A note on the Diophantine equation $\binom{x}{4}=\binom{y}{2}$

By ÁKOS PINTÉR (Debrecen)

1. Introduction

Let n be a rational integer with $n \geq 3$. Brindza [B] proved that the equation

$$
\begin{equation*}
\binom{x}{n}=\binom{y}{2} \quad \text { in integers } x, y \tag{1}
\end{equation*}
$$

has only finitely many solutions and all them can be, at least in principle, effectively determined. See also [Ki] and [P]. In 1967, Avanesov [A] showed that for $n=3$, the equation

$$
\binom{x}{3}=\binom{y}{2} \quad \text { in integers } x \geq 3, y \geq 2
$$

possesses only the solutions $(x, y)=(3,2),(5,5),(10,16),(22,56)$ and $(36,120)$. The purpose of this note is to give a simple resolution of the equation

$$
\begin{equation*}
\binom{x}{4}=\binom{y}{2} \quad \text { in integers } x \geq 4, y \geq 2 \tag{2}
\end{equation*}
$$

Theorem. All the integer solutions (x, y) to the equation (2) are $(x, y)=(4,2),(6,6)$ and $(10,21)$.

This provides an answer to a question of Guy [G, Section D3].
Research supported in part by Grants T4055, T16975 and W15355 from the HNFSR and by Foundation for Hungarian Higher Education and Research.

For $n=5$, it is easy to see that $\binom{15}{5}=\binom{78}{2}$ and $\binom{19}{5}=\binom{153}{2}$. However, it seems to be a harder problem to determine all solutions of the equation $\binom{x}{5}=\binom{y}{2}$ in positive integers x, y.

2. Proof of the Theorem

Equation (2) leads to

$$
\begin{equation*}
\left(x^{2}-3 x+1\right)^{2}+2=3(2 y-1)^{2} . \tag{3}
\end{equation*}
$$

The left hand side of (3) can be factorized over $K=\mathbb{Q}(\sqrt{-2})$. Denote by O_{K} the ring of integers of K. As is known, $\{1, \sqrt{-2}\}$ is an integral basis for O_{K} and O_{K} is a unique factorization ring.

The greatest common divisor in O_{K} of the factors $x^{2}-3 x+1+\sqrt{-2}$ and $x^{2}-3 x+1-\sqrt{-2}$ divides $-2 \sqrt{-2}=(\sqrt{-2})^{3}$. Hence we have

$$
\begin{align*}
& x^{2}-3 x+1+\sqrt{-2} \tag{4}\\
& =(\sqrt{-2})^{\alpha} \cdot(1+\sqrt{-2})^{\beta} \cdot(1-\sqrt{-2})^{\gamma} \cdot(-1)^{\delta} \cdot(a+b \sqrt{-2})^{2},
\end{align*}
$$

where $\alpha, \beta, \gamma, \delta \in\{0,1\}$ and $a, b \in \mathbb{Z}$. On taking the norm with respect to K / \mathbb{Q}, in view of (3) we get $\alpha=\beta \cdot \gamma=0$. Since $(a+b \sqrt{-2})^{2}=$ $a^{2}-2 b^{2}+2 a b \sqrt{-2}$, it is easy to exclude $(\alpha, \beta, \gamma, \delta)=(0,0,0,0)$ and $(0,0,0,1)$. Summarizing, we get four possibilities: $(\alpha, \beta, \gamma, \delta)=(0,1,0,0)$, $(0,0,1,0),(0,1,0,1)$ and $(0,0,1,1)$. On equating the coefficients in the basis $\{1, \sqrt{-2}\}$ of the left and right hand sides of (4), after some straightforward calculations we get in the second and third cases the equations

$$
(a-13 b)^{2}+(2 x-3)^{2}=19(3 b)^{2}
$$

and

$$
(3 a-b)^{2}+(2 x-3)^{2}=19 b^{2}
$$

respectively. Since $19 \equiv-1 \bmod 4$, these equations are not solvable. If $(\alpha, \beta, \gamma, \delta)=(0,1,0,0)$ then (4) yields

$$
\begin{equation*}
a^{2}-2 b^{2}-4 a b=x^{2}-3 x+1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
a^{2}-2 b^{2}+2 a b=1 \tag{6}
\end{equation*}
$$

Thus

$$
\begin{align*}
& 4\left(a^{2}-2 b^{2}-4 a b\right)+5\left(a^{2}-2 b^{2}+2 a b\right) \\
& \quad=(3 a-b)^{2}-19 b^{2}=(2 x-3)^{2} \tag{7}
\end{align*}
$$

As is known (see [C]), the general solution of the equation $u^{2}+19 v^{2}=$ w^{2} in integers u, v, w can be written as

$$
u=\left(m^{2}-19 n^{2}\right) d, \quad v=2 m n \cdot d, \quad w=\left(m^{2}+19 n^{2}\right) d
$$

where

$$
\begin{equation*}
m, n, d \in \mathbb{Z}, m+n \equiv 1 \bmod 2 \text { and }(m, n)=1 \tag{8}
\end{equation*}
$$

or

$$
u=\frac{m^{2}-19 n^{2}}{2} d, \quad v=m n \cdot d, \quad w=\frac{m^{2}+19 n^{2}}{2} d
$$

with

$$
\begin{equation*}
m, n, d \in \mathbb{Z}, m \equiv n \equiv 1 \bmod 2 \text { and }(m, n)=1 \tag{9}
\end{equation*}
$$

Using these formulas we have by (7)

$$
2 x-3=d\left(m^{2}-19 n^{2}\right), \quad b=d \cdot 2 m n, \quad 3 a-b=d\left(m^{2}+19 n^{2}\right)
$$

with (8) or

$$
2 x-3=\frac{m^{2}-19 n^{2}}{2} d, \quad b=d \cdot m n, \quad 3 a-b=\frac{m^{2}+19 n^{2}}{2} d
$$

with (9). Substituting these values into the equation (6) we obtain

$$
\begin{equation*}
d^{2}\left(m^{4}+16 n m^{3}-6 n^{2} m^{2}+304 n^{3} m+361 n^{4}\right)=9 \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
d^{2}\left(m^{4}+16 n m^{3}-6 n^{2} m^{2}+304 n^{3} m+361 n^{4}\right)=36.01 \tag{11}
\end{equation*}
$$

Using the program package KANT [Ka] and the BAKER-DAVENPORT reduction algorithm (see $[\mathrm{BD}])$ we get the solutions $(d, m, n)=(\pm 3, \pm 1,0)$ for (10) and $(d, m, n)=(\pm 1,1,-1),(\pm 1,-1,1)$ and $(\pm 6, \pm 1,0)$ for (11), respectively. It is easy to see that they lead to $x=3$ and $x=6$.

In the remaining case $(\alpha, \beta, \gamma, \delta)=(0,0,1,1)$,(4) yields

$$
\begin{equation*}
a^{2}-2 b^{2}-2 a b=1 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
2 b^{2}-a^{2}-4 a b=x^{2}-3 x+1 \tag{13}
\end{equation*}
$$

Following the argument above we have

$$
(2 x-3)^{2}+19(3 b)^{2}=(a-13 b)^{2},
$$

whence

$$
2 x-3=\left(m^{2}-19 n^{2}\right) d, \quad 3 b=2 m n \cdot d, \quad a-13 b=\left(m^{2}+19 n^{2}\right) d
$$

with (8), or

$$
2 x-3=\frac{m^{2}-19 n^{2}}{2} d, \quad 3 b=m n \cdot d, \quad a-13 b=\frac{m^{2}+19 n^{2}}{2} d
$$

with (9). Substituting these values into the equation (12) we get

$$
\begin{equation*}
d^{2}\left(3 m^{4}+48 n m^{3}+302 n^{2} m^{2}+912 n^{3} m+1083 n^{4}\right)=3 \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
d^{2}\left(3 m^{4}+48 n m^{3}+302 n^{2} m^{2}+912 n^{3} m+1083 n^{4}\right)=12 . \tag{15}
\end{equation*}
$$

Using KANT and the Baker-Davenport reduction algorithm again we have the solutions $(d, m, n)=(\pm 1,6,1),(\pm 1,-6,1),(\pm 1, \pm 1,0)$ for (14), and $(d, m, n)=(\pm 2,6,-1),(\pm 2,-6,1),(\pm 2, \pm 1,0),(\pm 1,3,-1)$, $(\pm 1,-3,1)$ for (15). They lead to $x=2,4$ and 10 . By assumption $x \geq 4$, hence we have $x=4,6$ and 10 . For $x=4,6$ and 10 , we get from (2) that $y=2,6,21$, respectively. This completes the proof of the theorem.

Acknowledgements. The author is grateful to Professor K. Győry for his valuable remarks, to Professor A. Рethő and Dr. I. GaÁl for their helpful guidance to the usage of the program package KANT.

Added in proof: The problem above has been solved independently by B. de Weger, A binomial diophantine equation, to appear in Quart. J. Math. Oxford.

References

[A] E. T. Avanesov, Solution of a problem on figurate numbers, Acta Arith. 12 (1966/67), 409-420, (in Russian).
[BD] A. Baker and H. Davenport, The equations $3 x^{2}-2=y^{2}$ and $8 x^{2}-7=z^{2}$, Quart. J. Math. Oxford 20 (1969), 129-137.
[B] B. Brindza, On a Special Superelliptic Equation, Publ. Math. Debrecen 39 (1991), 159-162.
[C] E. L. Cohen, On the Diophantine Equation $x^{2}-D y^{2}=n z^{2}$, J. Number Theory 40 (1992), 86 -91.
[G] R. K. Guy, Unsolved problems in number theory, 2nd ed., Springer-Verlag, Berlin, New York, 1994.
[Ka] KASH, A User's, Guide, KANT-Group, Technische Universität Berlin, Berlin, Germany, 1994.
[Ki] P. KISS, On the number of solutions of the Diophantine equation $\binom{x}{p}=\binom{y}{2}$, Fibonacci Quarterly 26 (1988), 127-133.
[P] Á. Pintér, On the number of simple zeros of certain polynomials, Publ. Math. Debrecen 42 (1992), 329-332.

```
ÁKOS PINTÉR
MATHEMATICAL INSTITUTE
KOSSUTH LAJOS UNIVERSITY
DEBRECEN, H-4010, P.O.BOX }1
HUNGARY
E-MAIL: APINTER@MATH.KLTE.HU
```

(Received May 10, 1995)

