On the diophantine equation $D_{1} x^{2}+D_{2}=k^{n}$

By TAIJIN XU (Zhanjiang) and MAOHUA LE (Zhanjiang)

Abstract

Let D, D_{1}, D_{2}, k be positive integers such that $D=D_{1} D_{2}, D_{1}>1$, $D_{2}>1, k>1$ and $\operatorname{gcd}\left(D_{1}, D_{2}\right)=\operatorname{gcd}(D, k)=1$. Let $\omega(k)$ be the number of distinct prime factors of k. Further, let $N\left(D_{1}, D_{2}, k\right)$ be the number of positive integer solutions (x, n) of the equation $D_{1} x^{2}+D_{2}=k^{n}$. In this paper, we prove that if $2 \nmid k$ and $\max \left(D_{1}, D_{2}\right)>\exp \exp \exp 105$, then $N\left(D_{1}, D_{2}, k\right) \leq 2^{\omega(k)-1}+1$ or $2^{\omega(k)-1}$ according as the triple $\left(D_{1}, D_{2}, k\right)$ is exceptional or not. The above upper bound is the best possible if k is a prime.

1. Introduction

Let \mathbb{Z}, \mathbb{N} be the sets of integers and positive integers, respectively. Let $D, D_{1}, D_{2}, k \in \mathbb{N}$ be such that $D=D_{1} D_{2}, D_{1}>1, D_{2}>1, k>1$ and $\operatorname{gcd}\left(D_{1}, D_{2}\right)=\operatorname{gcd}(D, k)=1$. Let $\omega(k)$ be the number of distinct prime factors of k. Further let $N\left(D_{1}, D_{2}, k\right)$ be the number of solutions (x, n) of the equation

$$
\begin{equation*}
D_{1} x^{2}+D_{2}=k^{n}, \quad x, n \in \mathbb{N} \tag{1}
\end{equation*}
$$

In [2], Bender and Herzberg proved that if $2 \nmid k$ and $k>\Gamma(D)$, where $\Gamma(D)$ is an effectively computable constant depending on D, then $N\left(D_{1}, D_{2}, k\right) \leq 2^{\omega(k)-1}$. In [6] and [7], the author proved that if k is a prime and $\max \left(D_{1}, D_{2}\right)>C$, where C is an effectively computable absolute constant, then $N\left(D_{1}, D_{2}, k\right) \leq 1$ except in some explicit cases.

For any $m \in \mathbb{Z}$ with $m \geq 0$, let F_{m} be the m-th Fibonacci number. A triple (D_{1}, D_{2}, k) will be called exceptional if D_{1}, D_{2} and k satisfy either

$$
\begin{align*}
3 D_{1} s_{1}^{2}-D_{2}=\delta, 4 D_{1} s_{1}^{2}-\delta=k^{r_{1}}, 4 D_{2}+ & \delta=3 k^{r_{1}} \tag{2}\\
& \delta \in\{-1,1\}, \quad r_{1}, s_{1} \in \mathbb{N}
\end{align*}
$$

Mathematics Subject Classification: 11D61, 11J86.
Supported by the National Natural Science Foundation of China.
or

$$
\begin{align*}
D_{1} s_{2}^{2}=\frac{F_{6 m}}{4}, \quad D_{2} & =\left\{\begin{array}{l}
\frac{3}{4} F_{6 m}-F_{6 m-1} \\
\frac{3}{4} F_{6 m}+F_{6 m+1},
\end{array}\right. \tag{3}\\
k^{r_{2}} & = \begin{cases}F_{6 m-2}, & m, r_{2}, s_{2} \in \mathbb{N} \\
F_{6 m+2},\end{cases}
\end{align*}
$$

In this paper, we prove the following general result:
Theorem. If $2 \nmid k$ and $\max \left(D_{1}, D_{2}\right)>\exp \exp \exp 105$, then we have

$$
N\left(D_{1}, D_{2}, k\right) \leq \begin{cases}2^{\omega(k)-1}+1, & \text { if }\left(D_{1}, D_{2}, k\right) \text { is exceptional } \tag{4}\\ 2^{\omega(k)-1}, & \text { otherwise }\end{cases}
$$

Moreover, all solutions (x, n) of (1) satisfy $n<10 \sqrt{D} \log 2 e \sqrt{D} / \pi$.
If (D_{1}, D_{2}, k) is exceptional, then (1) has at least two solutions, namely

$$
(x, n)=\left\{\begin{align*}
\left(s_{1}, r_{1}\right), & \left(s_{1}\left|D_{1} s_{1}^{2}-3 D_{2}\right|, 3 r_{1}\right) \tag{5}\\
& \text { if }(2) \text { holds } \\
\left(s_{2}, r_{2}\right), & \left(s_{2}\left|D_{1}^{2} s_{2}^{4}-10 D_{1} D_{2} s_{2}^{2}+5 D_{2}^{2}\right|, 5 r_{2}\right) \\
& \text { if }(3) \text { holds }
\end{align*}\right.
$$

The upper bound (4) is the best possible if k is a prime.

2. Preliminaries

Let $h(-4 D)$ be the class number of the primitive binary quadratic forms with discriminant $-4 D$.

Lemma 1. $\quad h(-4 D)<4 \sqrt{D} \log 2 e \sqrt{D} / \pi$.
Proof. By [4, Theorem 12.10.1], we have $h(-4 D)=2 \sqrt{D} K(-4 D) / \pi$, and by [4, Theorem 12.14.2], $K(-4 D)<\log 4 D+2$. This implies the lemma.

Lemma 2 ([8, Theorems 1 and 3]). If $2 \nmid k$ and the equation

$$
\begin{equation*}
D_{1} X^{2}+D_{2} Y^{2}=k^{Z}, \quad X, Y, Z \in \mathbb{Z}, \quad \operatorname{gcd}(X, Y)=1, \quad Z>0 \tag{6}
\end{equation*}
$$

has solutions (X, Y, Z), then all solutions of (6) belong to at most $2^{\omega(k)-1}$ classes. Further, for any fixed class S, there exists a unique solution
$\left(X_{1}, Y_{1}, Z_{1}\right)$ in S such that $X_{1}>0, Y_{1}>0, Z_{1} \leq Z$ and $h(-4 D) \equiv 0$ $\left(\bmod 2 Z_{1}\right)$, where Z runs through all solutions in S. Further, every solution (X, Y, Z) in S can be expressed as

$$
\begin{aligned}
& Z=Z_{1} t, X \sqrt{D_{1}}+Y \sqrt{-D_{2}}=\lambda_{1}\left(X_{1} \sqrt{D_{1}}+\lambda_{2} Y_{1} \sqrt{-D_{2}}\right)^{t} \\
& t \in \mathbb{N}, 2 \nmid t, \lambda_{1}, \lambda_{2} \in\{-1,1\} .
\end{aligned}
$$

The solution $\left(X_{1}, Y_{1}, Z_{1}\right)$ is called the least solution of S.
Lemma 3 ([5, the proof of the Theorem]). Let $\varepsilon=X_{1} \sqrt{D_{1}}+\sqrt{-D_{2}}$ and $\bar{\varepsilon}=X_{1} \sqrt{D_{1}}-\sqrt{-D_{2}}$, where $X_{1} \in \mathbb{N}$. If

$$
\begin{equation*}
\left|\varepsilon^{t}-\bar{\varepsilon}^{t}\right| \leq|\varepsilon-\bar{\varepsilon}| \tag{7}
\end{equation*}
$$

for some $t \in \mathbb{N}$, then $t<8 \cdot 10^{6}$. Moreover, if $t \geq 7$ and $2 \nmid t$, then $\max \left(D_{1}, D_{2}\right)<\exp \exp \exp 105$.

3. Proof of the Theorem

Let (x, n) be a solution of (1). Then $(X, Y, Z)=(x, 1, n)$ is a solution of (6). By Lemma 2, we may assume that $(x, 1, n)$ belongs to a certain class S. Let $\left(X_{1}, Y_{1}, Z_{1}\right)$ be the least solution of S. Then we have
(9) $x \sqrt{D_{1}}+\sqrt{-D_{2}}=\lambda_{1}\left(X_{1} \sqrt{D_{1}}+\lambda_{2} Y_{1} \sqrt{-D_{2}}\right)^{t}, \quad \lambda_{1}, \lambda_{2} \in\{-1,1\}$.

From (9), we get

$$
\begin{array}{r}
1=\lambda_{1} \lambda_{2} Y_{1}\left(\binom{t}{1}\left(D_{1} X_{1}^{2}\right)^{(t-1) / 2}+\binom{t}{3}\left(D_{1} X_{1}^{2}\right)^{(t-3) / 2}\left(-D_{2} Y_{1}^{2}\right)+\ldots\right. \\
\left.+\binom{t}{t}\left(-D_{2} Y_{1}^{2}\right)^{(t-1) / 2}\right)
\end{array}
$$

whence we obtain $Y_{1}=1$. This implies that $(x, n)=\left(X_{1}, Z_{1}\right)$ is a solution of (1). Moreover, if (1) has another solution (x, n) such that $(x, n) \neq$ (X_{1}, Z_{1}) and ($x, 1, n$) also belongs to S, then x and n satisfy (8) and (9) for $Y_{1}=1$ and $t>1$.

Let $\varepsilon=X_{1} \sqrt{D_{1}}+\sqrt{-D_{2}}$ and $\bar{\varepsilon}=X_{1} \sqrt{D_{1}}-\sqrt{-D_{2}}$. Since $Y_{1}=1$, if the other solution exists, (9) implies that (7) holds for $t>1$. Therefore, by Lemma 3, if $\max \left(D_{1}, D_{2}\right)>\exp \exp \exp 105$, then we have $t \leq 7$. Since $2 \nmid t$, we get $t=3$ or 5 .

For any nonnegative integer m, let L_{m} and F_{m} be the m-th Lucas number and Fibonacci number, respectively. For $t=3$ and $t=5$, by (9) we get (2) and (3), respectively. Since D_{1}, D_{2} and k are fixed, the integers $r_{1}, s_{1}, \delta, r_{2}, s_{2}, m$ in (2) and (3) are given. Now we proceed to prove that (2) and (3) cannot hold at the same time. Notice that $F_{6 m-2}=L_{3 m-1} F_{3 m-1}$ and

$$
\begin{aligned}
3 F_{6 m}-4 F_{6 m-1}+\delta= & 3 F_{6 m-2}-F_{6 m-1}+\delta \\
= & \begin{cases}\left(L_{3 m-1}+L_{3 m-3}\right) F_{3 m-1}, & \text { if } \delta=1 \text { and } 2 \mid m \text { or } \\
& \delta=-1 \text { and } 2 \nmid m, \\
\left(F_{3 m-1}+F_{3 m-3}\right) L_{3 m-1}, & \text { if } \delta=1 \text { and } 2 \nmid m \text { or } \\
& \delta=-1 \text { and } 2 \mid m .\end{cases}
\end{aligned}
$$

If (2) and (3) were hold at the same time together with $k^{r_{2}}=F_{6 m-2}$, then we would have

$$
\begin{align*}
& 3^{r_{2}}\left(L_{3 m-1} F_{3 m-1}\right)^{r_{1}}=\left(\left(L_{3 m-1}+L_{3 m-3}\right) F_{3 m-1}\right)^{r_{2}} \text { or } \\
& \left(\left(F_{3 m-1}+F_{3 m-3}\right) L_{3 m-1}\right)^{r_{2}}, \quad r_{1}, r_{2} \in \mathbb{N} . \tag{10}
\end{align*}
$$

Since $\operatorname{gcd}\left(L_{3 m-1}, L_{3 m-2} L_{3 m-3}\right)=\operatorname{gcd}\left(F_{3 m-1}, F_{3 m-2} F_{3 m-3}\right)=1$, (10) is impossible. Using the same method, we can prove a contradiction in the case $k^{r_{2}}=F_{6 m+2}$. Therefore, if (D_{1}, D_{2}, k) is not exceptional, then (1) has at most one solution (x, n) such that $(x, 1, n)$ belongs to a fixed class. Moreover, if (D_{1}, D_{2}, k) is exceptional, then there exists exactly one class, say S, such that (1) has exactly two solutions (5) with ($x, 1, n$) belonging to S, and the other classes have most one. Thus, by Lemma 2, (4) is proved.

On the other hand, by (8), we have $n \leq 5 Z$, and from Lemma 2 , $2 Z_{1} \leq h(-4 D)$. Thus, by Lemma 1 , we obtain $n<10 \sqrt{D} \log 2 e \sqrt{D} / \pi$. This completes the proof.

Remark 1. The proof of the condition $" \max \left(D_{1}, D_{2}\right)>\exp \exp \exp$ 105 " in Lemma 3 involves an upper bound (of BAKER [1]) for the solutions of Thue's equations. Using the sharper bounds GYŐRY and Papp [3], the condition could be improved.

Remark 2. Using a similar argument as in the proof of our Theorem, we can obtain an analogous result for the equation

$$
D_{1} x^{2}+D_{2}=4 k^{n}, \quad x, n \in \mathbb{N} .
$$

Acknowledgement. The authors would like to thank the referee for his valuable suggestions.

References

[1] A. BAKER, Contributions to the theory of diophantine equations I: On the representation of integers by binary forms, Phil. Trans. Roy. Soc. London A263 (1968), 173-191.
[2] E. Bender and N. Herzberg, Some diophantine equations related to the quadratic form $a x^{2}+b y^{2}$, Studies in Algebra and Number Theory (G.-C. Rota, ed.), Advances in Mathematics Supplementary Studies, vol. 6, Academic Press, San Diego, 1979, pp. 219-272.
[3] K. GYőRy and Z. Z. Papp, Norm form equations and explicit lower bounds for linear forms with algebraic coefficients, Stud. Pure Math., Akadémiai Kiadó, Budapest, 1983, pp. 245-257.
[4] L.-K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin, 1982.
[5] M.-H. Le, A diophantine equation concerning the divisibility of the class number for some imaginary quadratic fields, Indag. Math. (N.S.) 4 (1993), 65-70.
[6] M.-H. Le, The diophantine equation $D_{1} x^{2}+D_{2}=2^{n+2}$, Acta Arith. 64 (1993), 29-41.
[7] M.-H. Le, A note on the generalized Ramanujan-Nagell equation $D_{1} x^{2}+D_{2}=p^{n}$, J. Number Theory 50 (1995), 193-201.
[8] M.-H. Le, Some exponential diophantine equations, I: The equation $D_{1} x^{2}-D_{2} y^{2}$ $=\delta k^{z}$, J. Number Theory (to appear).

TAIJIN XU AND MAOHUA LE
DEPARTMENT OF MATHEMATICS
ZHANJIANG TEACHERS COLLEGE
P.O.BOX 524048, ZHANJIANG

GUANGDONG
P.R. CHINA
(Received August 15, 1994; revised December 12, 1994)

