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A uniform convergence for non-uniform spaces

By I. KUPKA (Bratislava) and V. TOMA (Bratislava)

Abstract. In order to obtain some new insight concerning Dini theorem we define
a kind of convergence for functions f : X → Y , where X is an arbitrary set and Y is
a topological space. In general, this convergence is stronger than the uniform one. In
the case when Y is uniform and X is compact topological space it coincides with the
uniform convergence. If Y is regular, it preserves continuity.

Introduction

A concept of convergence, called strong convergence, presented here
crystallized naturally during a research devoted to several subjects: Dini
generalized theorems, UC spaces, a continuity-preserving convergence in
case of non-uniform range spaces. The common point always was: how
to obtain some “uniform-looking” results without uniformity? Using the
strong convergence we will prove here some continuity preserving results.
This notion is in connection with UC spaces (metric spaces X on which
every continuous function from X to R is uniformly continuous). In gen-
eral, of course, is the strong convergence stronger than the uniform one,
e.g. the strong convergence preserves the property to have a fixed point
(see [5]).

Strong convergence

How to define in general a uniform-like convergence, having Y non-
uniform? A great number of papers was devoted to this subject. Let
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us mention for example papers working with the idea of replacing the
uniformity with some quasi-uniformity (Pervin in [7]; Francaviglia,
Lechicki and Levi in [4]), or working with a “uniform convergence struc-
ture” (Cook and Fisher in [2], Del Prete and Lignola in [3]) or with
a convergence of filters (Brace in [1]).

The convergence we are introducing here and working with uses no ad-
ditional structures. It is characterized directly with the aid of the topology
of the range space.

One can realize that uniform convergence of functions with the range
in a metric space Y , can be defined with the aid of “ε-covers” of Y i.e. of
open covers of Y containing all open balls with radius ε > 0. The use of all
covers, not only the ε-ones, will give us in general a stronger convergence.
Of course, Y need not be metric now.

Definition 1. Let X be an arbitrary set and (Y, τ) be a topological
space. Let (fγ : γ ∈ Γ) be a net of functions from X to Y . Let ℘ be an
open cover of Y . We say, that a net (fγ : γ ∈ Γ) converges to a function
f : X → Y ℘-uniformly if

∃γ0 ∈ Γ ∀x ∈ X ∀γ ≥ γ0 ∃O ∈ ℘ : f(x) ∈ O and fγ(x) ∈ O.

We say that the net (fγ : γ ∈ Γ) converges to the function f strongly if it
converges to f ℘-uniformly for every open cover ℘ of the space Y .

Remark 1. If (Y, d) is a metric (or uniform) space, then the strong
convergence implies always the uniform one. In fact a net of functions
(fγ : X → Y )γ∈Γ converges to a function f : X → Y uniformly iff (fγ)γ∈Γ

converges to f ℘ε-uniformly for every ℘ε := {B(y, ε) : y ∈ Y } where
B(y, ε) is an open ball with the centre y and the radius ε.

Before we state the theorem saying under which hypothesis the two
convergences are equivalent, we shall reformulate the notion of strong con-
vergence in terms of uniform convergence structures.

Let P be the family of all open covers of the space Y . For each open
cover ℘ ∈ P we can define the set

R(℘) :=
⋃
{O ×O : O ∈ ℘}

and we can state the strong convergence of a net of functions (fγ : γ ∈ Γ)
in the form

∀℘ ∈ P ∃γ0 ∈ Γ ∀γ ≥ γ0 ∀x ∈ X :
(
fγ(x), f(x)

) ∈ R(℘).

Notice that each R(℘) contains the diagonal ∆ := {(y, y) : y ∈ Y } and if
℘1 is a refinement of ℘2 (in the sense that ∀G ∈ ℘1 ∃H ∈ ℘2 : G ⊂ H)
then R(℘1) ⊂ R(℘2). So the family {R(℘) : ℘ ∈ P} is a base of a filter
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R =: R(τ) on Y × Y . In general, this filter need not to be a uniformity
on Y . But it generates a uniform convergence structure on Y described in
the following proposition.

Proposition 1. Let Y be an arbitrary topological space and ϕ(Y ×Y )
denotes the collection of all proper filters on Y × Y . There is the smallest
family u of filters on Y × Y satisfying the following conditions:
a) R ∈ u
b) F ∈ u, F ⊂ G ∈ ϕ(Y × Y ) ⇒ G ∈ u
c)

⋂
u ∈ u

d) F ∈ u ⇒ F−1 ∈ u
e) u is centered uniform convergence structure i.e. u is coarser then the

discrete UC-structure uι.

Proof. Let us define

u := {F ∈ ϕ(Y × Y ) : R ⊂ F}.
We show that u has the properties a) – e). The properties a), b), c) are
obvious.

To prove d), we verify first the inclusion R ⊂ R−1. If A ∈ R, then
there is ℘ ∈ P such that R(℘) ⊂ A, consequently R(℘)−1 ⊂ A−1. But
R(℘)−1 = R(℘), so A−1 ∈ R which is equivalent with A ∈ R−1. Let us
take F ∈ u. Then R ⊂ F and therefore R−1 ⊂ F−1 and so R ⊂ F−1. It
means that F−1 ∈ u.

To prove e), according to the definition of centered uniform conver-
gence structure, (cf. [6] p. 175) we must prove that

u ∧ uι = u,

where uι = {Nι(y) × Nι(y) : y ∈ Y } is the discrete uniform convergence
structure and Nι(y) := {S ⊂ Y : y ∈ S} is the discrete ultrafilter of y.
Equivalently we must prove that u ≤ uι in the sense that u ⊃ uι. To prove
the inclusion it is sufficient to notice that

R ⊂ Nι(∆) ⊂ Nι((y, y)) (∀y ∈ Y )

where for each A ⊂ Y × Y we put Nι(A) := {S ⊂ Y × Y : A ⊂ S}.
Obviously Nι((y, y)) = Nι(y)×Nι(y) and e) is proved.

If u′ is another UC-structure verifying a) and b), then necessarily
u ⊂ u′ which ends the proof of the minimality of u. ¤

We shall denote the UC-structure of the previous Proposition by
u = [R] and we shall call the corresponding convergence R-uniform con-
vergence. Now we can claim the following
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Proposition 2. If Y is a regular topological space then the uniform
convergence structure [R] is a locally quasi-uniform structure.

Proof. For each y ∈ Y let us denote by R(y) the filter on Y with
the base {R(℘)[y] : ℘ ∈ P} and by R ◦ R we denote the filter on Y × Y
with the base {R(℘1) ◦ R(℘2) : ℘1, ℘2 ∈ P}. The locally quasi-uniform
structure is characterized by the condition

(∗) R(y) ⊂ (R ◦R)(y) (∀y ∈ Y )

so we are going to verify it. Let us take an open cover ℘ ∈ P and a point
y ∈ Y . Then

y ∈ O := R(℘)[y] =
⋃
{G ∈ ℘ : y ∈ G}.

By the regularity of Y there are open sets U,W such that

y ∈ U ⊂ U ⊂ W ⊂ W ⊂ O.

Now we can proceed to prove that R is locally a quasi-uniformity. Putting

℘1 := {W, O ∩ U
c
, W

c} ∈ P
we show that (

R(℘1) ◦R(℘1)
)
[y] ⊂ R(℘)[y] =: O

which will confirm the inclusion (∗). Whenever z ∈ (
R(℘1) ◦ R(℘1)

)
[y],

then there is a point t ∈ Y such that (y, t) ∈ R(℘1), (t, z) ∈ R(℘1). Since
R(℘1) = W 2 ∪ (O ∩U

c
)2 ∪ (W

c
)2 and y ∈ U it must be (y, t) ∈ W 2. Then

t ∈ W , so (t, z) 6∈ (W
c
)2 and therefore (t, z) ∈ W 2 or (t, z) ∈ (O ∩ U

c
)2.

In both cases we have z ∈ O so (∗) is proved and the proposition follows.
¤

Proposition 3. If Y is a paracompact space, then R is a uniformity
on Y .

Proof. It suffices to prove, that the base {R(℘) : ℘ ∈ P} of the filter
R is actually a uniformity base. It means that for every R(℘) (℘ ∈ P)
there is R(℘1) (with some ℘1 ∈ P) such that

R(℘1) ◦R(℘1) ⊂ R(℘).

Let us take an open cover ℘ ∈ P and his refinement ℘1 ∈ P verifying the
property:

(∗∗) ∀G ∈ ℘1 ∃O ∈ ℘ :
⋃
{H ∈ ℘1 : H ∩G 6= ∅} ⊂ O.
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For every (x, y) ∈ R(℘1) ◦ R(℘1) there is a transition element t such that
(x, t), (t, y) ∈ R(℘1). Therefore ∃G, H ∈ ℘1 : (x, t) ∈ G2,(t, y) ∈ H2 and
consequently t ∈ G ∩H 6= ∅. Owing to (∗∗) there is U ∈ ℘ such that

(x, y) ∈ U2 ⊂ R(℘)

and the assertion follows. ¤
Let us consider a uniformity U on Y compatible with the topology of

Y , i.e. for each y ∈ Y the system U(y) := {U [y] : U ∈ U} is a neighbour-
hood filter. If such a uniformity exists, the topology of Y is necessarily
completely regular. If we consider a base B of the uniformity U consisting
of open and symmetric subsets of Y × Y then B(y) := {U [y] : U ∈ B} is a
base of the neighbourhood filter U(y). For each U ∈ B we have U = U−1

and there is V ∈ B such that V ◦ V ⊂ U . Therefore for each y ∈ Y ,
V [y] × V [y] ⊂ V ◦ V and obviously {V [y] : y ∈ Y } =: ℘ is an open cover
of Y . So we have proved

∀U ∈ U ∃℘ ∈ P : R(℘) ⊂ U

and therefore the inclusion U ⊂ R is true. In special cases we can prove
even the equality.

Proposition 4. If U is a uniformity on Y compatible with the T2-
topology on Y we have U ⊂ R. If Y is compact space then U = R.

Proof. The inclusion U ⊂ R was proved by the considerations made
just before Proposition 4. We prove the opposite inclusion supposing that
Y is compact space. Then Y is also paracompact and so R is a uniformity
on Y compatible with the toplogy of Y . Y being compact Hausdorff space
is also regular and it is known that in each compact regular space there is
only one uniformity compatible with its topology. So it must be true that
U = R. ¤

The inclusion U ⊂ R means that the strong convergence implies the
U-uniform convergence. In general the converse is not true but, under the
continuity assumption of the limit function, we can claim:

Theorem 1. Let X be a topological space and let U be a uniformity
on Y compatible with the topology of Y . If a net (fγ : X → Y )γ∈Γ

converges U-uniformly to a continuous function f , then (fγ)γ∈Γ converges
to f locally R-uniformly.

Proof. We must prove the assertion

∀x0 ∈ X ∀S ∈ R ∃ open U 3 x0 ∃γ0 ∈ Γ ∀γ ≥ γ0 ∀x ∈ U :(
fγ(x), f(x)

) ∈ S.



304 I. Kupka and V. Toma

Obviously it suffices to prove the assertion only for S = R(℘) with ℘ being
an open cover of Y . For such a cover ℘, there exist a set O ∈ ℘ and a
symmetric set W ∈ U such that

f(x0) ∈ O and (W ◦W )[f(x0)] ⊂ O.

Since (fγ)γ∈Γ converges U-uniformly to f we have

∃γ0 ∈ Γ ∀γ ≥ γ0 ∀x ∈ X : fγ(x) ∈ W [f(x)].

Denote U := intf−1(W [f(x0)]). Then

∀x ∈ U : W [f(x)] ⊂ O

and so (
fγ(x), f(x)

) ∈ O ×O ⊂ R(℘). ¤

Corollary 1. If X is compact topological space then U-uniform con-
vergence of a net (fγ : X → Y )γ∈Γ to a continuous function f is equivalent
to the strong convergence of the net.

Proof. Let ℘ be an open cover of Y . Owing to the above theorem, for
all x ∈ X there exists a neighbourhood Ux such that on this neighbourhood
the net (fγ)γ∈Γ converges ℘-uniformly, it means

∃γx ∈ Γ ∀γ ≥ γx ∀z ∈ Ux :
(
fγ(z), f(z)

) ∈ R(℘).

The system V := {Ux : x ∈ X} is an open cover of X, so there is a finite
open cover of X : {Ux1 , . . . , Uxn} ⊂ V. Take a γ0 ≥ γxi (i = 1, 2, . . . , n).
Then we have

∀γ ≥ γ0 ∀z ∈ X :
(
fγ(z), f(z)

) ∈ R(℘)

and the proof is complete. ¤

The following example shows that if X is not compact, then the uni-
form convergence need not imply the strong one.

Example 1. Let X = Y = R. Let us define functions f, g, fn, gn

from R into R as follows: f(x) = x, g(x) = 1 (x ∈ X), and ∀n ∈ N :
fn(x) = x + 1

n , gn(x) = 1 + 1
n (x ∈ X). The graphs of functions f , g,

fn, gn are lines and fn ⇒ f , gn ⇒ g holds. It is easy to verify that the
sequence (gn)n≥1 converges to g strongly. However, the sequence (fn)n≥1
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does not converge to f strongly. To prove this let us choose an open cover
of Y in the following way: let

A =
∞⋃

n=1

{(
2n− 2, 2n− 1− 1

2n

)
;

(
2n− 1− 1

n
, 2n− 1 +

1
n

)
;

(
2n− 1 +

1
2n

, 2n +
1
2n

)}

and put ℘=
{(−∞, 1

2

)}∪A. So for an = 2n−1 we have |f(an)−fn(an)|= 1
n

for every n ∈ N, and there is no O ∈ ℘ such, that f(an) ∈ O and fn(an) ∈
O would hold. ¤

Let (Y, τ) be a topological space which topology is induced by the
topological convergence structure τ on Y . Let ρ denote the convergence
structure on Y corresponding to the uniform convergence structure u in-
duced by R. That is, for every filter F on Y we define

y ∈ Limρ F ⇐⇒ R(y) ⊂ F .

A convergence τ on Y is said to be R0 (cf. [6] p. 181) if for every y, z ∈ Y
the following implication is true

z ∈ Limτ Nι(y) =⇒ y ∈ Limτ Nι(z).

Theorem 2. The convergence ρ is centered pretopological conver-
gence and it satisfies the R0 separation axiom.

Proof. ρ is called pretopological convergence iff it is isotone i.e. F ⊂
G =⇒ Limρ F ⊂ Limρ G, and if y ∈ LimρNρ(y), where Nρ(y) :=

⋂{F ∈
ϕ(Y ) : y ∈ Limρ F} is the neighbourhood filter of y. That the convergence
ρ is isotone is obvious. Owing to the equality

Nρ(y) =
⋂
{F ∈ ϕ(Y ) : R(y) ⊂ F}

we see that also R(y) ⊂ Nρ(y) and therefore

y ∈ LimρNρ(y).

To verify the R0 separation axiom we must prove for every y, z ∈ Y
the implication

(∗) R(z) ⊂ Nι(y) =⇒ R(y) ⊂ Nι(z).

The inclusion R(z) ⊂ Nι(y) means that for every A ⊂ Y if R(℘)[z] ⊂ A,
for some ℘ ∈ P, then y ∈ A. However, it is equivalent with the condition

∀℘ ∈ P ∃G ∈ ℘ : z, y ∈ G
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and so we can see that (∗) is true.
To prove that the convergence ρ is centered it is necessary to ver-

ify that ρ is coarser then the discrete convergence ι, i.e. ι ⊂ ρ. This is
equivalent to the assertion that for each filter F ∈ ϕ(Y ) we have

ι[F ] ⊂ ρ[F ]

and this can be written in the form

F ι−→ y =⇒ F ρ−→ y (∀y ∈ Y ).

But the only filter F which converges in the discrete convergence ι is the
trivial ultrafilter Nι(y) and so it suffices to verify the inclusion

(∗∗) R(y) ⊂ Nι(y).

Let us take a set A ∈ R(y). Then there is ℘ ∈ P such that R(℘)[y] ⊂ A.
Since R(℘)[y] =

⋃{G ∈ ℘ : y ∈ G}, and ℘ is a cover of Y , we have that
∃G ∈ ℘ : y ∈ G and consequently

y ∈ G ⊂ R(℘)[y] ⊂ A.

So we have proved that y ∈ A and hence (∗∗) holds, therefore ρ is centered.
¤

Remark 2. It would be possible to prove Theorem 2 using some results
of [6] concerning the interplay between uniform convergence structure [R]
and the corresponding structure ρ.

Theorem 3. Let τ be a topological convergence on Y . Then the
convergence ρ (of the previous Theorem) verifies ρ ≤ τ , and the equality
ρ = τ takes place iff τ verifies R0 separation axiom.

Proof. The relation ρ ≤ τ means that ρ ⊂ τ i.e. we must prove

∀y ∈ Y ∀F ∈ ϕ(Y ) : F τ−→ y =⇒ F ρ−→ y.

By definition F τ−→ y is equivalent with Nτ (y) ⊂ F where Nτ (y) is the
filter of all neigbourhoods of y. But it is easy to see that R(y) ⊂ Nτ (y) so
we have R(y) ⊂ F and F ρ−→ y follows.

To prove the equality ρ = τ it is necessary for τ to verify R0 separation
axiom, because following Theorem 2 it is verified by ρ. We prove that
ρ ⊂ τ supposing that τ is R0. First we prove that Nτ (y) ⊂ R(y). Take
an open set G 6= Y , y ∈ G and choose z ∈ Y \ G. Then N ι(z) τ9 y and
because of R0 separation axiom verified by τ we have Nι(y) τ9 z. Thus
Nτ (z) * Nι(y) and there exists an open Vz ∈ Nτ (z) such that y /∈ Vz. For
the open cover ℘ := {Vz : z /∈ G} ∪ {G} we have G = R(℘)[y] ∈ R(y).
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Thus Nτ (y) ⊂ R(y) ⊂ F provided F ρ−→ y. The sufficiency of R0 follows
and the theorem is proved. ¤

The ρ-convergence is a consequence of R-uniform convergence as we
can prove in

Proposition 5. Let (fγ : γ ∈ Γ) be a net of functions from a set
X to a topological space Y , which converges R-uniformly to a function
f : X → Y . Then the net converges ρ-pointwise to f .

Proof. The R-uniform convergence of the net (fγ : γ ∈ Γ) to the
function f means that the assertion

∀℘ ∈ P ∃γ0 ∈ Γ ∀γ ≥ γ0 ∀x ∈ X ∃O ∈ ℘ :
(
fγ(x), f(x)

) ∈ O2

holds. As a consequence of this we can claim that

(∗) ∀x ∈ X ∀℘ ∈ P ∃γ0 ∈ Γ ∀γ ≥ γ0 : fγ(x) ∈ R(℘)[f(x)].

If we define the filter F on Y which base is the family
{{fγ(x) : γ ≥ γ0} :

γ0 ∈ Γ
}
, then we can write the assertion (∗) in the form

∀x ∈ X : R(f(x)) ⊂ F
which is evidently equivalent with the condition

∀x ∈ X : fγ(x) −→
ρ

f(x)

and the proposition follows. ¤
Combining Proposition 5 with Theorem 3 we get the following useful

fact.

Corollary 2. Let X be a topological space and Y be a T1 or regular
topological space. If a net of functions (fγ)γ∈Γ converges strongly to a
function f : X → Y then it converges pointwise to f .

Proof. Strong convergence can be formulated as the R-uniform con-
vergence and thanks to the hypothesis on the target space Y , the pointwise
convergence of a net (fγ : X → Y )γ∈Γ is the same as its ρ-pointwise con-
vergence, and the assertion follows. ¤

Remark 3. The assertion in Corollary 2 can be proved easily using
only Definition 1 of the strong convergence.

The following Lemma which was communicated to us by the referee,
turns out to be very useful to prove that the strong convergence preserves
continuity.
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Lemma 1. Let X be a topological space and (Y,U) a locally quasi-
uniform space such that U admits a base of symmetric sets. If the functions
fγ : X → Y (γ ∈ Γ) are continuous at a point x0 and the net (fγ : γ ∈ Γ)
converges to f locally U -uniformly at x0 then f is continuous at x0.

Theorem 4. Let X and Y be topological spaces and Y be regular.
Let (fγ)γ−Γ be a net of continuous functions from X into Y , that converges
strongly to a function f : X → Y . Then f is continuous.

Proof. This Theorem is in fact a special case of the Lemma 1 in
which we consider the locally quasi-uniform structure R in the place of U
and the Lemma applies.

We give yet another proof based only on the definitions of the strong
convergence and the continuity. Let z ∈ X and V ⊂ Y be an open
neighbourhood of f(z).

Y is regular, so there exist two disjoint open sets U and W such that
f(z) ∈ U and X \ V ⊂ W . Denote ℘ = {U , V , W}. Since (fγ : γ ∈ Γ)
converges to f strongly and hence pointwise, there exists γ0 ∈ Γ such that
for each γ ≥ γ0, fγ(z) ∈ U and moreover

(∗) ∀γ ≥ γ0 ∀x ∈ X ∃O ∈ ℘ :
(
fγ(x), f(x)

) ∈ O ×O.

So fγ0(z) ∈ U holds and since fγ0 is continuous, there exists an open
neighbourhood Z of the point z such that fγ0 [Z] ⊂ U holds. So ∀x ∈ Z :
fγ0(x) 6∈ W . Therefore by (∗) f [Z] ⊂ V holds and the theorem follows. ¤

If Y is not T1, the strong convergence need not imply the pointwise
one and the strong limit of a net of continuous functions need not be
continuous—as the following example shows.

Example 2. Let Y = {a, b} with the topology T = {∅, {a},{a, b}}. Let
us define functions f : R → Y and g : R → Y as follows: ∀x ∈ R \ {0} :
f(x) = b, f(0) = a; ∀x ∈ R : g(x) = b. Put ∀n ∈ N : fn = g. Then the
sequence (fn : n ∈ N) converges strongly to f . But it does not converge
pointwise to f . Of course, f is not continuous. ¤
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