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The conductor of a cyclic quartic field

By BLAIR K. SPEARMAN (Kelowna) and KENNETH S. WILLIAMS (Ottawa)

Abstract. Explicit formulae are obtained for the conductor and the discriminant
of a cyclic quartic field K = Q(θ), where θ is a root of an irreducible polynomial
q(X) = X4 + AX2 + BX + C ∈ Z[X], and the integers A, B, C are such that there are
no primes p with p2 | A, p3 | B, p4 | C.

Let Z denote the domain of rational integers, let Q denote the field
of rational numbers, and let K be a cyclic quartic extension field of Q,
that is, [K: Q] = 4 and Gal(K/Q) ' Z/4Z. As K is a normal extension
of Q and Gal(K/Q) is an abelian group, K is an abelian field, and so
by the Kronecker-Weber Theorem there exists a positive integer f such
that K ⊆ Q(exp(2πi/f)). The least such positive integer f is called the
conductor of K and is denoted by f(K). In this paper we take K in the
form K = Q(θ), where θ is a root of an irreducible polynomial q(X) =
X4+AX2+BX+C ∈ Z[X], and determine f(K) explicitly in terms of the
coefficients A,B, C of q(X). As q(X) is irreducible over Z, we cannot have
A2 − 4C = B = 0. From [3] and [4] it is easy to deduce a necessary and
sufficient condition for the splitting field K of the irreducible polynomial
q(X) to be cyclic.

For a prime p and a non-zero integer m, we denote by vp(m) the
largest exponent k such that pk | m, and write pvp(m) ‖ m. If for any
prime p we have

vp(A) ≥ 2, vp(B) ≥ 3, vp(C) ≥ 4,
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then θ/p is an algebraic integer, which is a root of the irreducible polyno-
mial

X4 + (A/p2)X2 + (B/p3)X + (C/p4) ∈ Z[X],

and K = Q(θ/p). Therefore we can make the following simplifying as-
sumption:

(1) there does not exist a prime p such that p2 | A, p3 | B, p4 | C.

Our main result is the following theorem.

Theorem 1. Let K = Q(θ) be a cyclic quartic extension of Q, where θ
is a root of the irreducible polynomial q(X) = X4+AX2+BX+C ∈ Z[X]
with coefficients A, B,C satisfying (1).

Case (i): A2 − 4C 6= 0, B 6= 0: Set

` = v2(A2 − 4C), b = v2(B),

and for a prime p 6= 2 set

ep = min(vp(A2 − 4C), vp(B)).

Then
f(K) = 2α

∏
p 6=2

ep odd

p
∏
p 6=2

ep(even)≥2,p|A

p,

where the values of α are given in TABLE (i).

Case (ii): A2 − 4C = 0, B 6= 0: Here

f(K) = 2β
∏
p 6=2

vp(B) odd

p
∏
p6=2

vp(B)(even)≥2,p|A

p,

where the values of β are given in TABLE (ii).

Case (iii): A2 − 4C 6= 0, B = 0: Here

f(K) = 2γ
∏
p6=2

p|A,p|C

p,

where the values of γ are given in TABLE (iii).

Proof of Theorem 1. We just treat case (i) (A2 − 4C 6= 0, B 6= 0)
as cases (ii) and (iii) can be treated in a similar but easier manner.

We begin by outlining the ideas involved in the proof. First we solve
the quartic equation q(θ) = θ4 + Aθ2 + Bθ + C = 0 for θ in terms of
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A,B, C and the unique integral root t of the cubic resolvent of q(X), see
(2) and (3). We then use this solution to express K = Q(θ) in the form
K = Q(

√
m + n

√
S ), where m,n, S are integers such that (m,n) and S

are both squarefree and m + n
√

S is not a square in Q(
√

S), see (11)
and (12). Various relationships involving A,B,C, t, S,m, n are recorded
in (4)–(10) for later use. For K expressed in the form Q(

√
m + n

√
S ),

Huard, Spearman and Williams have given an explicit expression for d(K)
in terms of m, n and S [2, Corollary 4]. Using the discriminant- conductor
formula, it is easy to deduce from their result an explicit expression for
the conductor f(K) of K in terms of m,n and S, see (13)–(15). From this
formula for f(K) in terms of m, n and S, it is easy to see what arithmetic
relations between m,n, S and A,B, C must be proved in order to deduce
the form of f(K) given in Theorem 1, see (16) and (17). The remainder
of the proof of Theorem 1 requires a lot of technical but straightforward
arithmetic results, see (18)–(56).
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TABLE (i)/1: Values of α

α congruence conditions

A ≡ 1(4), B ≡ 0(4), C ≡ 1(2)

A ≡ 1(4), B ≡ 2(4), C ≡ 0(2)

A ≡ 3(4), B ≡ 0(4), C ≡ 0(2)

A ≡ 3(4), B ≡ 2(4), C ≡ 1(2)

A ≡ 0(2), B ≡ 1(2), C ≡ 1(2)

A ≡ 2(8), B ≡ 0(16), C ≡ 5(8)

0 A ≡ 10(16), B ≡ 8(16), C ≡ 5(8)

A ≡ 6(8), B ≡ 0(64), C ≡ 1(8), b ≥ `(even) ≥ 6, (A2 − 4C)/2` ≡ 1(4)

A ≡ 6(16), B ≡ 32(64), C ≡ 1(8), (A2 − 4C)/2` ≡ 1(4)

A ≡ 6(16), B ≡ 0(128), C ≡ 1(8), `(even) = b + 1 ≥ 8, (A2 − 4C)/2` ≡ 3(4)

A ≡ 6(16), B ≡ 0(128), C ≡ 1(8), `(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 3(4)

A ≡ 14(16), B ≡ 32(64), C ≡ 1(8), (A2 − 4C)/2` ≡ 3(4)

A ≡ 14(16), B ≡ 0(128), C ≡ 1(8), `(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 1(4)

A ≡ 1(4), B ≡ 0(4), C ≡ 0(2)

A ≡ 1(4), B ≡ 2(4), C ≡ 1(2)

A ≡ 3(4), B ≡ 0(4), C ≡ 1(2)

A ≡ 3(4), B ≡ 2(4), C ≡ 0(2)

A ≡ 0(8), B ≡ 0(8), C ≡ 4(8)

A ≡ 2(8), B ≡ 0(16), C ≡ 1(8), ` ≥ 6

A ≡ 2(16), B ≡ 8(16), C ≡ 5(8)

2 A ≡ 4(8), B ≡ 8(16), C ≡ 4(8)

A ≡ 6(8), B ≡ 0(16), C ≡ 5(8)

A ≡ 6(8), B ≡ 0(64), C ≡ 1(8), b ≥ `(even) ≥ 6, (A2 − 4C)/2` ≡ 3(4)

A ≡ 6(16), B ≡ 32(64), C ≡ 1(8), (A2 − 4C)/2` ≡ 3(4)

A ≡ 6(16), B ≡ 0(128), C ≡ 1(8), `(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 1(4)

A ≡ 6(16), B ≡ 0(128), C ≡ 1(8), `(even) = b + 1 ≥ 8, (A2 − 4C)/2` ≡ 1(4)

A ≡ 14(16), B ≡ 32(64), C ≡ 1(8), (A2 − 4C)/2` ≡ 1(4)

A ≡ 14(16), B ≡ 0(128), C ≡ 1(8), `(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 3(4)

A ≡ 0(4), B ≡ 0(4), C ≡ 1(2)

A ≡ 2(4), B ≡ 0(8), C ≡ 0(4)

A ≡ 2(8), B ≡ 0(16), C ≡ 1(8), ` = 5

3 A ≡ 6(8), B ≡ 16(32), C ≡ 1(8)

A ≡ 6(8), B ≡ 0(64), C ≡ 1(8), `(even) = b + 2 ≥ 8

A ≡ 6(16), B ≡ 0(64), C ≡ 1(8), `(odd) = b + 1 ≥ 7

A ≡ 14(16), B ≡ 0(128), C ≡ 1(8), b ≥ `(odd) ≥ 7

A ≡ 4(8), B ≡ 0(16), C ≡ 4(8), b = `− 1 ≥ 5 or b ≥ `
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TABLE (i)/2: Values of α

α examples

X4 − 55X2 − 60X + 145 f(K) = 3 · 5
X4 − 51X2 − 34X + 68 f(K) = 17

X4 − 65X2 − 260X − 260 f(K) = 5 · 13

X4 − 17X2 − 34X − 17 f(K) = 17

X4 − 26X2 − 39X + 13 f(K) = 3 · 13

X4 − 182X2 − 624X − 299 f(K) = 3 · 13

0 X4 − 102X2 − 136X + 221 f(K) = 17

X4 − 170X2 − 1088X − 1751 f(K) = 17

X4 − 170X2 − 544X + 2329 f(K) = 17

X4 − 490X2 − 1920X + 9145 f(K) = 3 · 5
X4 − 714X2 − 2176X + 33881 f(K) = 17

X4 − 130X2 − 480X + 145 f(K) = 3 · 5
X4 − 2210X2 − 8320X + 946465 f(K) = 5 · 13

X4 − 119X2 − 68X + 5848 f(K) = 22 · 17

X4 − 15X2 − 10X + 5 f(K) = 22 · 5
X4 − 45X2 − 20X + 305 f(K) = 22 · 5
X4 − 85X2 − 102X + 34 f(K) = 22 · 3 · 17

X4 − 272X + 884 f(K) = 22 · 17

X4 − 102X2 − 544X + 6953 f(K) = 22 · 17

X4 − 30X2 − 40X + 5 f(K) = 22 · 5
2 X4 − 20X2 − 40X − 20 f(K) = 22 · 5

X4 − 50X2 − 80X + 205 f(K) = 22 · 5
X4 + 102X2 − 1088X + 2873 f(K) = 22 · 17

X4 − 90X2 − 160X + 905 f(K) = 22 · 5
X4 − 330X2 − 640X + 18905 f(K) = 22 · 5
X4 − 170X2 − 640X + 505 f(K) = 22 · 5
X4 − 50X2 − 160X − 95 f(K) = 22 · 5
X4 + 1054X2 − 2176X + 297313 f(K) = 22 · 17

X4 − 20X2 − 20X − 5 f(K) = 23 · 5
X4 − 50X2 − 40X + 220 f(K) = 23 · 5
X4 − 70X2 − 240X − 95 f(K) = 23 · 3 · 5

3 X4 − 50X2 − 80X + 145 f(K) = 23 · 5
X4 − 490X2 − 960X + 43705 f(K) = 23 · 3 · 5
X4 − 90X2 − 320X − 55 f(K) = 23 · 5
X4 − 1170X2 − 16640X − 59215 f(K) = 23 · 5 · 13n

X4−60X2−160X+20
X4−180X2−320X+4820

o
f(K) = 23 · 5
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TABLE (i)/3: Values of α

α congruence conditions

A ≡ 0(8), B ≡ 0(8), C ≡ 0(8)

4 A ≡ 0(8), B ≡ 0(8), C ≡ 2(4)

A ≡ 4(8), B ≡ 0(16), C ≡ 2(8)

A ≡ 4(8), B ≡ 0(16), C ≡ 4(8), b = `− 1 = 4 or b ≤ `− 2

TABLE (i)/4: Values of α

α examples

X4 − 24X2 − 32X + 8 f(K) = 24

4 X4 − 8X2 − 8X − 2 f(K) = 24

X4 − 20X2 − 16X + 34 f(K) = 24n
X4−12X2−16X−4
X4−20X2−32X+4

o
f(K) = 24

TABLE (ii): Values of β

β conditions examples

0 v2(B) = 0 X4 + 10X2 + 25X + 25 f(K) = 5

2 v2(B) ≡ 1(2) X4 + 442X2 − 9248X + 48841 f(K) = 22 · 17

3 v2(B) = 4 X4 + 190X2 + 400X + 9025 f(K) = 23 · 5
4 v2(B) = 6 X4 + 28X2 + 64X + 196 f(K) = 24

TABLE (iii): Values of γ

γ congruence conditions examples

0 A ≡ 1 (4), C ≡ 1 (2) X4 − 15X2 + 45 f(K) = 3 · 5
A ≡ 3 (4), C ≡ 0 (4) X4 − 17X2 + 68 f(K) = 17

A ≡ 2 (8), C ≡ 5 (8) X4 − 78X2 + 1053 f(K) = 3 · 13

A ≡ 6 (8), C ≡ 1 (8) X4 − 34X2 + 17 f(K) = 17

2 A ≡ 1 (4), C ≡ 0 (4) X4 − 51X2 + 612 f(K) = 22 · 3 · 17

A ≡ 3 (4), C ≡ 1 (2) X4 − 5X2 + 5 f(K) = 22 · 5
A ≡ 2 (8), C ≡ 1 (8) X4 + 34X2 + 17 f(K) = 22 · 17

A ≡ 6 (8), C ≡ 5 (8) X4 − 10X2 + 5 f(K) = 22 · 5
3 A ≡ 2 (4), C ≡ 0 (4) X4 − 10X2 + 20 f(K) = 23 · 5

A ≡ 4 (8), C ≡ 4 (16) X4 − 68X2 + 68 f(K) = 23 · 17

4 A ≡ 4 (8), C ≡ 2 (8) X4 − 4X2 + 2 f(K) = 24

A ≡ 8 (16), C ≡ 8 (32) X4 − 8X2 + 8 f(K) = 24



The conductor of a cyclic quartic field 19

By [3: Theorem 1 (iv)] the cubic resolvent c(X) = X3−AX2−4CX+
(4AC −B2) of q(X) has exactly one root t ∈ Z. Thus we have

(2) (t−A)(t2 − 4C) = B2.

Clearly we see that t−A 6= 0, t2 − 4C 6= 0, as B 6= 0. Solving the quartic
equation θ4 + Aθ2 + Bθ + C = 0 we find

(3) θ =
ε(t−A) + δ

√
(A2 − t2)− 2Bε

√
t−A

2
√

t−A
,

where ε = ±1, δ = ±1. If t−A ∈ Z2 then we have [K : Q] = [Q(θ) : Q] = 1
or 2, contradicting [K : Q] = 4. Hence t−A /∈ Z2 and we can write

(4) t−A = R2S,

where S( 6= 1) is squarefree. From (2) and (4) we see that RS | B so that

B = B1RS,(5)
t2 − 4C = B2

1S.(6)

From (4) and (6) we obtain

(7) A2 − 4C = S(B2
1 −R2(t + A)).

The unique quadratic subfield of K is

(8) k = Q
(√

t−A
)

= Q
(√

S
)
.

As k is real, we have S ≥ 2. The splitting field of the cubic resolvent

c(X) = (X − t)(X2 + (t−A)X + (t2 −At− 4C))

is

Q
(√

(t−A)2 − 4(t2 −At− 4C)
)

= Q
(√

−3t2 + 2At + (A2 + 16C)
)
.

Since K is cyclic, by [3: Theorem 1 (iv)], we must have

Q
(√

−3t2 + 2At + (A2 + 16C)
)

= k = Q
(√

S
)
,

so there exists an integer z such that

(9) −3t2 + 2At + (A2 + 16C) = Sz2.

Equivalent forms of (9) are

(t + A)2 − 4(t2 − 4C) = Sz2,(9)′

(t−A)2 − 4t(t−A) + 16C = Sz2.(9)′′
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Further, from (3), we see that

K = Q(θ) = Q

(√
(A2 − t2)− 2Bε

√
t−A

)

= Q

(√
(A2 − t2) + 2B

√
t−A

)

= Q

(√
−R2S(t + A) + 2B1R2S

√
S

)
, by (4), (5),

= Q

(√
−(t + A) + 2B1

√
S

)
.

Now let M2 denote the largest square dividing both t + A and 2B1. Set

(10) t + A = −M2m, 2B1 = M2n,

so that

(11) (m,n) is squarefree,

and

(12) K = Q

(√
m + n

√
S

)
.

Appealing to [2, Corollary 4], as well as the conductor-discriminant for-
mula, we obtain

f(K) = 2λ (m,n)S
(m, n, S)

,

where the values of λ are given in TABLE (iv).
Thus

(13) f(K) = fE(K)fO(K),

where the 2-part fE(K) of f(K) is

(14) fE(K) =

{
2λ, if 2 - (m, n), 2 - S,

2λ+1, otherwise,

and the odd part fO(K) of f(K) is

(15) fO(K) =
∏
p6=2

(p|S) or (p-S,p|(m,n))

p,

where p runs through primes.
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TABLE (iv): Values of λ

λ congruence conditions

−1 m ≡ 2 (mod 8), n ≡ 2 (mod 4), S ≡ 1 (mod 8)

m ≡ 6 (mod 8), n ≡ 2 (mod 4), S ≡ 5 (mod 8)

0 m ≡ 1 (mod 4), n ≡ 0 (mod 4), S ≡ 1 (mod 8)

m ≡ 3 (mod 4), n ≡ 2 (mod 4), S ≡ 5 (mod 8)

1 m ≡ 6 (mod 8), n ≡ 2 (mod 4), S ≡ 1 (mod 8)

m ≡ 2 (mod 8), n ≡ 2 (mod 4), S ≡ 5 (mod 8)

m ≡ 2 (mod 4), n ≡ 0 (mod 4), S ≡ 1 (mod 4)

2 m ≡ 3 (mod 4), n ≡ 0 (mod 4), S ≡ 1 (mod 8)

m ≡ 1 (mod 4), n ≡ 2 (mod 4), S ≡ 5 (mod 8)

m ≡ 1 (mod 2), n ≡ 1 (mod 2), S ≡ 1 (mod 4)

3 m ≡ 4 (mod 8), n ≡ 2 (mod 4), S ≡ 2 (mod 8)

m ≡ 2 (mod 4), n ≡ 1 (mod 2), S ≡ 2 (mod 8)

Thus, to complete the proof, we must show that

(16) α =

{
λ, if 2 - (m,n), 2 - S,

λ + 1, otherwise,

where the values of α are given in TABLE (i), and that for odd primes p
we have

(17) (p | S) or (p | m, p | n, p - S)

⇐⇒ (ep ≡ 1 (mod 2)) or (ep ≡ 0 (mod 2), ep ≥ 2, p | A),

where ep = min(vp(A2 − 4C), vp(B)). We prove (17) first and then (16).

Proof of (17). Although we use b for v2(B) and ` for v2(A2 − 4C),
just for the proof of (17), we set for an odd prime p

b = vp(B), ` = vp(A2 − 4C)(18)
and

b1 = vp(B1), u = vp(t + A).(19)

We need a number of preliminary results ((20) to (45) below). By (5) we
have

(20) 0 ≤ b1 ≤ b
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and

(21) vp(R) =

{
b− b1, if p - S,

b− b1 − 1, if p | S.

Further, from (4), we see that

(22) vp(t−A) =

{
2(b− b1), if p - S,

2(b− b1)− 1, if p | S,

and, from (6), that

(23) vp(t2 − 4C) =

{
2b1, if p - S,

2b1 + 1, if p | S.

Considering the power of p in both sides of (7), we see that exactly one of
the following three possibilities must occur

(24)

{
` = 2x < 2(b− x) + u, if p - S,

`− 1 = 2x < 2(b− x− 1) + u, if p | S,

{
2x > 2(b− b1) + u = `, if p - S,

2x > 2(b− b1 − 1) + u = `− 1, if p | S,
(25)

{
2x = 2(b− b1) + u ≤ `, if p - S,

2x = 2(b− b1 − 1) + u ≤ `− 1, if p | S.
(26)

From (24), (25) and (26), we see immediately that

(p - S, ` ≡ 1 (mod 2)) or (p | S, ` ≡ 0 (mod 2))(27)

=⇒ (24) cannot occur

(p - S, ` 6≡ u (mod 2)) or (p | S, ` ≡ u (mod 2))(28)

=⇒ (25) cannot occur,

u ≡ 1 (mod 2) =⇒ (26) cannot occur.(29)

Next, from (10), (11) and (19), we see that

u ≡ 1 (mod 2), b1 ≥ u =⇒ p | (m,n),(30)

x ≡ 1 (mod 2), b1 ≤ u =⇒ p | (m,n),(31)
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u ≡ 0 (mod 2), b1 ≥ u =⇒ p - m,(32)

x ≡ 0 (mod 2), b1 ≤ u =⇒ p - n.(33)

From (5) and (10) we have

(34) p - B =⇒ p - S, p - n.

From (7) and (10) we have

(35) ` = 0 =⇒ p - S, p - (m, n).

From (5) and (7) we have

(36) b ≥ 1, ` ≥ 1, p - S =⇒ b1 ≥ 1.

From (10) and (20) we have

(37) u = 0 =⇒ p - m.

Next we show that

(38) p - S, b ≥ 1, ` ≥ 1, u = 0 =⇒ p - A.

Suppose p | A. Then, by (18), we have p | B, p | A2 − 4C, p | C. As p - S,
by (5), p divides one of B1 and R. By (7) p must divide both of B1 and R.
Hence, by (4), we have p | t− A and thus, by (9)′′, p | z. By (6) we have
p | t2 − 4C and so, by (9)′, p | t + A, contradicting u = 0. This completes
the proof of (38).

Our next result asserts that

(39) p - A, u ≥ 1 =⇒ b1 = b.

As p - A and u ≥ 1 we have p - t−A, so that, by (4), we have p - RS, and
thus, by (5), b1 = b. This completes the proof of (39).

We now prove that

(40) p - S, p - A, ` ≥ 2 =⇒ u 6= 1.

Suppose u = 1, that is, p ‖ t + A. By (7) we see that p | B1 and p | R.
Then, by (4), we have p | t − A and so p | A, contradicting p - A. This
completes the proof of (40).

We next show that

(41) p - S, b1 ≥ 2, u ≥ 2 =⇒ b1 = b.

Suppose b1 6= b. By (20) and (21) we have p | R. Then, by (4), we have
p2 | t − A, so that as p2 | t + A we have p2 | t and p2 | A. Further, as
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p2 | B1, p | R, from (5), we see that p3 | B. Then, from (6), as p4 | t2

and p4 | B2
1 , we see that p4 | C. This contradicts (1) and so we must have

b1 = b as claimed.

Next we prove that

(42) p - A =⇒ p - S.

Suppose p - A yet p | S. Then, by (4), we have p | t − A, and, by (6), we
deduce p | t2 − 4C. Then, appealing to (9)′, we see that p | t + A. Hence
we have p | A, which is a contradiction, proving (42).

We now show that

(43) p - S, u = 1 =⇒ ` ≤ b.

We know that exactly one of the possibilities (24), (25), (26) must occur.
If (24) holds with u = 1 then ` = 2b1 < 2(b−b1)+1, so ` = 2b1 ≤ 2(b−b1),
that is, ` = 2b1 ≤ b. If (25) holds with u = 1 then ` = 1 + 2(b− b1) < 2b1,
so ` = 1+2(b−b1) ≤ 2b1−1, and thus ` = 1+2b−2b1 ≤ b. The possibility
(26) cannot occur with u = 1 by (29). This completes the proof of (43).
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Next we prove

(44) p - S, u = 0 =⇒
{

` < b, if (24) or (25) holds,

` ≥ b, if (26) holds.

If (24) holds with u = 0 then 2b1 < 2(b− b1), 2b1 < b, ` < b. If (25) holds
with u = 0 then 2b1 > 2(b − b1), 2b1 > b, ` = 2(b − b1) < b. If (26) holds
with u = 0 then 2b1 = 2(b − b1), b = 2b1 ≤ `. This completes the proof
of (44).

Our last preliminary result is the following

(45) p - S, b = b1, u ≥ 1 =⇒ p - A.

As b = b1, by (21), we have p - R. Hence, by (4), we deduce p - t−A. But
u ≥ 1 so that p | t + A. Thus we must have p - A as asserted.

We are now ready to prove (17). We do this by justifying the assertions
of TABLE (v) above.
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Cases 1 and 2 of TABLE (v) follow immediately from (34) and (35).
It remains to treat cases 3–18. For these cases we have b ≥ 1 and ` ≥ 1.
To complete the proof of the table we must show that

p - S, cases 3, 5, 6, 7, 9, 10, 11 (vp(C) even),(46)

13, 14, 15 (vp(C) even), 17, 18,

p | S, cases 4, 8, 11 (vp(C) odd), 12, 15 (vp(C) odd), 16,(47)

(48)





p | (m,n), cases 3, 7, 10, 11 (vp(C)even),
13, 15 (vp(C) even), 17, 18,

p - (m,n), cases 5, 6, 9, 14.

Clearly (46) follows from (42) in cases 5, 6, 9, 10, 13, 14, 17, 18. We
establish (46) for cases 3 and 7 by proving that

b ≥ `(even) ≥ 2, p | A =⇒ p - S.

We assume that p ‖ S and obtain a contradiction. As p | S, by (4), we
see that p | t − A, and thus p | t + A. If p ‖ t − A then by (4) p - R.
Hence by (5) pb−1 ‖ B1 so that by (6) p2b−1 ‖ t2 − 4C. As b ≥ ` > 1
we have 2b − 1 > ` so that p` | p2b−1 ‖ SB2

1 . Hence by (7) we see
that p` ‖ SR2(t + A), that is, p`−1 ‖ t + A. It is clear from (9)′ that

vp

(
(t + A)2 − 4(t2 − 4C)

)
= vp(Sz2) ≡ 1 (mod 2) so that

min
(
2(`− 1), 2b− 1

)
= 2b− 1,

implying b ≤ ` − 1, which contradicts b ≥ `. If p ‖ t + A then as p | A

we have p | t. Next, as ` ≥ 2, we have p2 | A2 − 4C so p2 | C, and
thus p2 | t2 − 4C. By (6), vp(t2 − 4C) = vp(B2

1S) ≡ 1 (mod 2) so that

p3 | t2 − 4C. Then, by (9)′, we see that vp

(
(t + A)2 − 4(t2 − 4C)

)
= 2,

contradicting that vp(Sz2) ≡ 1 (mod 2). Hence we must have p2 | t − A

and p2 | t + A. Thus p2 | A and, by (4), we have p | R. Next, as ` ≥ 2,
from (7) we see that p | B1, and thus, by (5), p3 | B. Then, from (7), we
see that p3 | A2 − 4C. But ` is even so p4 | A2 − 4C and thus p4 | C,
contradicting (1).



The conductor of a cyclic quartic field 27

We establish (46) for cases 11 and 15 when vp(C) is even by proving
that

b ≥ `(odd) ≥ 1, p | A, p2k ‖ C =⇒ p - S.

As ` ≥ 1 we have p | A2 − 4C so that p | C, and thus k ≥ 1. Hence
p2 | C so p2 | A2 − 4C showing that ` ≥ 2. But ` is odd so we must have
` ≥ 3. Further, as p` ‖ A2 − 4C, where ` is odd, and p2k ‖ C, we see
that p2k ‖ A2, that is pk ‖ A. Moreover, as b ≥ ` ≥ 3, we have p3 | B. If
k ≥ 2 then p2 | A, p3 | B, p4 | C, contradicting (1). Hence we must have
k = 1, that is p ‖ A and p2 ‖ C. Suppose now that p | S, so that p ‖ S,
we will obtain a contradiction. We consider two cases according as p - R
or p | R. If p - R then by (4) we have p ‖ t − A. From (5) we see that
pb−1 ‖ B1, so that p2b−1 | SB2

1 , where 2b− 1 ≥ 2`− 1 > `. Hence from (7)
we deduce that p` ‖ SR2(t + A), that is, p`−1 ‖ t + A. From (6) we see
that p2b−1 ‖ t2− 4C. Then, from (9)′, as Sz2 is divisible by an odd power
of p, we deduce that 2b− 1 < 2`− 2, that is, b ≤ `− 1, which contradicts
b ≥ `. We now turn to the case p | R, say, pr ‖ R, where r ≥ 1. From (4)
we deduce that p2r+1 ‖ t− A. As p ‖ A and p3 | t− A we have p ‖ t + A.

From (5) we deduce that pb−r−1 ‖ B1, so that by (6) p2(b−r−1)+1 ‖ t2−4C.
Then, from (9)′, as Sz2 is divisible by an odd power of p, we must have
2(b− r− 1)+1 = 1, that is r = b− 1, and hence p ‖ t2− 4C. On the other
hand we have p | t and p2 | C so that p2 | t2 − 4C, which is the required
contradiction. This completes the proof of (46).

Next we prove (47). First we treat cases 4 and 12. We prove

(49)1 b(even) ≥ 2, b < `, p | A, pi ‖ C (i = 2, 3) =⇒ p | S
and

(49)2 b(even) ≥ 2, b < `, p | A,

pi ‖ C (i = 0, 1 or i ≥ 4) cannot occur.

i = 0, 1. Here ` > b ≥ 2 so p2 | A2 − 4C. But p | A, so p2 | A2, and thus
p2 | C, contradicting i = 0, 1. This case cannot occur.

i = 2. Here p2 ‖ C, ` > b ≥ 2 so ` ≥ 3, p3 | A2 − 4C, and thus p ‖ A.
Assume p - S. Then, by (5), we have p | B1 or p | R. If p - R, so that p | B1,
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we have by (4) p - t − A. But, by (7), we have p2 | t + A, contradicting
p | A. Hence we must have p | R. Then, by (7), we see that p | B1. By (4)
we have p2 | t − A so, as p ‖ A, we have p ‖ t + A, that is u = 1. Hence,
by (43), we have ` ≤ b, contradicting b < `. Thus we must have p | S in
this case.

i = 3. Here p3 ‖ C, ` > b ≥ 2, ` ≥ 3, p3 | A2 − 4C, so that p2 | A. Assume
p - S. Then, by (5), we have p | B1 or p | R. If p - R, so that p | B1,
by (4) we have p - t − A. But, by (7), we have p2 | t + A contradicting
p | A. Hence we must have p | R. Then, by (7), we see that p | B1. From
(6), we see that p3 ‖ t2 − SB2

1 , so that p ‖ B1, p ‖ t. Hence we have

p2 ‖ S
(
B2

1 −R2(t + A)
)
, contradicting p3 | A2 − 4C. Thus we must have

p | S in this case.

i ≥ 4. As ` > b ≥ 2, we have ` ≥ 3, so p3 | A2 − 4C. But p4 | C, so

p3 | A2, p2 | A. Now p2 | B so, by (5), we have either p | R or p - R, p | B1.
Suppose p | R. Then, by (4), we have p2 | t − A, and thus p2 | t + A,
p4 | R2(t + A), so that p3 | SB2

1 by (7). If p | S then p | B1, p3 | B,
contradicting (1). If p - S then p3 | B2

1 , p2 | B1, p
3 | B, contradicting (1).

Thus we must have p - R, p | B1. By (7) we have p2 | t + A, so p2 | t− A,
p2 | R2S, p | R, contradicting p - R. Thus this case cannot occur. This
completes the proof of (49), and hence of (47), for cases 4 and 12.

We now prove (47) for cases 8 and 16. We prove

` > b(odd) ≥ 1, p | A =⇒ p | S.

Assume that p - S. As ` ≥ 2 we have p2 | A2 − 4C so that p2 | C. As
b ≥ 1 we have p | B so by (2) either p | t − A or p | t2 − 4C. For both
possibilities we must have p | t, so that p | t − A, p | t + A, p2 | t2 − 4C.
Hence u = vp(t + A) ≥ 1. If u = 1, by (43), we have ` ≤ b contradicting
` > b. Hence u ≥ 2 so that p2 | t + A. From (6) we deduce p | B1, and
from (4) that p | R and p2 | t − A. Hence p2 | A. From (5) we see that
p2 | B so that b ≥ 2. But b is odd so b ≥ 3, and p3 | B. As ` > b ≥ 3
we have ` ≥ 4 so p4 | A2 − 4C, and thus p4 | C, contradicting (1). This
completes the proof of (47) for cases 8 and 16.
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We now prove (47) for cases 11 and 15 when vp(C) is odd by proving
that

b ≥ `(odd) ≥ 1, p | A, p2k+1 ‖ C =⇒ p | S.

Let a = vp(A) so that pa ‖ A, where a ≥ 1. As p` ‖ A2 − 4C, where ` is

odd, p2a ‖ A2 and p2k+1 ‖ C, we must have ` = 2k +1 < 2a. If k ≥ 2 then
b ≥ ` ≥ 5 and a ≥ 3, so that p3 | A, p5 | B, p5 | C, which contradicts (1).
Hence we must have k = 0 or k = 1 that is ` = 1 or ` = 3. We suppose
that p - S and obtain a contradiction. We consider two cases according as
p - R or p | R. If p - R then by (4) we see that p - t − A. As p | A we
have p - t. On the other hand as p | B and p - t− A from (2) we see that
p | t2 − 4C, so that as p | C, we have the contradiction p | t. If p | R then
pr ‖ R for some r ≥ 1. From (4) we deduce that p2r ‖ t − A and thus as
p | A we have p | t and p | t + A. From (5) we obtain pb−r ‖ B1. Thus,
from (7), as

p` ‖ A2 − 4C (` = 1 or 3), p2(b−r) ‖ SB2
1 ,

p2r+vp(t+A) | SR2(t + A), 2r + vp(t + A) ≥ 3,

we must have

` = 3, b− r ≥ 2, 2r + vp(t + A) = 3.

Hence
k = 1, a ≥ 2, r = vp(t + A) = 1, b ≥ 3,

and thus

p3 ‖ C, p ‖ R, p2 ‖ t−A, p ‖ t + A,

p2 | A, p ‖ t, p2 ‖ t2 − 4C, p ‖ B1 (by (6)),

p2 ‖ B (by (5)), b = 2, contradicting b ≥ 3. This completes the proof
of (47).

We now prove (48). Let p be an odd prime with p - S, so that we are
in cases 3, 5–7, 9–10, 11 (vp(C) even), 13–14, 15 (vp(C) even), 17–18. By
(36) we have x ≥ 1. Exactly one of (24), (25), (26) occurs.

We begin by supposing that (24) occurs, so ` is even, and we are in
cases 3, 5–7, 9–10. (48) follows from the table below.
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cases assertion reason

3,7, cannot occur (38)
u = 0 6, 10 cannot occur (44)

5,9 p - m (32)

3,7 p | (m,n) (30)
u = 1 6, 10 cannot occur (43)

5,9 cannot occur (40)

3,7, 10 p | (m,n) (31)
u ≥ 2, b1 = 1 6 cannot occur (24)

5,9 cannot occur (39)

3,5,7,9 cannot occur ` = 2b1 = 2b > b(24), (41)
u ≥ 2, b1 ≥ 2 10 p | (m,n) (24), (31), (41)

6 p - n (24), (33), (41)

Next we suppose that (25) occurs, so that ` ≡ u (mod 2). In cases
3, 5–7, 9–10, ` and u are both even, whereas, in cases 11, 13–15, 17–18, `
and u are both odd. (48) follows from the table below.

cases assertion reason

3, 7, cannot occur (38)

u = 0 11, 13, 14, 15, 17, 18 cannot occur u odd
6, 10 cannot occur (44)
5, 9 p - m (32)

11, 13, 15, 17, 18 p | (m,n) (30)
u = 1 14 cannot occur (43)

3, 5, 6, 7, 9, 10 cannot occur u even

u ≥ 2, b1 = 1 3, 7, 10, 11, 13, 15, 17, 18 p | (m,n) (31)
5, 6, 9, 14 cannot occur (39)

10, 18 p | (m,n) (25), (31), (41)
6, 14 p - n (25), (33), (41)

u ≥ 2, b1 ≥ 2 5, 9 p - m (25), (32), (41)
11, 13, 15, 17 p | (m,n) (25), (30), (41)

3, 7 cannot occur (41), (45)

Finally we suppose that (26) occurs, so that u is even. (48) follows
from the table below.
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cases assertion reason

5, 6, 14 p - m (37)

u = 0 7, 9, 11, 13 cannot occur (44)
3, 15 cannot occur (38)

10, 17, 18 cannot occur (26)

u ≥ 2, b1 = 1 3, 7, 10, 11, 13, 15, 17, 18 p | (m,n) (31)
5, 6, 9, 14 cannot occur (39)

3, 5, 7, 9, 11, 13, 15, 17 cannot occur (26), (41)
u ≥ 2, b1 ≥ 2 6, 14 p - n (26), (33), (41)

10, 18 p | (m,n) (26), (31), (41)

This completes the proof of (17).

Proof of (16). We treat each of the cases specified in TABLE (iv)

separately. We just give the details for the case

m ≡ 2 (mod 8), n ≡ 2 (mod 4), S ≡ 1 (mod 8),

as this serves as a model for the rest of the cases. Recall that 2b ‖ B,
2` ‖ A2− 4C. We define the integers r and µ by 2r ‖ R, 2µ ‖ M , so that

(50)





R ≡ 2r (mod 2r+1),

R2 ≡ 22r (mod 22r+3),

t−A ≡ 22r (mod 22r+3), by (4),

M ≡ 2µ (mod 2µ+1),

t + A ≡ −22µ+1 (mod 22µ+3), by (10),

B1 ≡ 22µ (mod 22µ+1), by (10),

b = 2µ + r, by (5).

From the congruences for t−A and t+A, we obtain the following congru-
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ences:

(51)





t ≡ −22µ (mod 22µ+2),
A ≡ −22µ (mod 22µ+2), if r ≥ µ + 2,

t ≡ 22µ (mod 22µ+2),
A ≡ 22µ (mod 22µ+1), if r = µ + 1,

t ≡ −22µ−1 (mod 22µ+2),
A ≡ 5 · 22µ−1 (mod 22µ+1), if r = µ,

t ≡ 22r−1 (mod 22r+2),
A ≡ −22r−1 (mod 22r+2), if r ≤ µ− 1.

Appealing to (7) we see that there are integers g and h such that

A2 − 4C = (8g + 1)24µ + (4h + 1)22r+2µ+1,

so that

(52) ` =

{
4µ, if r ≥ µ,

2r + 2µ + 1, if r ≤ µ− 1,

and

(53) (A2 − 4C)/2` ≡





1 (mod 8), if r ≥ µ + 1,

3 (mod 8), if r = µ,

3 (mod 4), if r = µ− 1,

1 (mod 4), if r ≤ µ− 2.

Next, from (6), we obtain

(54)





C ≡ 0 (mod 24µ+1), if r ≥ µ + 1,

C ≡ 24µ−4 − 24µ−2 (mod 24µ−1), if r = µ,

C ≡ 24r−4 (mod 24r−1), if r ≤ µ− 1.

Thus we have

(55)





22µ ‖ A, 23µ+2 | B, 24µ+1 | C, if r ≥ µ + 2,

22µ ‖ A, 23µ+1 | B, 24µ+1 | C, if r = µ + 1,

22µ−1 ‖ A, 23µ ‖ B, 24µ−4 ‖ C, if r = µ,

22r−1 ‖ A, 23r+2 | B, 24r−4 ‖ C, if r ≤ µ− 1,
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and so, by (1), we have

(56)





µ = 0, if r ≥ µ + 2,

µ = 0, if r = µ + 1,

µ = 1, if r = µ,

r = 1, if r ≤ µ− 1.

Appealing to (50), (51), (52), (53), (54), and (56), we have:

I: m ≡ 2 (mod 8), n ≡ 2 (mod 4), S ≡ 1 (mod 8)

A ≡ 3 (mod 4), B ≡ 0 (mod 4), C ≡ 0 (mod 2),
b ≥ 2, ` = 0, (A2 − 4C)/2` ≡ 1 (mod 8),

A ≡ 1 (mod 4), B ≡ 2 (mod 4), C ≡ 0 (mod 2),
b = 1, ` = 0, (A2 − 4C)/2` ≡ 1 (mod 8),

A ≡ 10 (mod 16), B ≡ 8 (mod 16), C ≡ 5 (mod 8)
b = 3, ` = 4, (A2 − 4C)/2` ≡ 3 (mod 8),

A ≡ 14 (mod 16), B ≡ 32 (mod 64), C ≡ 1 (mod 8)
b = 5, ` = 7, (A2 − 4C)/2` ≡ 3 (mod 4),

A ≡ 14 (mod 16), B ≡ 0 (mod 128), C ≡ 1 (mod 8),
`(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 1 (mod 4).

Similarly for the remaining eleven cases in TABLE (iv) we obtain:

II: m ≡ 6 (mod 8), n ≡ 2 (mod 4), S ≡ 5 (mod 8)

A ≡ 1 (mod 4), B ≡ 0 (mod 4), C ≡ 1 (mod 2),
` = 0, b ≥ 2, (A2 − 4C)/2` ≡ 5 (mod 8)

A ≡ 3 (mod 4), B ≡ 2 (mod 4), C ≡ 1 (mod 2),
` = 0, b = 1, (A2 − 4C)/2` ≡ 5 (mod 8)

A ≡ 6 (mod 16), B ≡ 32 (mod 64), C ≡ 1 (mod 8),
` = 7, b = 5, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 6 (mod 16), B ≡ 0 (mod 128), C ≡ 1 (mod 8),
`(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 3 (mod 4)

A ≡ 10 (mod 16), B ≡ 8 (mod 16), C ≡ 5 (mod 8),
` = 4, b = 3, (A2 − 4C)/2` ≡ 3 (mod 8)
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III: m ≡ 1 (mod 4), n ≡ 0 (mod 4), S ≡ 1 (mod 8)

A ≡ 1 (mod 4), B ≡ 0 (mod 4), C ≡ 1 (mod 2),
` = 0, b ≥ 2, (A2 − 4C)/2` ≡ 5 (mod 8)

A ≡ 1 (mod 4), B ≡ 2 (mod 4), C ≡ 0 (mod 4),
` = 0, b = 1, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 3 (mod 4), B ≡ 0 (mod 4), C ≡ 0 (mod 2),
` = 0, b ≥ 2, (A2 − 4C)/2` ≡ 1 (mod 8)

A ≡ 3 (mod 4), B ≡ 2 (mod 4), C ≡ 3 (mod 4),
` = 0, b = 1, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 6 (mod 8), B ≡ 0 (mod 64), C ≡ 1 (mod 8),
b ≥ `(even) ≥ 6, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 6 (mod 16), B ≡ 32 (mod 64), C ≡ 1 (mod 8),
` = 7, b = 5, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 6 (mod 16), B ≡ 0 (mod 64), C ≡ 1 (mod 8),
b ≥ ` = 6, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 6 (mod 16), B ≡ 0 (mod 128), C ≡ 1 (mod 8),
`(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 3 (mod 4)

A ≡ 14 (mod 16), B ≡ 32 (mod 64), C ≡ 1 (mod 8),
` = 7, b = 5, (A2 − 4C)/2` ≡ 3 (mod 4)

A ≡ 14 (mod 16), B ≡ 0 (mod 128), C ≡ 1 (mod 8),
`(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 14 (mod 16), B ≡ 0 (mod 256), C ≡ 1 (mod 8),
b ≥ `(even) ≥ 8, (A2 − 4C)/2` ≡ 1 (mod 4)

IV: m ≡ 3 (mod 4), n ≡ 2 (mod 4), S ≡ 5 (mod 8)

A ≡ 0 (mod 2), B ≡ 1 (mod 2), C ≡ 1 (mod 2),
` ≥ 2, b = 0, (A2 − 4C)/2` ≡ 1 (mod 2)

A ≡ 2 (mod 8), B ≡ 0 (mod 16), C ≡ 5 (mod 8),
b ≥ ` = 4, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 6 (mod 16), B ≡ 0 (mod 128), C ≡ 1 (mod 8),
`(even) = b + 1 ≥ 8, (A2 − 4C)/2` ≡ 3 (mod 4)

A ≡ 14 (mod 16), B ≡ 32 (mod 64), C ≡ 1 (mod 8),
` = 6, b = 5, (A2 − 4C)/2` ≡ 3 (mod 4)
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V: m ≡ 6 (mod 8), n ≡ 2 (mod 4), S ≡ 1 (mod 8)

A ≡ 1 (mod 4), B ≡ 0 (mod 4), C ≡ 0 (mod 2),
` = 0, b ≥ 2, (A2 − 4C)/2` ≡ 1 (mod 8)

A ≡ 3 (mod 4), B ≡ 2 (mod 4), C ≡ 0 (mod 2),
` = 0, b = 1, (A2 − 4C)/2` ≡ 1 (mod 8)

A ≡ 2 (mod 16), B ≡ 8 (mod 16), C ≡ 5 (mod 8),
` = 4, b = 3, (A2 − 4C)/2` ≡ 7 (mod 8)

A ≡ 14 (mod 16), B ≡ 32 (mod 64), C ≡ 1 (mod 8),
` = 7, b = 5, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 14 (mod 16), B ≡ 0 (mod 128), C ≡ 1 (mod 8),
`(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 3 (mod 4)

VI: m ≡ 2 (mod 8), n ≡ 2 (mod 4), S ≡ 5 (mod 8)

A ≡ 1 (mod 4), B ≡ 2 (mod 4), C ≡ 1 (mod 2),
` = 0, b = 1, (A2 − 4C)/2` ≡ 5 (mod 8)

A ≡ 3 (mod 4), B ≡ 0 (mod 4), C ≡ 1 (mod 2),
` = 0, b ≥ 2, (A2 − 4C)/2` ≡ 5 (mod 8)

A ≡ 2 (mod 16), B ≡ 8 (mod 16), C ≡ 5 (mod 8),
` = 4, b = 3, (A2 − 4C)/2` ≡ 7 (mod 8)

A ≡ 6 (mod 16), B ≡ 32 (mod 64), C ≡ 1 (mod 8),
` = 7, b = 5, (A2 − 4C)/2` ≡ 3 (mod 4)

A ≡ 6 (mod 16), B ≡ 0 (mod 128), C ≡ 1 (mod 8),
`(odd) = b + 2 ≥ 9, (A2 − 4C)/2` ≡ 1 (mod 4)

VII: m ≡ 2 (mod 4), n ≡ 0 (mod 4), S ≡ 1 (mod 4)

A ≡ 2 (mod 8), B ≡ 0 (mod 16), C ≡ 1 (mod 8),
` = 5, b ≥ 4, (A2 − 4C)/2` ≡ 1 (mod 2)

A ≡ 4 (mod 8), B ≡ 0 (mod 32), C ≡ 4 (mod 16),
b + 1 ≥ ` ≥ 6, (A2 − 4C)/2` ≡ 1 (mod 2)

A ≡ 6 (mod 16), B ≡ 0 (mod 64), C ≡ 1 (mod 8),
`(odd) = b + 1 ≥ 7, (A2 − 4C)/2` ≡ 1 (mod 2)

A ≡ 14 (mod 16), B ≡ 0 (mod 128), C ≡ 1 (mod 8),
b ≥ `(odd) ≥ 7, (A2 − 4C)/2` ≡ 1 (mod 2)
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VIII: m ≡ 3 (mod 4), n ≡ 0 (mod 4), S ≡ 1 (mod 8)

A ≡ 0 (mod 8), B ≡ 0 (mod 16), C ≡ 4 (mod 16),
b ≥ ` = 4, (A2 − 4C)/2` ≡ 3 (mod 4)

A ≡ 2 (mod 8), B ≡ 0 (mod 64), C ≡ 1 (mod 8),
b ≥ `(even) ≥ 6, (A2 − 4C)/2` ≡ 1 (mod 2)

A ≡ 2 (mod 8), B ≡ 0 (mod 32), C ≡ 1 (mod 8),
` ≥ b(odd) + 3 ≥ 8, (A2 − 4C)/2` ≡ 1 (mod 2)

A ≡ 6 (mod 16), B ≡ 0 (mod 64), C ≡ 1 (mod 8),
b ≥ ` = 6, (A2 − 4C)/2` ≡ 3 (mod 4)

A ≡ 14 (mod 16), B ≡ 0 (mod 256), C ≡ 1 (mod 8),
b ≥ `(even) ≥ 8, (A2 − 4C)/2` ≡ 3 (mod 4)

IX: m ≡ 1 (mod 4), n ≡ 2 (mod 4), S ≡ 5 (mod 8)

A ≡ 4 (mod 8), B ≡ 8 (mod 16), C ≡ 12 (mod 16),
` = 5, b = 3, (A2 − 4C)/2` ≡ 1 (mod 2)

A ≡ 6 (mod 8), B ≡ 0 (mod 16), C ≡ 5 (mod 8),
` = 4, b ≥ 4, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 6 (mod 16), B ≡ 0 (mod 128), C ≡ 1 (mod 8),
`(even) = b + 1 ≥ 8, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 14 (mod 16), B ≡ 32 (mod 64), C ≡ 1 (mod 8),
` = 6, b = 5, (A2 − 4C)/2` ≡ 1 (mod 4)

X: m ≡ 1 (mod 2), n ≡ 1 (mod 2), S ≡ 1 (mod 4)

A ≡ 0 (mod 4), B ≡ 4 (mod 8), C ≡ 3 (mod 4),
` = b = 2, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 2 (mod 4), B ≡ 0 (mod 8), C ≡ 0 (mod 4),
` = 2, b ≥ 3, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 6 (mod 8), B ≡ 16 (mod 32), C ≡ 1 (mod 8),
` ≥ 7, b = 4, (A2 − 4C)/2` ≡ 1 (mod 2)

A ≡ 6 (mod 8), B ≡ 0 (mod 64), C ≡ 1 (mod 8),
`(even) = b + 2 ≥ 8, (A2 − 4C)/2` ≡ 1 (mod 2)
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XI: m ≡ 4 (mod 8), n ≡ 2 (mod 4), S ≡ 2 (mod 8)

A ≡ 4 (mod 16), B ≡ 16 (mod 32), C ≡ 28 (mod 32),
` = 5, b = 4, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 8 (mod 16), B ≡ 0 (mod 32), C ≡ 8 (mod 32),
` = 5, b ≥ 5, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 12 (mod 16), B ≡ 64 (mod 128), C ≡ 4 (mod 32),
` ≥ 10, b = 6, (A2 − 4C)/2` ≡ 1 (mod 2)

A ≡ 12 (mod 16), B ≡ 0 (mod 256), C ≡ 4 (mod 32),
`(odd) = b + 3 ≥ 11, (A2 − 4C)/2` ≡ 1 (mod 2)

XII: m ≡ 2 (mod 4), n ≡ 1 (mod 2), S ≡ 2 (mod 8)

A ≡ 0 (mod 8), B ≡ 8 (mod 16), C ≡ 6 (mod 8),
` = b = 3, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 4 (mod 8), B ≡ 0 (mod 16), C ≡ 2 (mod 8),
` = 3, b ≥ 4, (A2 − 4C)/2` ≡ 1 (mod 4)

A ≡ 12 (mod 16), B ≡ 32 (mod 64), C ≡ 4 (mod 32),
` = 7, b = 5, (A2 − 4C)/2` ≡ 3 (mod 4)

A ≡ 12 (mod 16), B ≡ 0 (mod 128), C ≡ 4 (mod 32),
`(even) = b + 3 ≥ 10, (A2 − 4C)/2` ≡ 1 (mod 2)

From these tables, and TABLES (i) and (iv), we obtain the following
values of λ and α

I λ = −1, α = 0 VII λ = 2, α = 3

II λ = −1, α = 0 VIII λ = 2, α = 2

III λ = 0, α = 0 IX λ = 2, α = 2

IV λ = 0, α = 0 X λ = 3, α = 3

V λ = 1, α = 2 XI λ = 3, α = 4

VI λ = 1, α = 2 XII λ = 3, α = 4

which proves (16).

This completes the proof of case (i) of Theorem 1.

We now give the special case A = 0 as a corollary to Theorem 1.
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Corollary. Let K = Q(θ) be a cyclic quartic extension of Q, where θ
is a root of the irreducible polynomial X4 + BX + C, where B and C are
(nonzero) integers for which there does not exist a prime p with p3 | B,
p4 | C. Then the conductor f(K) of K is given by

f(K) = 2δ
∏
p6=2

p|B,p|C

p,

where the values of δ are given in Table (vi).

TABLE (vi): Values of δ

δ congruence conditions examples

0 B ≡ C ≡ 1 (mod 2) X4 − 5X + 5 f(K) = 5

2 B ≡ 0 (mod 8), C ≡ 4 (mod 8) X4 − 272X + 884 f(K) = 22 · 17

3 B ≡ 0 (mod 4), C ≡ 1 (mod 2) X4 − 20X + 95 f(K) = 23 · 5
4 B ≡ 0 (mod 8), C ≡ 2 (mod 4) X4 + 8X + 14 f(K) = 24

Proof. We first show that we cannot have

A = 0, B ≡ 0 (mod 8), C ≡ 0 (mod 8)

in case (i) of the theorem. Suppose this possibility occurs. Then, by
(1), we must have C ≡ 8 (mod 16), and, by Proposition 1, we have S ≡
1, 2, or 5 (mod 8). Define the integers r, s and x by

2r ‖ R, 2s ‖ S, 2x ‖ B1.

As S is squarefree we have s = 0 or 1. From (4) (with A = 0) and (5) we
obtain

22r+s ‖ t, 2x+r+s ‖ B.

As B ≡ 0 (mod 8) we must have

x + r + s ≥ 3.

From (6) we have
4C = t2 −B2

1S.

Note that 24r+2s ‖ t2 and 22x+s ‖ B2
1S. We consider three cases

(a) 4r + 2s < 2x + s,

(b) 4r + 2s = 2x + s,

(c) 4r + 2s > 2x + s.
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Case (a). In this case we have 24r+2s ‖ 4C, so that 4r + 2s = 5, which is
impossible.

Case (b). In this case 4r + 2s = 2x + s ≤ 5 so that s = 0, x = 2r, r = 0
or 1. If r = 0 then we have x = 0 contradicting x + r + s ≥ 3. Hence we
have r = 1, x = 2, s = 0, so that

2 ‖ R,S ≡ 1 (mod 4), 22 ‖ B1, 22 ‖ t, 23 ‖ B, 23 ‖ C.

Setting
t = 4t1, B1 = 4B2, C = 8C1,

where t1, B2, C1 are all odd, in 4C = t2 − B2
1S, and dividing by 24, we

obtain 2C1 = t21 −B2
2S. Taking this equation modulo 4 we obtain

2 ≡ 2C1 ≡ t21 −B2
2S ≡ 1− 1 ≡ 0 (mod 4),

which is impossible.

Case (c). In this case we have 4r+s > 2x and 22x+s ‖ 4C so that 2x+s = 5.
Hence we have s = 1, x = 2 and r ≥ 1. Thus we have

2r ‖ R, S ≡ 2 (mod 8), 22 ‖ B1, 22r+1 ‖ t, 2r+3 ‖ B, 23 ‖ C.

Setting
t = 22r+1t1, B1 = 4B2, C = 8C1, S = 2S1,

where t1 ≡ B2 ≡ C1 ≡ 1 (mod 2), S1 ≡ 1 (mod 4), in 4C = t2 − B2
1S,

and dividing by 25, we obtain C1 = 24r−3t21 −B2
2S1. Taking this equation

modulo 4 we obtain

C1 ≡
{

2− 1 ≡ 1 (mod 4), if r = 1,

0− 1 ≡ 3 (mod 4), if r ≥ 2.

From (9) with A = 0 we have 16C − 3t2 = Sz2, so that S1z
2 = 26C1 − 3 ·

24r+1t21. If r = 1 then we have 25 ‖ S1z
2, which is impossible. Hence we

have r ≥ 2 and so 26 ‖ S1z
2, 26 ‖ z2, 23 ‖ z, say z = 23z1, where z1 is odd.

Thus S1z
2
1 = C1 − 3 · 24r−5t21. Taking this equation modulo 4 we obtain

1 ≡ S1z
2
1 ≡ C1 − 3 · 24r−5t21 ≡ 3 (mod 4),

which is impossible.

This completes the proof that B ≡ C ≡ 0 (mod 8) does not occur
when A = 0. The corollary now follows from case (i) of Theorem 1 with
A = 0.

Our next two results give the unique quadratic subfield k (Theorem 2)
and the discriminant d(K) (Theorem 3) of the cyclic quartic field K =
Q(θ), where θ4 + Aθ2 + Bθ + C = 0, explicitly in terms of the prime
factors of A,B and C.
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Theorem 2. With the notation of Theorem 1, the unique quadratic
subfield of the cyclic quartic field K = Q(θ) where θ4 +Aθ2 +Bθ +C = 0,

is k = Q
(√

S
)
, where S is given as follows:

Case (i) : A2 − 4C 6= 0,B 6= 0 .

S = 2θ
∏
p 6=2

p|A,p|B,p|C
vp(B)<vp(A2−4C)

p
∏
p6=2

p|A,p|B,p|C
vp(A2−4C)(odd)≤vp(B),vp(C) odd

p,

where θ = 0 except in the following cases when θ = 1:

A ≡ 4 (mod 16), B ≡ 16 (mod 32), C ≡ 28 (mod 32),
` = 5, b = 4, (A2 − 4C)/2` ≡ 1 (mod 4),

A ≡ 8 (mod 16), B ≡ 0 (mod 32), C ≡ 8 (mod 32),
` = 5, b ≥ 5, (A2 − 4C)/2` ≡ 1 (mod 4),

A ≡ 12 (mod 16), B ≡ 64 (mod 128), C ≡ 4 (mod 32),
` ≥ 10, b = 6,

A ≡ 12 (mod 16), B ≡ 0 (mod 256), C ≡ 4 (mod 32),
`(odd) = b + 3 ≥ 11,

A ≡ 0 (mod 8), B ≡ 8 (mod 16), C ≡ 6 (mod 8),
` = b = 3, (A2 − 4C)/2` ≡ 1 (mod 4),

A ≡ 4 (mod 8), B ≡ 0 (mod 16), C ≡ 2 (mod 8),
` = 3, b ≥ 4, (A2 − 4C)/2` ≡ 1 (mod 4),

A ≡ 12 (mod 16), B ≡ 32 (mod 64), C ≡ 4 (mod 32),
` = 7, b = 5, (A2 − 4C)/2` ≡ 3 (mod 4),

A ≡ 12 (mod 16), B ≡ 0 (mod 128), C ≡ 4 (mod 32),
`(even) = b + 3 ≥ 10,

where ` = v2(A2 − 4C) and b = v2(B).
Case (ii) : A2 − 4C = 0,B 6= 0.

S = 2φ
∏
p6=2

p|A,p2‖B

p
∏
p 6=2

p‖A,p3|B

p,

where φ = 0 except where v2(B) = 6 in which case φ = 1.

Case (iii) : A2 − 4C 6= 0,B = 0.

S = 2ρ
∏
p 6=2

vp(C) odd

p,
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where

ρ =

{
0, if v2(C) even,

1, if v2(C) odd.

Proof. We just treat Case (i). By (8) we have k = Q
(√

S
)
. From

the tables immediately following (56), we see that the 2-part of S is 2θ,
where

θ =

{
0, in cases I–X,

1, in cases XI, XII.

From Table (v), remembering that S is squarefree, we see that the odd
part of S is ∏

p6=2
p|A,p|B,p|C

vp(B)<vp(A2−4C)

p
∏
p 6=2

p|A,p|B,p|C
vp(A2−4C)(odd)≤vp(B)

vp(C) odd

p.

This proves the asserted formula for S.

Before stating our next theorem, we recall that α, β, γ, θ, φ, ρ are de-
fined in Table (i), Table (ii), Table (iii), Theorem 2 (Case (i)), Theorem 2
(Case (ii)), Theorem 2 (Case (iii)) respectively.

Theorem 3. With the notation of Theorems 1 and 2, the discriminant
d(K) of the cyclic quartic field K = Q(θ), where θ4 + Aθ2 + Bθ + C = 0,
is given as follows:

Case (i) : A2 − 4C 6= 0, B 6= 0.

d(K) = 22α+3θ
∏

p∈S2

p2
∏

p∈S3

p3,

where

S2 =
{

p 6= 2
∣∣∣vp(B)(odd) < vp(A2 − 4C), p - C

or vp(A2 − 4C)(odd) ≤ vp(B), vp(C) even

or 2 ≤ vp(A2 − 4C)(even) ≤ vp(B), p | C
}

and

S3 =
{

p 6= 2
∣∣∣1 ≤ vp(B) < vp(A2 − 4C), p | C

or vp(A2 − 4C)(odd) ≤ vp(B), vp(C) odd
}

.
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Case (ii) : A2 − 4C = 0, B 6= 0.

d(K) = 22β+3φ
∏

p∈S2

p2
∏

p∈S3

p3,

where

S2 =
{

p 6= 2
∣∣∣ p ‖ B or p - A, vp(B)(odd) ≥ 3

}
,

and

S3 =
{

p 6= 2
∣∣∣ p | A, p2 ‖ B or p ‖ A, p3 | B

}
.

Case (iii): A2 − 4C 6= 0,B = 0

d(K) = 22γ+3ρ
∏

p∈S2

p2
∏

p∈S3

p3,

where

S2 =
{

p 6= 2
∣∣∣ p | A, vp(C)(even) ≥ 2

}
,

and

S3 =
{

p 6= 2
∣∣∣ vp(C) odd

}
.

Proof. This theorem follows from d(K) = f(K)2d(k),
d(k) = 22v2(S)S, Theorem 1 and Theorem 2.

Our final theorem gives a necessary and sufficient condition for a cyclic
quartic field to be totally imaginary.

Theorem 4. With the notation of Theorem 1, let K be the cyclic
quartic field Q(θ), where θ is a root of θ4 + Aθ2 + Bθ + C = 0. Then

Case (i): K is totally imaginary ⇐⇒ 2A3 − 8AC + B2 > 0,

Case (ii): K is always totally imaginary,

Case (iii): K is totally imaginary ⇐⇒ A > 0.

Proof. We just treat Case (i). We have K = Q
(√

m + n
√

S
)
. As

K is cyclic we have K = Q
(√

m± |n|√S
)
, and there exists an integer

k (6= 0) such that m2 − Sn2 = Sk2. Thus |m| > |n|√S. If m > 0 then
m > |n|√S so m − |n|√S > 0 and K is totally real. If m < 0 then
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−m > |n|√S so m + |n|√S < 0 and K is totally imaginary. We have thus
shown that

K is totally imaginary ⇐⇒ m < 0.

By (10) we have
m < 0 ⇐⇒ t + A > 0,

and, as t + A is the unique real root of the polynomial

X3 − 4AX2 + (5A2 − 4C)X + (−2A3 + 8AC −B2),

we have
t + A > 0 ⇐⇒ −2A3 + 8AC −B2 < 0,

completing the proof.

We close by remarking that Theorem 5 of [1] follows easily from The-
orem 1.
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