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Gemini functional equations on quasigroups

By A. KRAPEŽ (Beograd) and M. A. TAYLOR (Wolfville)

1. Introduction

An interesting class of quasigroup functional equations (or identities,
or laws) is the class of quadratic equations. Quadratic equation is one in
which each variable appears exactly twice. The general study of quadratic
equations was initiated by A. Krapež in [5] (they were called ‘strictly
quadratic’ there).

Examples of quadratic equations/identities are:

x · xy = y (Sade’s left ‘keys’ law)

x · yx = y (right semisymmetry)

xx = yy (unipotency)

and the whole class of balanced identities such as:

x = x (trivial identity)

xy = yx (commutativity)

x · yz = xy · z (associativity)

xy · uv = xu · yv (bisymmetry, mediality)

xy · z = xz · y (right permutability)

x · yz = z · yx (Abel-Grassman’s law)

as well as many others (see for example [2]).
In general, a balanced equation is one in which each variable appears

precisely once on both sides. More on balanced quasigroups can be found
in [6] and [7].
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To describe gemini equations we first need some definitions.
With every quasigroup · (base set S assumed to be a fixed nonempty

set), five more quasigroups, so called parastrophes of · are implicitely given.
They are defined by:

x · y = z iff y ∗ x = z iff x\z = y iff z\\x = y iff z/y = x iff y//z = x
and have an important role in the description of solutions of quadratic
equations. ∗ is usually called the dual of · . \ and / are the left and right
division respectively. \\ and // are the duals of \ and / .

We will use the following notation : x ◦ y for xy (i.e. x · y) or x ∗ y
(i.e. yx) and x ◦ y ◦ z for (x ◦ y) ◦ z . Therefore ◦ is not an operation but
just a convenient notation.

If uv is a subterm of a term t then we say that u and v are companions
(in t).

The content 〈u〉 of a quasigroup term u is the set of variables which
appear in u. Furthermore we distinguish between linear and quadratic
content of u. The linear content 〈u〉1 of u is the set of variables which
appear precisely once in u . Predictably, the quadratic content 〈u〉2 of u
is the set of variables appearing exactly twice in u .

Definition 1. The subterms u1 and u2 appearing in the equation w1 =
w2 are said to be twins in w1 = w2 if 〈u1〉1 = 〈u2〉1 6= ∅ and neither is a
subterm of the other. We say that u1 is a twin if there exists a subterm
u2 (of w1 or w2) such that u1 , u2 are twins or if 〈u1〉1 = ∅ .

Definition 2. The quadratic equation w1 = w2 is said to be gemini
if for every subterm uv of w1 or w2 which is not a twin and for which
〈u〉1 6= ∅ , 〈v〉1 6= ∅ , there exists twins s1, s2, . . . , sn with 〈sn〉1 = 〈u〉1
or 〈sn〉1 = 〈v〉1 and 〈si〉 ∩ 〈u〉 = 〈si〉 ∩ 〈v〉 = ∅ for 0 < i < n such that
〈t〉1 = 〈u〉1 when 〈sn〉1 = 〈v〉1 or 〈t〉1 = 〈v〉1 when 〈sn〉1 = 〈u〉1 , where
t = uv ◦ s1 ◦ · · · ◦ sn .

Among equations given above, gemini are : trivial identity, commu-
tativity, Sade’s left ‘keys’ law, right semisymmetry and unipotency.

2. Quadratic equations and cubic graphs

The tools used in this section are essentially due to S. Krstić and first
appeared in his PhD thesis [1]. Unfortunately this work is only available
in Serbocroatian and for this reason we have given a brief resume of the
relevant results.

For every quadratic equation E we define a cubic graph Γ(E) . First,
we replace all occurrences of a quasigroup operation by new binary symbols
V1, V2, . . . , Vn so that we can distinguish between them. These will be the
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vertices of Γ(E) . If E is the equation w1 = w2 , the edges of Γ(E) will
be the subterms of w1 and w2 . If t1 · t2 is a subterm of w1 or w2 then
the corresponding vertex Vi will be incident to edges t1 , t2 , t1 · t2 and no
other.

The main operations, say Vp and Vq are incident to the same edge
denoted by both w1 and w2 . If xx (for some variable x ) is a subterm of
w1 or w2 then x is a loop (circular edge) at the corresponding vertex Vi .
As the operation · is binary, every vertex is incident to exactly three edges
(a loop being counted twice). So the graph Γ(E) is cubic. Example:

Let us write the associativity equation as: xV1(yV2z) = (xV3y)V4z.
Then the corresponding graph is:

Figure 1.

Conversely, every cubic graph defines a quadratic equation (which is
not unique).

A bridge in a graph is any edge whose removal disconnects the graph.
Further, two edges constitute a bridge-couple if neither of them is a bridge
and the removal of both disconnects the graph.

A cubic graph Γ is tree-like if every edge of Γ is a bridge or a loop. Γ
is tree-like iff it can be obtained from a tree by adjoining a loop to every
extremal vertex in the tree.

Connectivity c(Γ) of the graph Γ is the minimal number of edges of Γ
whose removal disconnects Γ. In a cubic graph we have c(Γ) ≤ 3. c(Γ) = 1
iff Γ has a bridge and c(Γ) = 2 iff Γ has no bridges but has a bridge-couple.
Note that every cubic graph which is not tree-like and has a bridge has a
bridge-couple as well.

Theorem 1 (Menger, see [3]). Any two vertices of a graph Γ can be
joined by at least c(Γ) arcs such that any two of these arcs have null-
dimensional intersection.
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Definition 3. For vertices A and B of a cubic graph Γ A ∼ B iff A
and B can be joined in Γ by three arcs with disjoint interiors (i.e., having
pairwise null-dimensional intersection).

The following two are extreme cases.
– Any two vertices of Γ are ∼-equivalent iff c(Γ) = 3 i.e. Γ has no

bridge-couples.
– If A and B are vertices of a tree-like graph Γ then A ∼ B iff A = B.

We define Γ to be indecomposable iff either Γ is tree-like or c(Γ) = 3.
The other cubic graphs, decomposable ones, we decompose in a following
way. Every such graph has a bridge-couple. So let {x, y} be a bridge-
couple in Γ and Γ′1, Γ

′
2 be the components of Γ\{x, y} . Let Γi(i = 1, 2) be

the graph obtained from Γ′i by introducing a new edge zi which connects
the endpoints of x and y which belong to Γ′i .

We say that Γ is a connected sum of Γ1 and Γ2 . A ∼ B in some of
Γi(i = 1, 2) iff A ∼ B in Γ .

Figure 2.

Lemma 1 (Krstić). Every cubic graph Γ is a connected sum of its
indecomposable components T1, . . . , Tn,Γ1, . . . , Γm . T1, . . . , Tn are tree-
like (with ∼-classes singletons) while all Γ1, . . . , Γm are ∼-classes.

Lemma 2 (Krstić). For a cubic graph Γ with more than two vertices,
c(Γ) = 3 iff tetrahedron (i.e. graph usually denoted by K4) is (homeomor-
phically) embeddable in Γ .

Let us call ∼-classes with one or two elements small and those with
more than two (i.e., at least four) — big. Then we have:
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Theorem 2 (Krstić, Krapež [8]). For a quadratic equation E and
associated graph Γ(E) the following is equivalent:

– a quasigroup satisfying E is isotopic to a group
– there is a big ∼-class in Γ(E)
– tetrahedron is embeddable in Γ(E) .

3. Gemini equations

Lemma 3. Let t1, t2 be subterms of w1 and/or w2 such that neither
{t1, t2} = {w1, w2} nor both t1, t2 are variables. If they are twins in E
(i.e. w1 = w2) then {t1, t2} is a bridge-couple in Γ(E).

Proof. Since not both t1, t2 are variables, there are operation sym-
bols in t1, t2 . Therefore the set of vertices associated with t1 and t2 is not
empty. Any subterm of w1, w2 containing only variables from 〈t1〉 ∪ 〈t2〉 is
a subterm of either t1 or t2. Any other subterm of w1 or w2 either contains
no variables from 〈t1〉 ∪ 〈t2〉 or contains t1, t2 or both.

Therefore Γ(E) can be split into two subgraphs, the one with verti-
ces/operations from t1, t2, the other with the rest of them, such that the
only edges connecting the two subgraphs are t1 and t2. So {t1, t2} is a
bridge-couple in Γ(E). ¤

Theorem 3. Quadratic equation E is gemini iff all ∼-classes in Γ(E)
are small.

Proof. ⇒) Using Lemma 1 we can assume that Γ(E) is indecom-
posable and therefore that it has no bridge-couples. If Γ(E) is tree-like
then all ∼-classes are small. So we assume that Γ(E) is a ∼-class. Assume
also that E (i.e. w1 = w2) has at least three operations and that w1 has
no fewer operations than w2.

Look at the subterm V1(x, y) of w1 (x, y variables).
(a) V1(x, y) is a twin.

(a1) x ≡ y. Then {V1} is a ∼-class contrary to our assumption.
(a2) x and y are different variables.

Then there is a subterm t of either w1 or w2 which is a twin to V1(x, y).
Consequently 〈t〉1 = {x, y}.

It cannot be that V1(x, y) = t is the given equation (w1 has more then
one operation symbol). Therefore by lemma 3 Γ(E) has a bridge-couple
and is decomposable, contrary to our assumption.
(b) V1(x, y) is not a twin.
Then there exists twins s1, . . . , sn with 〈sn〉1 = {x} or 〈sn〉1 = {y}, say the
latter and x, y 6∈ 〈si〉 for 0 < i < n such that 〈V1(x, y)◦s1◦· · ·◦sn〉1 = {x}.
If sn is not y then y and sn are twins and Γ(E) is decomposable which
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is a contradiction. Therefore sn ≡ y. Denote the main operation symbol
of V1(x, y) ◦ s1 by V2. As V1 ∼ V2, V1 and V2 can be joined by three
arcs with disjoint interiors. One such arc consists of the edge V1(x, y)
only. The other two should contain edges x and y respectively. But since
x, y 6∈ 〈si〉 (0 < i < n), both will contain V1(x, y) ◦ s1 ◦ · · · ◦ sn−1 and so
cannot have disjoint interiors. This is impossible by our assumption that
Γ(E) is a ∼-class.

⇐) For the converse we assume that E is a quadratic equation with
all ∼-classes of Γ(E) small. We should prove that E is gemini.

Let E denote quadratic equation w1 = w2. Take a subterm uv (assume
of w1) which is not a twin and such that 〈u〉1 6= ∅ and 〈v〉1 6= ∅.

If uv ≡ w1 then uv is a twin, which is impossible. So there is at least
one companion s1 to uv. Let s2 be a companion to uv ◦ s1 (if it exists).
Take s3, s4, . . . similarly so that w1 = uv ◦s1 ◦ · · ·◦sm for some positive m.

We shall distinguish the following cases:
(1) 〈u〉1 = 〈v〉1
(2) 〈u〉1 \ 〈v〉1 6= ∅ and 〈v〉1 \ 〈u〉1 6= ∅
(3) 〈u〉1 is a proper subset of 〈v〉1
(4) 〈v〉1 is a proper subset of 〈u〉1.

(1) If 〈u〉1 = 〈v〉1 then 〈uv〉1 = ∅ and uv is a twin contrary to our as-
sumption.

(2) Two cases are possible:
(a) for all i ≤ m 〈si〉 ∩ 〈u〉 = 〈si〉 ∩ 〈v〉 = ∅
(b) there is an n ≤ m such that 〈sn〉 ∩ 〈u〉 6= ∅ or 〈sn〉 ∩ 〈v〉 6= ∅.
(2a) Let x be a variable from 〈u〉1 which is not in 〈v〉1 and y a variable

in 〈v〉1 which is not in 〈u〉1. Let also p be the least subterm of w2 containing
both x and y.

Using our convention about names of vertices of Γ(E) we shall take
terms uv and V1(u, v) as sinonimous. Also p = V2(q, r) for some terms q
and r. We shall assume x ∈ 〈q〉 and y ∈ 〈r〉. 〈V1(u, v)〉1 6= 〈V2(q, r)〉1,
otherwise V1(u, v) i.e., uv is a twin. Consequently there is a variable z
which belongs to one of 〈V1(u, v)〉1, 〈V2(q, r)〉1 but not both. Assume
z ∈ 〈V1(u, v)〉1. Further assume that z ∈ 〈v〉1. This possibility is described
by the following form of the equation E:

w1[V1(u[x], v[V3[y, z]])] = w2[V4[V2(q[x], r[y]), z]].

So V1 ∼ V2 ∼ V3 ∼ V4 which is impossible since all ∼-classes are
small.

Similar proof can be constructed in the case z ∈ 〈u〉1.
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If z is a variable from 〈V2(q, r)〉1 but not from 〈V1(u, v)〉1 we have
either:

w1[V1(u[x], v[y])] = w2[V4[V2(q[x], r[V3[y, z]]), z]] or

w1[V4[V1(u[x], v[y]), z]] = w2[V2(q[x], r[V3[y, z]])]

(z ∈ 〈r〉1 assumed in both cases).
Then again V1 ∼ V2 ∼ V3 ∼ V4 which is a contradiction.
(2b) The case where both 〈sn〉 ∩ 〈u〉 6= ∅ and 〈sn〉 ∩ 〈v〉 6= ∅ is

impossible. The proof is analogous to (2a). Therefore we assume that
〈sn〉 ∩ 〈u〉 = ∅ and 〈sn〉 ∩ 〈v〉 6= ∅. We shall prove 〈sn〉1 = 〈v〉1 .

(2b1) y ∈ 〈sn〉1 ∩ 〈v〉1 and there is another variable y′ such that
y′ ∈ 〈v〉1, y′ 6∈ 〈sn〉1. We have:

w1[V3[V1(u[x], v[V2[y, y′]]), sn[y]]] = w2.

Two of the three terms x, y′, V3(. . . , sn) define one further operation V4

and V1 ∼ V2 ∼ V3 ∼ V4 which is a contradiction.
(2b2) y ∈ 〈sn〉1 ∩ 〈v〉1 and there is another variable y′ such that

y′ ∈ 〈sn〉1 and y′ 6∈ 〈v〉1. E then becomes:

w1[V3[V1(u[x], v[y]), sn[V2[y, y′]]]] = w2.

Two of the three terms x, y′, V3(. . . , sn) define one further operation
V4 and V1 ∼ V2 ∼ V3 ∼ V4 which is a contradiction.

The only remaining case is:
(2b3) 〈v〉1 = 〈sn〉1.

Let z be a variable which belongs to 〈si〉1 (1 < i < n) and no other set in
the sequence 〈s1〉1, . . . , 〈sn−1〉1. We have:

w1[V3[V2[V1(u[x], v[y]), si[z]], sn[y]]] = w2.

Two of the three terms x, z, V3(. . . , sn) define one further operation V4

and V1 ∼ V2 ∼ V3 ∼ V4 which is a contradiction. Therefore z must
belong to two sets in the sequence 〈s1〉1, . . . , 〈sn−1〉1 and consequently
〈uv ◦ s1 ◦ · · · ◦ sn〉1 = 〈u〉1.

Assume that there is a term si (1 < i < n) and variables z, z′ ∈ 〈si〉1
such that z ∈ 〈sj〉1 and z′ ∈ 〈sk〉1 (j 6= k, j < n, k < n). E becomes:

w1[V3[Vk[Vj [Vi[V1(u[x], v[y]), si[z, z′]], sj [z]], sk[z′]], sn[y]]] = w2.

It follows that Vi ∼ Vj ∼ Vk which is a contradiction.
Therefore all variables from 〈si〉1 also appear in a single sj which then

must be a twin to si.
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It follows that E is gemini.
To conclude the proof in the case (2b) we should note that the proof

of the subcase 〈sn〉 ∩ 〈v〉 = ∅, 〈sn〉 ∩ 〈u〉 6= ∅ is analogous to the one just
given.

It follows that every case is either impossible or implies that E is
gemini.
(3) 〈u〉1 is a proper subset of 〈v〉1.

Two cases are possible:
(a) for all i ≤ m 〈si〉 ∩ 〈u〉 = 〈si〉 ∩ 〈v〉 = ∅
(b) there is an n ≤ m such that 〈sn〉 ∩ 〈u〉 6= ∅ or 〈sn〉 ∩ 〈v〉 6= ∅.
(3a) Let x ∈ 〈u〉1 and y ∈ 〈v〉1 \ 〈u〉1.

Equation E is:
w1[V1(u[x], v[x, y])] = w2[y].

If 〈uv〉1 = 〈V1(u, v)〉1 = {y} then uv and y are twins which is im-
possible. Therefore there is a subterm t = V3(p, q) of w2 which contains
all variables from 〈V1(u, v)〉1. Let y ∈ 〈p〉1 and y′ ∈ 〈uv〉1, y′ ∈ 〈q〉1. If
〈t〉1 = 〈V1(u, v)〉1 then t and uv are twins which is impossible. Therefore
〈V1(u, v)〉1 is a proper subset of 〈t〉1. Let z ∈ 〈t〉1 \ 〈V1(u, v)〉1 and assume
z ∈ 〈q〉1. Depending on whether z ∈ 〈w1〉 or not, equation E becomes
either:

w1[V6[V1(u[x], v[x, y, y′]), z]] = w2[V3(p[y], q[V5[y′, z]])] or

w1[V1(u[x], v[x, y, y′])] = w2[V6[V3(p[y], q[V5[y′, z]]), z]].

In both cases (and irrespectively of the position of y′ in v) V3 ∼ V5 ∼ V6

contrary to our assumption that all ∼-classes in Γ(E) are small. Therefore
the case (3a) is impossible.

(3b) There is an n ≤ m such that 〈sn〉 ∩ 〈u〉 6= ∅ or 〈sn〉 ∩ 〈v〉 6= ∅.
The proof of this case is analogous to (2b).
Therefore every subcase of (3) is either impossible or else implies that

E is gemini.
(4) This case is ‘dual’ to (3) and can be proved analogously. ¤

The following theorem shows that quadratic equations are either gem-
ini or force operations satisfying them to be group isotopes.

Theorem 4. Every quasigroup which satisfies a quadratic equation
which is not a gemini equation is isotopic to a group.

Proof. Directly from Theorem 3. ¤
Gemini equations can be characterized as quadratic consequences of

total symmetry and loop properties :
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Theorem 5. Every gemini equation is satisfied by all totally symmet-
ric loops.

Proof is by the induction on the number of quadratic variables of an
equation.

For n = 0, equation is balanced. The statement is true since all
Belousov equations are satisfied by all comutative quasigroups (see [4]).

Assume now that all gemini equations with less than n quadratic
variables are satisfied by all TS loops. We attempt to prove that this is
also true for an arbitrary equation with n quadratic variables.

Let gemini equation w1 = w2 be given with exactly n quadratic vari-
ables. Let uv be a subterm of w1 or w2 such that x ∈ 〈u〉1 , x ∈ 〈v〉1 and
〈u〉2 = 〈v〉2 = ∅.
(a) u is not a product. Then u ≡ x.

(a1) v is a twin. x ∈ 〈v〉1 so 〈v〉1 6= ∅ . There is a w — the twin to
the v, x ∈ 〈v〉1 = 〈w〉1 so x is a subterm of w. uv is not a subterm of w
since x 6∈ 〈uv〉1. So w ≡ u ≡ x. But then 〈v〉1 = 〈w〉1 = {x} and v ≡ x as
well.

Replacing uv ≡ x2 by the unit of a TS loop leads to the gemini
equation with less than n quadratic variables.

(a2) v is not a twin.
Then v ≡ v1 ◦ v2. Assume x ∈ 〈v1〉. Since v is not a twin, there are
terms s1, . . . , sm such that 〈sm〉1 = 〈v1〉1 or 〈sm〉1 = 〈v2〉1 and either
〈v ◦ s1 ◦ · · · ◦ sm〉1 = 〈v2〉1 or 〈v ◦ s1 ◦ · · · ◦ sm〉1 = 〈v1〉1

(a2.1) 〈sm〉1 = 〈v1〉1.
Since x ∈ 〈v1〉1, x ∈ 〈sm〉1 and consequently sm ≡ u ≡ x, m = 1 and
v1 ≡ x. But then uv = x(x ◦ v2) which is equal to v2 in TS loops.

(a2.2) 〈sm〉1 = 〈v2〉1.
Then 〈v ◦s1 ◦· · ·◦sm〉1 = 〈v1〉1. x ∈ 〈v〉1 and x ∈ 〈s1〉1 = 〈u〉1 so it cannot
be x ∈ 〈v ◦ s1 ◦ · · · ◦ sm〉1. This contradiction shows that the case (a2.2) is
impossible.
(b) u is a product. Then x has a companion t in u.

(b1) x ◦ t is a twin.
Let w be a twin to x ◦ t. 〈w〉1 = 〈x ◦ t〉1 and x ∈ 〈w〉 so w is a subterm
of v. But then there are no quadratic variables in either w or t and
〈w〉 = {x} ∪ 〈t〉.

If t is variable y then w ≡ x ◦ y and replacement of x ◦ y by the
new variable z leads to the gemini equation with less than n quadratic
variables.

If t is not a variable, then there is a subterm yz of t where y and z
are variables.
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If yz is not a twin then there are subterms s1, . . . , sm such that
〈sm〉1 = {y} or 〈sm〉1 = {z}, for all i (i < m) both y 6∈ 〈si〉 and z 6∈ 〈si〉
and either 〈yz ◦ s1 ◦ · · · ◦ sm〉1 = {z} or 〈yz ◦ s1 ◦ · · · ◦ sm〉1 = {y}. Since
y ∈ 〈sm〉1 or z ∈ 〈sm〉1, sm ≡ v but then y and z cannot belong to
〈yz ◦ s1 ◦ · · · ◦ sm〉1 = 〈uv〉1.

So yz must be a twin. Consequently y ◦z is a subterm of v. Replacing
y◦z by the new variable leads to equivalent gemini equation with less than
n quadratic variables.

(b2) x ◦ t is not a twin.
Then there are subterms s1, . . . , sm such that 〈sm〉1 = {x} or 〈sm〉1 =
〈t〉1, for all i < m x 6∈ 〈si〉 and 〈si〉 ∩ 〈t〉 = ∅ and such that either
〈x ◦ t ◦ s1 ◦ · · · ◦ sm〉1 = 〈t〉1 or 〈x ◦ t ◦ s1 ◦ · · · ◦ sm〉1 = {x}.

(b2.1) 〈sm〉1 = {x}.
Then 〈x ◦ t ◦ s1 ◦ · · · ◦ sm〉1 = 〈t〉1 and sm ≡ v. Since 〈v〉2 = ∅ sm ≡ v ≡ x.
But then x ◦ t ◦ s1 ◦ · · · ◦ sm−1 ≡ u and 〈x ◦ t ◦ s1 ◦ · · · ◦ sm−1〉1 = 〈x ◦ t〉1
so m = 1. Therefore uv ≡ (x ◦ t) ◦ x = (t ◦ x) ◦ x = tx/x = t in TS loops.

Replacing uv by t in w1 = w2, we get equivalent gemini equation with
less than n quadratic variables.

(b2.2) 〈sm〉1 = 〈t〉1.
Then 〈x ◦ t ◦ s1 ◦ · · · ◦ sm〉1 = {x}. Since x 6∈ 〈t〉1 and x 6∈ 〈si〉 (for i < m)
no si is v, so x ◦ t ◦ s1 ◦ · · · ◦ sm is a subterm of u. But u has no quadratic
variables proving case (b2.2) impossible.

In all casses we reduced the number of quadratic variables to less than
n using only identities satisfied in all TS loops. By induction hypothesis
all gemini equations with less than n quadratic variables are satisfied in
all TS loops. So w1 = w2 is satisfied by all TS loops as well. ¤

Here is yet another characterization of gemini equations (compare
with [4]).

Theorem 6. Quadratic equation E is gemini iff there is an equation
I(·, ∗, /, //, \, \\) (in the language {·, ∗, /, //, \, \\}), true in all TS loops
and such that E is I(·, ·, ·, ·, ·, ·).

Proof. A quasigroup is totally symmetric iff all operations ·, ∗, /, //,
\, \\ coincide. The statement of the Theorem 6 then follows from Theo-
rem 5. ¤
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4. Positive gemini equations

Definition 4. Quadratic functional equation w1 = w2 is positive if
there is no subterm t of either w1 or w2 such that 〈t〉1 = ∅.

The results for positive gemini equations are quite similar to those
for general gemini equations and follow readily from them. Theorem 9,
however, requires a slight change in the proof.

Theorem 7. Positive quadratic equation E is gemini iff all ∼-classes
in Γ(E) are small.

Theorem 8. Every quasigroup which satisfies a positive quadratic
equation which is not a gemini equation is isotopic to a group.

Theorem 9. Every positive gemini equation is satisfied by all totally
symmetric quasigroups.

As noted before, the proof of the Theorem 9 is similar to the proof of
Theorem 5. The case (a1) is impossible for positive quadratic equations
and we should note that in all cases of reduction in the number of quadratic
variables, resulting equations are positive.

Theorem 10. Positive quadratic equation E is (positive) gemini iff
there is an equation I(·, ∗, /, //, \, \\) (in the language {·, ∗, /, //, \, \\})
true in all TS quasigroups and such that E is I(·, ·, ·, ·, ·, ·).
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