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A note on the Diophantine equation
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By �AKOS PINT�ER (Debrecen)

1. Introduction

Let n be a rational integer with n ≥ 3. Brindza [B] proved that the
equation

(1)
(

x

n

)
=

(
y

2

)
in integers x, y

has only finitely many solutions and all them can be, at least in princi-
ple, effectively determined. See also [Ki] and [P]. In 1967, Avanesov [A]
showed that for n = 3, the equation

(
x

3

)
=

(
y

2

)
in integers x ≥ 3, y ≥ 2

possesses only the solutions (x, y) = (3, 2), (5, 5), (10, 16), (22, 56) and
(36, 120). The purpose of this note is to give a simple resolution of the
equation

(2)
(

x

4

)
=

(
y

2

)
in integers x ≥ 4, y ≥ 2.

Theorem. All the integer solutions (x, y) to the equation (2) are
(x, y) = (4, 2), (6, 6) and (10, 21).

This provides an answer to a question of Guy [G, Section D3].
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For n = 5, it is easy to see that
(
15
5

)
=

(
78
2

)
and

(
19
5

)
=

(
153
2

)
. However,

it seems to be a harder problem to determine all solutions of the equation(
x
5

)
=

(
y
2

)
in positive integers x, y.

2. Proof of the Theorem

Equation (2) leads to

(3) (x2 − 3x + 1)2 + 2 = 3(2y − 1)2.

The left hand side of (3) can be factorized over K = Q(
√−2). Denote by

OK the ring of integers of K. As is known, {1,
√−2} is an integral basis

for OK and OK is a unique factorization ring.
The greatest common divisor in OK of the factors x2− 3x + 1 +

√−2
and x2 − 3x + 1−√−2 divides −2

√−2 = (
√−2)3. Hence we have

(4) x2 − 3x + 1 +
√−2

= (
√−2)α · (1 +

√−2)β · (1−√−2)γ · (−1)δ · (a + b
√−2)2,

where α, β, γ, δ ∈ {0, 1} and a, b ∈ Z. On taking the norm with respect
to K/Q, in view of (3) we get α = β · γ = 0. Since (a + b

√−2)2 =
a2 − 2b2 + 2ab

√−2, it is easy to exclude (α, β, γ, δ) = (0, 0, 0, 0) and
(0, 0, 0, 1). Summarizing, we get four possibilities: (α, β, γ, δ) = (0, 1, 0, 0),
(0, 0, 1, 0), (0, 1, 0, 1) and (0, 0, 1, 1). On equating the coefficients in the
basis {1,

√−2} of the left and right hand sides of (4), after some straight-
forward calculations we get in the second and third cases the equations

(a− 13b)2 + (2x− 3)2 = 19(3b)2,
and

(3a− b)2 + (2x− 3)2 = 19b2,

respectively. Since 19 ≡ −1 mod 4, these equations are not solvable. If
(α, β, γ, δ) = (0, 1, 0, 0) then (4) yields

a2 − 2b2 − 4ab = x2 − 3x + 1(5)

and

a2 − 2b2 + 2ab = 1.(6)

Thus

(7)
4(a2 − 2b2 − 4ab) + 5(a2 − 2b2 + 2ab)

= (3a− b)2 − 19b2 = (2x− 3)2.
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As is known (see [C]), the general solution of the equation u2+19v2 =
w2 in integers u, v, w can be written as

u = (m2 − 19n2)d, v = 2mn · d, w = (m2 + 19n2)d,

where

m,n, d ∈ Z, m + n ≡ 1 mod 2 and (m,n) = 1,(8)
or

u =
m2 − 19n2

2
d, v = mn · d, w =

m2 + 19n2

2
d

with

m,n, d ∈ Z, m ≡ n ≡ 1 mod 2 and (m, n) = 1.(9)

Using these formulas we have by (7)

2x− 3 = d(m2 − 19n2), b = d · 2mn, 3a− b = d(m2 + 19n2)

with (8) or

2x− 3 =
m2 − 19n2

2
d, b = d ·mn, 3a− b =

m2 + 19n2

2
d

with (9). Substituting these values into the equation (6) we obtain

d2(m4 + 16nm3 − 6n2m2 + 304n3m + 361n4) = 9(10)

or

d2(m4 + 16nm3 − 6n2m2 + 304n3m + 361n4) = 36.01(11)

Using the program package KANT [Ka] and the Baker–Davenport
reduction algorithm (see [BD]) we get the solutions (d,m, n) = (±3,±1, 0)
for (10) and (d,m, n) = (±1, 1,−1), (±1,−1, 1) and (±6,±1, 0) for (11),
respectively. It is easy to see that they lead to x = 3 and x = 6.

In the remaining case (α, β, γ, δ) = (0, 0, 1, 1), (4) yields

a2 − 2b2 − 2ab = 1(12)
and

2b2 − a2 − 4ab = x2 − 3x + 1.(13)
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Following the argument above we have

(2x− 3)2 + 19(3b)2 = (a− 13b)2,

whence

2x− 3 = (m2 − 19n2)d, 3b = 2mn · d, a− 13b = (m2 + 19n2)d

with (8), or

2x− 3 =
m2 − 19n2

2
d, 3b = mn · d, a− 13b =

m2 + 19n2

2
d

with (9). Substituting these values into the equation (12) we get

d2(3m4 + 48nm3 + 302n2m2 + 912n3m + 1083n4) = 3(14)

or

d2(3m4 + 48nm3 + 302n2m2 + 912n3m + 1083n4) = 12.(15)

Using KANT and the Baker–Davenport reduction algorithm again
we have the solutions (d,m, n) = (±1, 6, 1), (±1,−6, 1), (±1,±1, 0) for
(14), and (d,m, n) = (±2, 6,−1), (±2,−6, 1), (±2,±1, 0), (±1, 3,−1),
(±1,−3, 1) for (15). They lead to x = 2, 4 and 10. By assumption x ≥ 4,
hence we have x = 4, 6 and 10. For x = 4, 6 and 10, we get from (2) that
y = 2, 6, 21, respectively. This completes the proof of the theorem.

Acknowledgements. The author is grateful to Professor K. Győry for
his valuable remarks, to Professor A. Pethő and Dr. I. Gaál for their
helpful guidance to the usage of the program package KANT.

Added in proof: The problem above has been solved independently
by B. de Weger, A binomial diophantine equation, to appear in Quart. J.
Math. Oxford.
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