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Nilpotent Artinian rings.

To Profassor Laszlé Kalmér on his 50th birthday.

By. T. SZELE in Debrecen.

§ 1. introduction.

In the development of modern ring theory a very important role is play-
ed by the Artinian rings, i. e, rings satisfying the descending chain con-
dition') for left ideals. In such a ring R, the union of all nilpotent left ideals
is a nilpotent two-sided ideal which is called the radical of R. Our knowledge
about the structure of Artinian rings is most far-reaching in the case of radi-
cal 0, namely by the classical WEDDERBURN-ARTIN theorem: an Artinian ring
with zero radical is a direct sum of a finite number of rings each of wich
is isomorphic to a complete matrix ring (of finite degree) over a skew field.
This important theorem yields thus a relatively complete solution of the
structure problem of radical-free Artinian rings, inasmuch as it reduces this
problem to the structure problem of skew fields (the latter forming a typical
and from certain point of wiew trivial family of radical-free Artinian rings®).

On the contrary extremal case, in which the radical coincides with the
whole ring, i. e., on the nilpotent Artinian rings relatively little was known
hitherto. A paper [1]") by C. Hopkins of fundamental importance for the
theory of Artinian rings contains a section (section 5) devoted to the inves-
tigation of nilpotent Artinian rings. The results of Hopkins are the following:
If a nilpotent ring satisfies the descending (ascending) chain condition for left
ideals, then it satisfies this condition also for right ideals, and conversely.
Any subring of a nilpotent Artinian ring is itself a nilpotent Artinian ring,
A nilpotent Artinian ring satisfies also the descending chain condition for sub-
rings. The additive group of a nilpotent Artinian ring is a torsion group

1) This means that the ring contains no infinite (strictly) descending chain of left
ideals. The ascending chain condition for left ideals is defined in an analogous way.

2) Otherwise the family of skew fields coincides with that of Artinian rings contai-
ning no zero-divisors.

9) Numbers in brackets refer to the Bibliography at the end of this paper.



72 T. Szele

(i. e. a group containing only elements of finite order) and thus any nilpo-
tent Artinian ring splits into a direct sum of a finite number of nilpotent
Artinian p-rings (in which the additive order of every element is a power of
a fixed prime p).

Now the present investigations arose from the observation that a nilpotent
Artinian ring satisfies the descending chain condition even for additive sub-
groups.”™) This fact implies all the above results as immediate consequences,and,
on the other hand, — the structure of abelian groups with descending chain
condition being completely known by a theorem due to A. KuroS [2] — it
makes possible to develop a structure theory for nilpotent Artinian rings. This
structure theory can be considered relatively complete in an analogous sense
as the WEDDERBURN-ARTIN structure theory for the radical-free case, since it
reduces the structure problem of nilpotent Artinian rings to that of finite
nilpotent rings (the latter forming a typical and from a certain point of
view trivial family of nilpotent Artinian rings). About the finite nilpotent
rings themselves this structure theory says nothing just as the WEDDERBURN-
ARTIN structure theorem says nothing about the nature of skew fields. Accor-
ding to our structure theory any nilpotent Artinian p-ring R contains a
uniquely defined finite subring & which we call the kernel of R. If R*
contains an element of additive order p™ but no element of order p™'!, then
we say that R* is of breadth m. This is an invariant of R and can be defined
also as follows: m is the least non-negative integer for which the additive
group p™R contains no element ==0 of finite height.')

Now by virtue of the properties of R* and by the knowledge of the addi-
tive structure of R we obtain a simple method for constructing all nilpotent
Artinian p-rings R with kernel R’ where R is an arbitrarily prescribed finite
nilpotent p-ring. So we get also a complete classification of the nilpotent
Artinian p-rings according to their kernel. If R has R® as its kernel, then we
say that R belongs to the family F(R®) i. e. REF(R*). For a given finite
nilpotent p-ring R*==0 the family F(R*) contains only a finite number of
pair-wise non-isomorphic rings, and the isomorphism problem of two rings
in F(R") is reduced to the knowledge of all automorphisms of the ring R".
The family F(R") contains always exactly one finite ring, namely the ring
R* itself and F(R®) contains rings other than R* (i. e. infinite rings) if and
only if the additive group of R* possesses an element of order p” which is
an annihilator of the ring R*, m being the breadth of R*. The only family

) This in true even aiso for nilpotent rings with descending chain condition for two-
sided ideals. Cf. the Remark at the end of this paper.

1) p»R denotes the set of all elements pma (a € R). — The height of an element
a = 0 in an abelian p-group G is defined as the maximal non-negative integer i for which

the equation p*x - a is solvable in G; if there is no maximal 2 with this property, then
a is said to be an element of infinite height in G.
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containing an infinity of non-isomorphic rings is F(0), R€ F(0) being equi-
valent to the statement that R is a zero-ring”) with an additive group iso-
morphic to a direct sum of a finite number of copies of PRUFER’s quasicyclic
group C(p®). — Summarising we can establish that the knowledge of all
finite nilpotent rings would imply on basis of our structure theory the know-
ledge of all nilpotent Artinian rings.

As simple corollaries of the structure theory we mention the following
statements. Any nilpotent Artinian ring is (finite or) countable. If R is a nil-
potent Artinian ring, then the ring R is finite. If a nilpotent Artinian ring R
satisfies also the ascending chain condition for left ideals, then R is finite.
The latter throws light on the special behaviour of nilpotent Artinian rings;
in contrast to this statement we have the important theorem of C. HOPKINS
[1]: if an Artinian ring contains a one-sided unit element, then it satisfies
also the ascendig chain condition for left ideals.

We obtain also for the nilpotent rings R satisfying the ascending chain
condition for left ideals the analogous result: the additive group of R is an
abelian group with ascending chain condition for subgroups, i. e., a finitely
generated group which is therefore a direct sum of a finite number of cyclic
groups. This means that we know the additive structure of R completely and
so it will perhaps be possible to develop a structure theory for these rings.

§ 2. The additive structure of nilpotent Artinian rings.

If / and /' are two-sided ideals in a ring R and every element r€R
admits a unique representation r==j--j (j€/,j€J), then the ring R is said
to be the direct sum of the rings J and J'. This statement will be denoted so:

R=JB]J.
In what follows by a group we shall mean always an additive abelian group.
If an additive abelian group G is a direct sum of the groups A and B, then
we write

G—=A-+B.
For a fixed prime number p we denote by C(p") the cyclic group of order
p' and by C(p®) PRUFER’s quasicyclic group which is isomorphic to the
additive group mod 1 of all rational numbers with p-power denominators.

Now according to a well-known important theorem due to A. KUROS
[2] an abelian group G satisfying the descending chain condition for sub-
groups is a direct sum of a finite number of groups C(pi') (1 =n; = o):
(1) G—=C(pi)+--- +C(p¥) (1 = n; = x).

The following simple proof of this theorem is inserted here for the
sake of completeness only.

%) A ring R is called a zero-ring if ab - 0 holds for any pair of elements a, b € R.
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Let G be an arbitrary abelian group satisfying the descending chain
condition. Then G contains obviously no element of infinite order, i.e. G is
a torsion group. As such a group (with descending chain condition) G splits
into a direct sum of a finite number of p-groups, and thus in the following
we may consider only the case in which G itself is a p-group. (This means
that the order of any element in GG is a power of a fixed prime p.) Now the
elementary subgroup E of G — consisting of all elements of order p together
with 0 — must be a finite group.”) So we can make an induction hypothesis
on the order of the group E. If G contains an algebraically closed subgroup
H--0 — i.e. a group for which pH-~- H — then we have in H an infinite
set of elements ¢,, ¢, ¢;, ... such that

&=, Do =0t Dla=0C;) -ii

So G contains a subgroup C(p®) which is a direct summand of G:
G—=C(p*)+G'.

Here G’ has an elementary subgroup of smaller order than the order of E,
consequently, by our induction hypothesis, G’ is O or a direct sum of a
finite number of groups C(p"i) (1 = n; = o). In the contrary case, in which
G contains no algebraically closed subgroup =0, we show even that G is
a finite group. Suppose the contrary. Since the strictly descending chain
GopGop'G... contains only a finite number of groups, we have p'G =0
for a non-negative integer £. From this follows the existence of an integer
i such that p"'G is infinite, but p'G is finite. Hence we have for a suitable
element d € p'G an infinity d,,d,, ... of distinct elements in p''G such that

pd,—pd,— - —d.

However this would imply an infinity of elements in E, namely d,—d,
(j=2,3,...) which is a contradiction. So we have completed the proof of
Kuro$’s theorem.

Now we are going to prove the following

Theorem 1. If R is a nilpotent Artinian ring, then the additive group
of R satisfies the descending chain condition for subgroups.

In proving this theorem we make an induction hypothesis on the expo-
nent of nilpotency e of R (e being defined by R"'==0, R —0). If e—2,
then R is a zero-ring,”) all additive subgroups of R are two-sided ideals
in R, so that the descending chain condition for left ideals implies that for
subgroups. Now let e 2. We observe that the additive group of R" ' satis-
fies the descending chain condition for subgroups, since, in the contrary
case, an infinite descending chain of additive subgroups of R"" would be at
%) This follows from the fact that an elementary abelian p-group is a direct sum of
groups C(p).
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the same time a chain of (two-sided) ideals in R, namely rR*'— R 'r =0
for every r€R. On the other hand, the factor ring R/R"' is a nilpotent ring
with exponent e—1 and, as a homomorphic image of R, an Artinian ring
too. So our induction hypothesis implies that the additive group of R/R""
is a group with descending chain condition for subgroups. Consequently we
have only to show the following — pure group-theoretical — statement: if
G and H are abelian groups such that HS G, and if both H and G/H
satisfy the descending chain condition for subgroups, then also G is a group
satisfying this condition.
In order to prove this statement let

(2) KDoK.>..
be an arbitrary strictly descending chain of subgroups in G. Then
KinH=Ki;nH
is impossible for an infinity of indices j, for in the contrary case
K/(K:nH), Kin/(KianH), ...
would form an infinite strictly descending chain of subgroups in the group
K. (Kin H)=~{K:, H}/H, which contradicts our hypothesis on G H. (We
denote by {K;, H} the subgroup of G generated by K; and H.) So we have
a strictly descending chain
(N a)SIKenH) S
of subgroups in H which, by our hypothesis on H, must be finite. But this
implies also the finiteness of the chain (2), completing so the proof of

Theorem 1.
Finally we remark that similarly can be proved also the following

Theorem 2. If R is a nilpotent ring satisfying the ascending chain
condition for left ideals, then the additive group G of R satisfies the same
condition for subgroups, i.e., G is a direct sum of a finite number of cyclic
groups.

§ 3. The structure of nilpotent Artinian rings.

In the following by an annihilator of a ring R we mean an element
a€R such that aR - Ra- 0.

We consider an arbitrary nilpotent Artinian ring R. We know, by
Theorem 1, that the additive group G of R satisfies the descending chain
condition for subgroups. Thus G is a group of type (1) and a representation
of G as a direct sum of p~-groups (belonging to distinct primes p;) yields
at the same time a representation of R as the direct sum of nilpotent
Artinian p--rings R; belonging to distinct primes p,, ..., pi:

R = R1, :R,: " Rf_.
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Since this representation is unique and since the isomorphism of two such
rings R and R’ is equivalent to the isomorphism of the corresponding
wprimary components“, the structure problem of nilpotent Artinian rings can
be reduced immediately to that of p-rings. Therefore in the sequel we assume
that the additive group G of R is a p-group, i.e., by (1),

3 G=A+B

where A is an algebraically closed group (pA - A), a direct sum of u
copies of C(p®):

“) A= 2 C(p°),
and B is finite p-group:
(5) B ;‘gb_,.}, (b} ~ C(pmi); m; < o).

First we remark that A is an invariantly defined subset of R as the
union of all subgroups H of G for which pH = H holds. Moreover, as we
shall see at once, A is a subring, even a two-sided ideal in R, all elements
of A being annihilators of R. The finite subgroup B in (3), however, is not
determined uniquely; it is determined by

B>~G/A
up to an isomorphism only. Nor is it true in general that the elements of B
form a subring of R. If and only if B is a subring of R, (3) can be written
in the form

R=A®B,
i. e. R is a direct sum of a zeroring A (with trivial structure) and of a finite
nilpotent ring. There exist, however, nilpotent Artinian p-rings which admit
no such decomposition.

Now we show that each element a€ A is an annihilator of R. This
follows from the fact that @ can be written in the form a = p'a’ for an
arbitrarily prescribed positive integer f. Then, if x is an element of order
p'in G, we have ax = (p'a’)x-—=a’ (p'x) —a’-0=0, and similarly xa-= 0.

On basis of the above statements the case B-—0 can already be settled
completely. For in this case G=A and R is a zero-ring with a completely
known additive structure given by (4). Such a p-ring R is completely deter-
mined by the prime number p and by the natural number u, and two such
rings R and R’ are isomorphic only if p=p" and u = u'.

In the sequel we may assume that B+ 0. Let m be the maximal
among the numbers m,, ..., m, in (5). Then this number m >0 is an inva-
riant of R which can be defined also by the fact that m is the least natural
number for which the group p”G contains no element ==0 of finite height.
Now all elements x in (G for which p”x-=0 holds form an invariantly defined
finite nilpotent subring R* of R. We say that R* is the kernel of R and m
is the breadth of R. For the additive group G* of R* we have on basis of
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(3) the direct representation

(6) G'=A'+B
where
(7 A'={a,}+---4{a.} ({a:}=C(p™);i=1,...,u)

is the subgroup of A consisting of all elements of A whose orders do not
exceed p™. Within the ring R* the elements a,,...,a. can be characterized
as follows: a,,...,a. are independent’) elements of order p™ in the additive
group G* of A* and, at the same time, are annihilators of R*.

Now, it is clear that we can construct the ring R in a uniquely deter-
mined way provided we have the kernel R® with the assigned elements
a,...,a,. For then we can immediately extend the cyclic groups {a;} in
(7) (by adjoining to {a:} elements a/,a/,... subject to the relations pa;—
= a;, pal’=al,...) to groups C(p%), so we get from A* the extension A in
(4) and, by (3), the additive group G of R. The definition of the multiplica-
tion for the “new elements” of A is trivial: any product is O which contains
a new element of A as a factor.

This was a “reconstruction” of R from R* and some assigned elements
of \R", supposed the previous knowledge of R. But the same construction
can be accomplished without previous knowledge of R in the following
sense. Let R* be an arbitrary finite nilpotent p-ring with breadth m > 0, and
let a,,...,a, be independent elements of order p™ in the additive group G’
of R* such that a,,...,a, are at the same time annihilators of the ring R".
Then, by a well-known theorem in group theory, we have with the subgroup
(7) of G* generated by the given elements a,, ..., a, the representation (6)
and thus the above construction can be immediately accomplished. So we
get a nilpotent Artinian p-ring R the kernel of which is R®, and for the
additive structure of R (3)—(7) hold. We denote this ring by R — [R", a,, ..., a.).
On the other hand it is clear that any ring R with kernel R* can be obtai-
ned by such a construction. Also one can easily see that for a given kernel
R* two rings R—=|[R" a,,...,a.] and R — [R% ai,...,a!] are isomorphic if
and only if there exists a ring automorphism of the ring R* which maps
the additive subgroup {a,,...,a.}={a,}+---+{a.} (generated by a,, ..., a,
in the additive group G* of R") onto the subgroup {ai,...,a.}={ai}+---
---—{a.}. As a matter of fact, suppose that « is such an automorphism of
the ring R*. Then « maps a: onto a!’ (i=1,...,u) and the subgroup B of
G* (in (6)) onto B” such that we have the direct representation

®) G*={ai'}+ - +{aV}+B
isomorphic to the representation given by (6) and (7). Since so

R':[R‘val’)"'; a:-‘]

7) The elements ay,..., a, in an abelian p-group are said to be independent if any
relation hya; -+ ...-+ h,a,—0 (with integers h) implies hya,—...= h,a,=0.
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can also be written in the form [R", ai’,...,a!] the automorphism ¢ of R*
may be extended to a ring isomorphism of R onto R’; this extension is
given by the obvious additive isomorphism of 2 onto R’ which is, on
account of (6), (7), (8) as well as of the fact that A, A" are annihilators of
R and R respectively, at the same time a ring isomorphism. — Suppose,
conversely, that the ring R is isomorphic to R’. Then a ring isomorphism of
R onto R' maps the (invariantly defined) subgroup A of R onto A’ and,
consequently, the subgroup {a,,...,a.} (i. e. the set of all elements of order
=p” in A) onto {ai,...,a.}.

Thus the classification of the nilpotent Artinian p-rings according to
the kernel mentioned in § 1 has been completed. If a ring R with a given
kernel R* is said to belong to the family F(R®), then our results can be
summarized in the following

Theorem 3. Any nilpotent Artinian p-ring R belongs to a family F(R")
uniquely determined by its kernel R°. For an arbitrary given finite nilpotent
p-ring R*==0 any member R + R* of the family F(R") is an infinite nil-
potent Artinian p-ring R=[R", a,, ..., a,] with the additive group G given
by (3), (4), (5). Two rings [R',a,,...,a,) and [R" ai,...,a!] in F(R") are
isomorphic if and only if there exists an automorphism of the ring R* which
maps the additive subgroup \la,,...,a,} onto lai,...,a.}. Except the family
F(0), which contains the zero-rings with additive groups of tvpe (4), each
family F(R") contains only a finite number of non-isomorphic rings. For a given
R* with p* as maximal (additive) order of its elements the family F(R")
contains a ring other than R* if and only if R* has an annihilator of (addi-
tive) order p".

The commutativity of the kernel R* implies that of R. — If R is an
arbitrary nilpotent Artinian ring, then R is (finite or) countable and the
ring R is necessarily finite. There exists only countably many non-isomorphic
nilpotent Artinian rings.

REMARK (added in proof January 21, 1955). The proof of Theorems 1 and 2
is valid also under he weaker supposition that the ring R satisfies the descending
(ascending) chain condition only for fwo-sided ideals. Consequently the nil-
potent rings with descending chain condition for two-sided ideals coincide
with the nilpotent Artinian rings, the latter being described by Theorem 3.
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