equation (E1), see, for example, Elbert [1,2], Mirzov [9,10] and Li
and Yeh [7]. For example, Sturmian comparison and separation theorems
for (E1), see for example [13], have been extended in a natural way to (E).
Thus all solutions of (E) are either oscillatory or nonoscillatory, that is,
the consistency of oscillatory and nonoscillatory solutions is excluded for
equation (E).

For more recent papers of such similarity between (E) and (E1), we
refer to Kusano et al [4, 5, 6], Li and Yeh [8].

In [7], the present authors established the following sufficient and
necessary condition on the nonoscillation of (E).

Theorem 1.1 ([7], Theorem 3.2). Equation (E) is nonoscillatory if and
only if there are a number T ≥ t0 and a function f ∈ C1[T,∞) satisfying

c(t) + (p− 1)r(t)|f(t)|q − [r(t)f(t)]′ ≤ 0 for t ≥ T,

where 1
p + 1

q = 1.

The purpose of this paper is to establish some nonoscillation criteria
of (E) by using Theorem 1.1. These results improve some nonoscillation
criteria of Hille [3], Wintner [15], Potter [12], Moore [11], and Wil-
lett [14], of (E1) to equation (E).

2. Nonoscillation criteria

We assume, throughout this paper, that 1
p + 1

q = 1 and ε = (q−1)q−p.

Theorem 2.1. Let g(t) and ψ(t) be two continuously differentiable
functions on [t0,∞) satisfying g(t) > 0, g′(t) ≥ r1−q(t) and ψ′(t) ≤ −c(t).
If

(2.1) lim sup
t→∞

gp−1(t)|ψ(t)| < ε,

then equation (E) is nonoscillatory.
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Proof. By (2.1), there are two numbers T ≥ t0 and k ∈ (0, ε) such
that |ψ(t)| < kg1−p(t) for t ≥ T . Let

f = − 1
λr

(
λψ +

1− λk

gp−1

)
,

where λ = qp−1. Then

λk < λε = qp−1(q − 1)q−p =
q − 1

q
< 1,(1)

(rf)′ = −ψ′ +
(p− 1)(1− λk)g′

λgp
≥ c +

(p− 1)(1− λk)
λrq−1gp

and

c + (p− 1)r|f |q − (rf)′ ≤ c + (p− 1)r
∣∣∣∣

1
λr

(
λψ +

1− λk

gp−1

)∣∣∣∣
q

−c− (p− 1)(1− λk)
λrq−1gp

= (p− 1)r1−qg−p

{∣∣∣∣ψgp−1 +
1− λk

λ

∣∣∣∣
q

− 1− λk

λ

}

≤ (p− 1)r1−qg−p

{∣∣∣∣k +
1− λk

λ

∣∣∣∣
q

− 1− λk

λ

}

= (p− 1)r1−qg−p

(
1
λq
− 1

λ
+ k

)
= (p− 1)r1−qg−p(k − ε) ≤ 0.

It follows from Theorem 1.1 that equation (E) is nonoscillatory.

If p = 2, r(t) = 1, c(t) > 0 for t ≥ t0 and g(t) = t, ψ(t) =∫∞
t

c(s)ds < ∞, then Theorem 2.1 reduces to a Hille’s criterion [3, p. 246].

Theorem 2.2. Let g(t) and ψ(t) be two continuously differentiable
functions on [t0,∞) satisfying g(t) > 0, g′(t) ≤ −r1−q(t) and ψ′(t) ≥ c(t).
If (2.1) holds, then equation (E) is nonoscillatory.

Proof is the same as in Theorem 2.1 with the exception that
f = 1

λr

(
λψ + 1−λk

gp−1

)
and λk ≤ λε in (1).

Theorem 2.3. Let g(t) and ψ(t) be two continuously differentiable
functions on [t0,∞) satisfying g(t) > 0, g′(t) ≥ r1−q(t) and ψ′(t) ≤ −c(t).
If there exists a number k > 0 such that

(2.2) −k
1
q − k ≤ gp−1(t)ψ(t) ≤ k

1
q − k ≤ ε.

then equation (E) is nonoscillatory.
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Proof. Let

f = −1
r

(
ψ +

k

gp−1

)
.

Then

(rf)′ = −ψ′ +
(p− 1)kg′

gp
≥ c +

(p− 1)k
rq−1gp

and

c + (p− 1)r|f |q − (rf)′ ≤ c + (p− 1)r
∣∣∣∣
1
r

(
ψ +

k

gp−1

)∣∣∣∣
q

− c− (p− 1)k
rq−1gp

= (p− 1)r1−qg−p
{∣∣ψgp−1 + k

∣∣q − k
}
≤ (p− 1)r1−qg−p(k − k) = 0.

It follows from Theorem 1.1 that equation (E) is nonoscillatory.

If p = 2, g(t) = 1 +
∫ t

t0
1

r(s)ds as t −→ ∞ and ψ(t) =
∫∞

t
c(s)ds < ∞,

then Theorem 2.3 reduces to a Moore’s criterion [11, Theorem 6].

Theorem 2.4. Let g(t) and ψ(t) be two continuously differentiable
functions on [t0,∞) satisfying g(t) > 0, g′(t) ≤ −r1−q(t) and ψ′(t) ≥ c(t).
If there exists a number k > 0 such that (2.2) holds, then equation (E) is
nonoscillatory.

Proof. Let

f =
1
r

(
ψ +

k

gp−1

)
.

Then

(rf)′ = ψ′ − (p− 1)kg′

gp
≥ c +

(p− 1)k
rq−1gp

and

c + (p− 1)r|f |q − (rf)′ ≤ c + (p− 1)r
∣∣∣∣
1
r

(
ψ +

k

gp−1

)∣∣∣∣
q

− c− (p− 1)k
rq−1gp

= (p− 1)r1−qg−p
{∣∣ψgp−1 + k

∣∣q − k
}
≤ (p− 1)r1−qg−p(k − k) = 0.

It follows from Theorem 1.1 that equation (E) is nonoscillatory.

If p = 2, g(t) =
∫∞

t
1

r(s)ds < ∞ and ψ(t) =
∫ t

t0
c(s)ds, then Theo-

rem 2.4 reduces to a Moore’s criterion [11, Theorem 6].
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Example 2.5. Consider the equation

(E2)
(
tα|u′|p−2u′

)′
+ λtα−p|u|p−2u = 0, for t > 0

where α > p− 1 and λ > 0 are two constants. Let

g(t) =
∫ ∞

t

s−
α

p−1 ds

and

ψ(t) =
∫ t

0

λsα−pds.

Then

g(t) =
p− 1

α− p + 1
t

p−1−α
p−1 , ψ(t) =

λ

α− p + 1
tα−p+1

and

gp−1(t)ψ(t) =
λ

α− p + 1

(
p− 1

α− p + 1

)p−1

.

If

λ ≤
(

α− p + 1
p

)p

,

then gp−1(t)ψ(t) ≤ ε. It follows from Theorem 2.4 that equation (E2) is
nonoscillatory.

Theorem 2.6. Let g(t) be a continuously differentiable function on
[t0,∞) such that g(t) > 0 and g′(t) ≥ r1−q(t). If there exists a continuously
differentiable function ψ(t) on [t0,∞) such that limt→∞ ψ(t) exists and
ψ′(t) ≤ −gp−1(t)c(t), then equation (E) is nonoscillatory.

Proof. Since limt→∞ ψ(t) exists, there exist two real numbers T ≥ t0
and M such that 0 < M + ψ(t) ≤ 1 for t ≥ T . Let

f = −M + ψ

rgp−1
.

Then

(rf)′ =
(p− 1)(M + ψ)g′

gp
− ψ′

gp−1
≥ c +

(p− 1)(M + ψ)
rq−1gp
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which implies

c + (p− 1)r|f |q − (rf)′ ≤ c + (p− 1)r
∣∣∣∣
M + ψ

rgp−1

∣∣∣∣
q

− c− (p− 1)(M + ψ)
rq−1gp

≤ (p− 1)r1−qg−p[(M + ψ)− (M + ψ)] = 0.

It follows from Theorem 1.1 that equation (E) is nonoscillatory.

Theorem 2.7. Let g(t) be a continuously differentiable function on
[t0,∞) such that g(t) > 0 and g′(t) ≤ −r1−q(t). If there exists a con-
tinuously differentiable function ψ(t) such that limt→∞ ψ(t) exists and
ψ′(t) ≤ −gp−1(t)c(t), then equation (E) is nonoscillatory.

Proof. Since limt→∞ ψ(t) exists, there exist two real numbers T ≥ t0
and M such that 0 < M − ψ(t) ≤ 1 for t ≥ T . Let

f =
M − ψ

rgp−1
.

Then

(rf)′ = − (p− 1)(M − ψ)g′

gp
− ψ′

gp−1
≥ c +

(p− 1)(M − ψ)
rq−1gp

,

which implies

c + (p− 1)r|f |q − (rf)′ ≤ c + (p− 1)r
∣∣∣∣
M − ψ

rgp−1

∣∣∣∣
q

− c− (p− 1)(M − ψ)
rq−1gp

≤ (p− 1)r1−qg−p[(M − ψ)− (M − ψ)] = 0.

It follows from Theorem 1.1 that equation (E) is nonoscillatory.

Theorem 2.8. Let

c(t) ≤ 1
hp(t)

,

where h(t) ∈ C1([t0,∞); (0,∞)). If either

h′(t)− 1
rq−1(t)

≥ 1
p− 1

for all t large enough,

or

lim
t→∞

(
h′(t)− 1

rq−1(t)

)
= L exists and L >

1
p− 1

,
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then equation (E) is nonoscillatory.

Proof. It follows from the assumption that there is a number T ≥ t0
such that

h′(t)− 1
rq−1(t)

≥ 1
p− 1

for all t ≥ T.

Let

f = − 1
rhp−1

.

Then

c + (p− 1)r|f |q − (rf)′ ≤ 1
hp

+
p− 1

rq−1hp
− (p− 1)h′

hp

= (p− 1)h−p

(
1

p− 1
+

1
rq−1

− h′
)
≤ 0 for t ≥ T.

Hence, by Theorem 1.1, equation (E) is nonoscillatory.

If p = 2 and r(t) = 1, then Theorem 2.7 reduces to a Potter’s
criterion [12, Theorem 1.5].

Theorem 2.9. Let ψ(t) be a nonnegative continuously differentiable
function on [t0,∞) such that ψ′(t) ≤ −c(t). If

∫ ∞

t

ψq(s)
rq−1(s)

ds ≤ p−qψ(t),

then equation (E) is nonoscillatory.

Proof. Let

f = − 1
r(t)

(
ψ(t) + (p− 1)pq

∫ ∞

t

ψq(s)
rq−1(s)

ds

)
.

Then

[r(t)f(t)]′ ≥ c(t) +
(p− 1)pqψq(t)

rq−1(t)
.
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Hence

c(t) + (p− 1)r(t)|f(t)|q − [r(t)f(t)]′

≤ c(t) + (p− 1)r(t)
∣∣∣∣

1
r(t)

(
ψ(t) + (p− 1)pq

∫ ∞

t

ψq(s)
rq−1(s)

ds

)∣∣∣∣
q

− c(t)− (p− 1)pqψq(t)
rq−1(t)

= (p− 1)r1−q(t)
{∣∣∣∣ψ(t) + (p− 1)pq

∫ ∞

t

ψq(s)
rq−1(s)

ds

∣∣∣∣
q

− pqψq(t)
}

≤ (p− 1)r1−q(t)
[
|ψ(t) + (p− 1)pq · p−qψ(t)|q − pqψq(t)

]
= 0.

It follows from Theorem 1.1 that equation (E) is nonoscillatory.

Theorem 2.10. Let ψ(t) be a nonnegative continuously differentiable
function on [t0,∞) such that ψ′(t) ≤ −c(t), and let

ψ1(t) =
∫ ∞

t

ψq(s)
rq−1(s)

exp
(

(p− 1)pq−1

∫ s

t

ψq−1(ξ)
rq−1(ξ)

dξ

)
ds.

If ψ1(t) ≤ p1−qψ(t), then equation (E) is nonoscillatory.

Proof. Let

f = −1
r

(
ψ + (p− 1)pq−1ψ1

)
.

Then

(rf)′ = −ψ′ − (p− 1)pq−1ψ′1
≥ c + (p− 1)pq−1r1−q

(
(p− 1)pq−1ψq−1ψ1 + ψq

)
.

Hence

c + (p− 1)r|f |q − (rf)′ ≤ c + (p− 1)r1−q[ψ + (p− 1)pq−1ψ1]q

− c− (p− 1)pq−1r1−q[(p− 1)pq−1ψq−1ψ1 + ψq]

= (p− 1)r1−q[ψ + (p− 1)pq−1ψ1]
{
[ψ + (p− 1)pq−1ψ1]q−1 − pq−1ψq−1

}

≤ (p− 1)r1−q[ψ + (p− 1)pq−1ψ1]
{
[ψ + (p− 1)pq−1 · p1−qψ]q−1

− pq−1ψq−1
}

= (p− 1)r1−q[ψ + (p− 1)pq−1ψ1][pq−1ψq−1 − pq−1ψq−1] = 0.

It follows from Theorem 1.1 that equation (E) is nonoscillatory.
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