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§ 1. Introduction.

1. The function
(1 M(x,y)=9¢[1/2f(x)+1/2f(»)]
is called a quasiarithmetic mean, where f(f) is a real valued function having
the inverse function ¢ (f). M is symmetric: M(x,y)=M(y,x). A nonsym-
metric quasilinear mean is a function of the form
) m(x,y)=g¢pf(X)+9f(M, p+9=1; p,q+0.

After the quasiarithmetic means were characterized by some of their
simple properties') (by axioms), the similar problem was raised for nonsym-
metric means. J. ACZEL [2] has characterized the continuous intern m (x, y) =
=x-y (p,q >0) means by the following properties:

3) (x-y)-(u-v) = (x-u)-(y-v) (bisymmetry or mediality);
4) X-X=Xx (reflexivity or idempotency);
(5) x-u<y-u and u-x<u-y, if x <y (strictly monotonic increasing).

The result of ]J. AczEL was extended by L. FucHs [3] to ordered alge-
braic systems and to the extern (pg <0) means, replacing [5] by the can-
cellation laws:

(5" x-usyu and u-xsuy if x#y,
which is a weaker condition than (5).

J. AczéL could characterize the fwice differentiable quasilinear means

also by the right autodistributive law

6) (x-3)-z2=(x-2)-(y-2)
*) Some parts of this paper have been published in Russian in the author’s paper:

Hecummerpuueckne cpepnne (On nonsymmetric means), Collog. Math. 5 (1957), 32—42.
') For further details of the theory of mean values see [1].
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instead of (3) and (4). Since in symmetric case C. RYLL-NARDZEWSKI [7]
(resp. B. KNASTER [5]) could use (6) in order to characterize the continuous
quasiarithmetic means, J. ACZEL [1] has raised the problem whether, using
(6), the condition of differentiability in second order can be replaced by a
weaker one, i. e.,, he gave the conjecture that the most general continuous
solution of (6) is (2). In a previous paper [4] I have proved that, supposing
the autodistributivity on both sides, i. e., if both (6) and

(M z:(x-y)=(z-x)-(2:y)
hold, it is enough to suppose the continuous differentiability only in first
order; in the present paper in § 3 we shall see the solution of the functional
equations (6)—(7) supposing only the continuity and the cancellation laws
(5), further, we shall give the strictly monotonic increasing, in first order
differentiable solutions of (6) without supposing (7).

§ 2 deals with some algebraic theorems which give the conditions for
the isotopism of a right resp. two sided autodistributive structure A to a
group G, formulating these conditions only for G resp. for A alone. As a
consequence, we will see the independence of the two autodistributive laws
from each other.

2. In the present paper a structure A, in which a binary operation
z=xy (x,y, 2z € A) is defined, will be called aufodistributive on right, if (6)
holds. Similarly we define the autodistributivity on left resp. on both sides.
A is said to be a quasigroup, if the equation z=x-y always has a unique
solution for x and y. We shall say that A is isofopic to G (in our investi-
gations a group in which the operation will be written as ab), if there exist
1-to-1 mappings

E« fE, g&, hE (A—=G)
such that
®) h(x-y)=fxgy (x,y€A)
or equivalently,
9) x(ab)=9ga-yb (a,6€G)
holds, where x, ¢, ¥ are the inverse mappings:
fea=gya=hxa=a (a€ Q).

In what follows we shall suppose without loss of generality that
frxe—=e :

is true for the unit element e € G. In fact, in the contrary case we consider
the functions

fix=(fx)(fze)", ;ix=(fxe)gx
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which define the same isotope as

xy=x(fxgy)==(fixgy)

and for which also
Lne=#
is satisfied.

§ 2. Autodistributive isotopes of groups.

We prove the following theorems:

Theorem 1. Let G be a group and A its isotope. Then the necessary
and sufficient conditions for the right autodistributivity of A are

(10) hx=fxgx (idempotency),

(11) w(@b)=wawb, o=Ffx (a,b€G),
(12) wa=a, if ase,

further,

(13) 0G=G for oa=(wa')a.

Corollary. Every right autodistributive isotope A of a group G is
isomorphic to a such one in which the operation is a “homogeneous function”

a-b=w(ab™)b,
where w is an automorphism of G leaving only the identity e fixed and for
which also (13) is satisfied.
Theorem 2. Let G be a group and A its isotope. Then the necessary
and sufficient conditions for the two-sided autodistributivity of A are (10)—(13),
furthermore, that G shall be abelian.
Theorem 3. Let A be a quasigroup autodistributive on both sides and

G its isotope. G is a group, necessarily abelian, if and only if there exists a
u € A such that (3) and

(14) xa=q@au==uya (a € G),
(15) e=ha—=fa=gu
hold.

Corollary. Every two-sided autodistributive quasigroup A isotopic to a
group G is medial, i. e., satisfies the law of bisymmetry (3) for all x,y,u,v€A,
furthermore, it becomes an abelian group under the operation xy defined by
the identity

for a fixed uc A.

u-xy-u=(u-x)-(y-u) (x, y €4)
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The short proofs of these theorems follow here:

1. In case x=y (6) and (5") give (10) by (8).

By putting x=¢a, y=vyb, z=1e, from
h((x-y)-21= h[(x-2)-(y-2)]

w(ab)=wagxfyb
and this yields (11) since, putting a=e, we have wb=gxfyb.
In accordance with (10) we have

it follows easily

gx=(fx)"'hx, gxa—(frxa) 'a=(wa')a—=oa.

Since a »oa—=gxa is a 1-to-1 mapping of G onto itself, we have
0G=G and
(waYa+(wb")b, if a0,
or, what is the same,
(@b ')#ab’, if a#b
and this is (12).

On the other hand, in order to prove the sufficiency of these conditions,
we can easily verify that every operation x-y=ux»(fxgy) satisfies (6), if
(10)—(11) are fulfilled.

In order to prove the corollary, we consider

h (xa-xb) = (fxa) (fxb) "' b =(wa)(wb™')b=w (ab")b.

ExaMpLE 1. Let G be the multiplicative group of real positive numbers

and wt=ft=1/t, then we obtain
x-y=w(xy')y=yx

which is really an autodistributive quasigroup operation.

2. The conditions of Theorem 2 and
(117) o(ab)=oaob, O=gx
can be obtained similarly as those of Theorem 1. The commutativity follows
easily from (11°), in fact, by taking the definition of o into account, we have

doa=(oa)d
as
[@(@b) '] ab=(wd )a(wb")b,

(@b (waYa=(wa)a(wb™).

EXaMPLE 2. By Theorems 1—2 we can construct an operation which is
autodistributive only on right. To do this we give a nonabelian group which
has automorphism leaving only the identity fixed. Such a group is the free
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group?) F of rank 2. Let a, b be the generators of F, then
(@™ .. ) =d ™ ...
is a suitable automorphism, by which we have
x-y=wo(xy7)y,

where we took
RXw=xx =X, fx=ox.

This x-y satisfies the cancellation laws, but it is no quasigroup operation,
since ox=(wx')x does not satisfy o F=F, hence, in general z—x-y can
not be solved for y°).

3. If A is a quasigroup, then also its isotope G is quasigroup. If G
is a group, then by Theorem 1—2 we have necessarily
(15") u=ge=1pe=xe

as
we=a0ge=¢,
i. e,
fre=gxe=ce
holds. The group properties
ae=ea=a,

(ab)c=a(bc)
can be formulated equivalently for the operation x-y as follows:
h(ga-u)=h(u-ya)=a,
¢ (ab)-yc=ga-y(be).
The first of these equations is equivalent to (14) and the second can

be formulated as (3), “multiplying” on both sides by # and taking the auto-
distributivity into account, further, by denoting

u-gpa=x, xzb=y, yycu=n.
Finally, in order to prove the corollary, we consider
xy=x[(fx)(fy)" hy}

Since the mediality is an isomorph-invariant property, it is enough to
verify (3) for the operation

aob=h(xaxb)=(wa)(wb)'b=w(ab)b.
Thus we have
o{w (@b ") b[w(d ") d]"} od')d=o {(ac ) c[o(bd )d] '} o (bd ') d

2) J. Erno6s has kindly called my attention to {he suitable propertizs of this group.
%) 8. K. Steiv has kindly called my attention to this fact. He has given a finite
quasigroup autodistributive only on right.
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as G is abelian and o is its automorphism:
(wa) (@b ™) b(wc™) (wd)d ' cd ' = (wa) (oc ") c(wb ") (wd)d™ bd™".
Therefore, from (9) with suitable x, ¢, ¢ defined by
xa=ga-u=u-ya=a
we obtain
u-xy-u = u-(@x-yy)-u = (u-@x-u)-(u-py-u) = (u-x)-(-).

REMARK. Theorem 3 states that in general (without any restriction) the
autodistributive quasigroups are not all isotopic to a group. The corollary of
Theorem 3 shows that the solution (2) of (6)—(7) can be given by reduc-
tion to (3). In § 3 we see this reduction under more general suppositions
as we use only the cancellation laws instead of quasigroup properties.

ProBLEM. Give necessary and sufficient conditions for those quasigroup,
which are autodistributive from one sides with the operation

xy=w(xy)y,
where xy means a group operation (SHERMANN K. STEIN).

§ 3. Solution of the functional equation of autodistributivity.

1. Let us consider the equations (6)—(7).

Theorem 4. The most general cancellative, continuous solutions of the
functional equations of the two-sided autodistributive laws (6)— (7) are the
quasilinear means (2).

The theorem will be proved by reducing (6)—(7) to the functional
equation (3) of bisymmetry.

It might be observed that the autodistributive and cancellation laws
imply the reflexivity (e. g. by putting y = z in (6)), further, x — x-y is strictly
monotonic (increasing resp. decreasing for all y) and similarly also y — x-y.%)
Thus x-y is either always intern: x-y€(x, ), or always extern:

xyE(x,y) for xs=y.
We define a mapping z— ¢z by the equation
(x-)-(u-2) = (x-u)-(y-£2),

where x, y, u are arbitrary but fixed elements in the interval / which is the

4) The contrary supposition that x » x-y, is e. g. decreasing but x -+ X.y, is increa-
sing would imply for x, < x, the inequalities x;-y, > x,-y, and X;-y, < X5-ys, hence by the
Borzano theorem we would have x,-f==x, for a value #€(y,,ys) with an obvious contra-
diction to x; < x,.
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domain of definition of the variables figuring in (6)— (7). We shall prove
sz=2 for all z€ [y, u]. It is not difficult to verify that
g(s-f)=g¢es-et, sy=y, eu=u.
In fact, we have
(x-u)-[y-2(s-)] = (x-y)-[u-(s-O)] = [(x-y)-(u-$5)] - [(x-y)-(u-)] =
— [(x-u)-(-£)]-[(x-)- (v-£0)] = (x-0)-[y-(es-e)]
and, taking the reflexivity and right autodistributivity into account,
(x-u)-(y-y) = (x-u)y = (x-y)-(u-y) = (x-u)-(y-£y),
(x-u)-(y-u) = (x-p)- st = (x-y)-(u-u) = (x-u)-(y-2u)
from which by cancellating our statements follow. |
In the case where the operation x-y is intern, using transfinit induction,
by the continuity we have ez—=2 for z€[y, u], since this holds on the set
y,u,y-u, (y-u)—u, J)‘()"H), (y-u)-y,...
as; & g
e(y-u)=—¢ey-su=y-u, eic.®)
The remaining cases can be proved in a similar way. E. g., in the case
where x-y is extern and is a strictly monotonic increasing function of x but
a decreasing one of y, then we can define an inverse operation z=x*y by
z-y=2x. In fact, by the BoLzANO theorem
xy<x<yy for x<y
or
xy>x>yy for x>y
hold and this implies the existence of a 2 thus defined for any x, y € I. This
operation x*y satisfies
E(Xky)=—=gx%sy
obviously as
e(xxy)sy—=zs(2-y)=2x
holds. Thus #2=2 can be proved for z € [y, u] as the above.

5) More exactly, let S=1im 8" be constructed by ftransfinit induction so that 8 is
generated by the elements y and u, further S" is generated by the elements of the closure
of §"-'. Now, we can prove that S is dense in [y,u]. In fact the contrary supposition
that is the supposed existence of an interval §; = [y,, u] with §; N S=0, §,<[y, u] would
imply the existence ot

Yo= supy, u,=inf u

YES) < »n u(ES) > u

Y2 (€8) < yortp (§ S) <1, (€S)
which is obviously a contradiction. Thus, by continuity, we have ¢z=2z for z € § and also
for ail z€ [y, u].

such that
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So we have (3) for v€[y, u]. In the other cases, e. g. for u €[y, v], we
consider the mapping z-- 72, instead of #z. defined by
(x-p)-(z-v) = (x-12)-(y-v)
and prove 7n2==2 1or 2 €[y, v] similarly, etc.’)
2. Let m(x,y) be a real valued function of two real variables x,y

having non zero partial derivatives in first order with respect to x and y.
Let m(x, y) be an increasing function of x. We state the following

Theorem 5. If m(x, y) is autodistributive (e. g. on right), then it is a
quasilinear mean (2).

In order to prove this theorem we remark that m(x, y) is strictly mono-
tonic also in y and reflexive. Now, we define

__my(x, y)/ma (x, y) m (u, v)/m, (4, v)
m, (x,v)/my(x, v) m,(u,y)/m,(u,y)’

my(x,y) = d=m(x,y), my(x,y)=2ad,m(x, )
and prove that

D(x,y,u,v)

D(x, y, u, v)= @[m(x, 2), m(y, 2), m (4, z), m (v, 2)].
In fact, differentiating (6) with respect to x resp. y, we can form

my (x, y)/my(x, y) = m, [m (x, 2), m (, 2))/m, [m (x, 2), m (p, 2)] m;(x, 2)/m:(y, 2)

which proves the above statement.
Choosing a suitable constant ¢ > x, let us consider the iteratives

a(x)=m(x,c) for intern m, _

@ns1(X) = @n (X), x=m (e, c) for extern m,

then taking the strictly monotonic increasing of m and its reflexivity into

account, we have
x<ea(X)<eay(x)<---<ec.

Every monotonic, bounded sequence has a limit point. This limit point
can only be the solution x=c¢ of the equation

e(x)=x, i.e, x=m(xc)
So we have
lim @, (x)==¢

n—+o

%) Note that quasigroup properties were not supposed. S. K. Steiv has called my
attention that a similar theorem is valid for a topological quasigroup generated by two
elements.

) The existence of such an a(x)= xec is involved by the reflexivity and continuity
and strict monotony because of the Borzano theorem, just as in Theorem 4.
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for each x < ¢ and, consequently,

@ (x,y, u,v) = Ple(x), @(3), @ @), « (v)] = P [an (x), @ (), @ (1), @ ()] =
==..c = P(¢, ¢, ¢, ) =1.

Thus keeping u = v constant and introducing the notation
f(ty= [ my (¢, u)/my (¢, u)at
we get

my (x, y)/my (x, y) = (a/b) f' (x)/f(y), a = m, (u, u), b = m, (u, u),
or, in another form,
my (x, y) my(x,y)| _|0=m(x, ) aym(x,y)

af'(x) bf'(y») | lo=laf()+bf(»iaylaf(x)+bf(MN]V

hence
¢ [m (x,y)] = a f(x)+bf(y).
Substituting y=x, by the reflexivity we obtain
@ (x)=(a+b)f(x),
and the solution can be formulated as
f(m)=a/(a+b)f(x)+b/(a+b)f(y)

which is equivalent to (2).
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