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The Cauchy and Jensen differences on semigroups

By JANUSZ BRZDE�K (Rzeszów)

Abstract. Let (S, +) be a commutative and uniquely divisible by 2 semigroup
with the neutral element, (G, +) be a topological group (not necessarily commutative),
and K be a normal discrete subgroup of G. We prove that if S is endowed with a
suitable topology, then every function f : S → G, continuous at a point and satisfying
the condition:

(1) f(x + y)− f(x)− f(y) ∈ K for every x, y ∈ S,

admits the representation f = k + A with some function k : S → K and an additive
function A : S → G.

We also study functions h : S → G fulfilling

(2) 2h

�
x + y

2

�
− h(x)− h(y) ∈ K for every x, y ∈ S

as well as the situations where (1) and (2) hold almost everywhere in S2 with respect
to some ideals.

1. Introduction and preliminary facts

Throughout this paper we assume the following hypotheses:
(A1) (S, +) is a commutative semigroup uniquely divisible by 2 (i.e. for

every x ∈ S there is exactly one y ∈ S with x = 2y) with the
neutral element 0;

(A2) (G, +) is a topological group (not necessarily commutative);
(A3) K is a normal discrete subgroup of G (discrete means that there

is a neighbourhood U ⊂ G of zero such that U ∩K = {0}).
We are going to investigate functions f : S −→ G satisfying the condition

(1.1) f(x + y)− f(x)− f(y) ∈ K for every x, y ∈ S.
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It is proved (see e.g. [1]–[4]) that if S is a real topological linear space,
then, under some additional assumptions, there exists an additive function
A : S −→ G (i.e. A(x + y) = A(x) + A(y) for every x, y ∈ S) such that

(1.2) f(x)−A(x) ∈ K for every x ∈ S,

which means that f has the representation f = k + A with some function
k : S −→ K. In general, i.e. without any additional assumptions, the
statement is not true; this results e.g. from an example of G. Godini
(cf. [1]–[3]).

We show that if there is given a suitable topology in S, then every
function f : S −→ G continuous at a point and satisfying (1.1) admits the
representation which is described above (cf. [5]). We also study functions
h : S −→ G fulfilling

(1.3) 2h

(
x + y

2

)
− h(x)− h(y) ∈ K for every x, y ∈ S

as well as the situations where (1.2) and (1.3) hold almost everywhere with
respect to some ideals.

Let us start with some definitions and examples.
Throughout the paper N, Z, Q and R stand for the sets of all posi-

tive integers, integers, rationals, and reals, respectively. We also need the
following four hypotheses:

(H0) S is endowed with a topology.
(H1) For every y ∈ S the translation Ty : S −→ S, given by: Ty(x) =

x + y is continuous at 0.
(H2) For every neighbourhood U ⊂ S of 0 there is a set V ⊂ U with

(i) x
2 ∈ V for every x ∈ V ;

(ii) S =
⋃{2nV : n ∈ N}.

(H3) For every neighbourhood U ⊂ S of 0 there is a neighbourhood
V ⊂ U of 0 such that conditions (i), (ii) of (H2) are valid.

Note that (H3) implies (H2); moreover, (ii) and (A1) yield 0 ∈ V .

Now, we will give some examples of spaces satisfying the above hy-
potheses. For instance, every topological locally J-convex connected com-
mutative group (see [5], Remark 1) or every topological linear space fulfils
(H3). The additive semigroups [0, +∞) and {2−mn : n,m ∈ N ∪ {0}},
with the topologies induced from R, also satisfy (H3). We will show that
(H2) holds for every semitopological linear space. Moreover, Example 1.1
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proves that there are semitopological linear spaces which do not statisfy
(H3). (Let us remind that a real linear space is called semitopological
provided it is endowed with a semilinear topology, i.e. a topology such
that the mapping L : R ×X ×X −→ X, L(a, x, y) = ax + y is separately
continuous with respect to either variable. For further details concerning
semilinear topologies we refer e.g. to [10].)

Let X be a semitopological real linear space and U ⊂ X be a neigh-
bourhood of the origin. For every x ∈ X there is ax ∈ R, ax > 0, such
that bx ∈ U for every b ∈ (−ax, ax). Put V =

⋃{(−ax, ax)x : x ∈ X},
where (−ax, ax)x = {ax : a ∈ (−ax, ax)}. It is easily seen that (i) and (ii)
are valid.

Example 1.1. Let S = R2 be endowed with the core topology (cf. [10]);
i.e. a set A ⊂ S is open iff every x ∈ A is algebraically interior to A (a
point x ∈ A is algebraically interior to A provided for every y ∈ S\{(0, 0)}
there is ay ∈ R, ay > 0, such that x + by ∈ A for all b ∈ (−ay, ay)). Then
S is a semitopological real linear space (cf. [10], p. 596).

Fix a ∈ R, a > 1, and put

U =
{

(x, y) ∈ R2 : y /∈
[
1
a
x2, ax2

]}
∪ {(0, 0)}.

It is easily seen that U\{(0, 0)} is open in the usual topology in R2 and
therefore it is open in the core topology (see [10], Corollary 1). Further,
(0,0) is algebraically interior to U . Thus U is an open neighbourhood
of (0,0) in the core topology. Let V ⊂ U be a neighbourhood of (0,0)
(in the core topology), which means that (0,0) is algebraicallly interior to
intc V (intc V denotes the interior of V with respect to the core topology).
Hence there is x ∈ R, a > x > 0, such that (x, 0) ∈ intc V , whence there is
y ∈ R, 0 < y < 1

ax2, with (x, y) ∈ intc V . Note that if a2 > 2, then there
exists n ∈ N with 1

ax2 < 2ny < ax2 and consequently

1
a
(2−nx)2 < 2−ny < a(2−nx)2.

So (2−nx, 2−ny) /∈ U , which yields (2−nx, 2−ny) /∈ V . It means that
condition (i) is not valid (when a2 > 2). In this way we have proved that
S = R2 endowed with the core topology does not satisfy (H3).

In the whole paper, in the factor group G/K we assume the factor
topology: a set U ⊂ G/K is open iff the set p−1(U) is open in G, where
p : G −→ G/K is the natural projection. G/K endowed with this topology
is a topological group.

Now, let us recall some results from [4] and [5], which will be useful
in the sequel.
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Lemma 1.2 (see [5], Lemma 2). Suppose that (A1) holds and V ⊂ S
is a set such that conditions (i), (ii) of (H2) are valid. Let (Y, +) be a group
(not necessarily commutative) and f : V −→ Y be a function satisfying

f(x + y) = f(x) + f(y) for every x, y ∈ V with x + y ∈ V.

Then there exists a unique additive function g : S −→ Y which is an
extension of f .

(Actually Lemma 2 in [5] is formulated for V being a neighbourhood
of 0, but its proof is also suitable for our Lemma 1.2.)

Lemma 1.3 (see [4], Lemma 1). Suppose (A2) and (A3). Let X be
a topological space and let g : X −→ G/K be a function continuous at a
point x0 ∈ X. Then there exists a function k : X −→ G continuous at x0

such that k(x) ∈ g(x) for every x ∈ X.

The next theorem generalizes some known results concerning the Jen-
sen functional equation, i.e. the equation

f

(
x + y

2

)
=

f(x) + f(y)
2

.

It is easily seen that if G is uniquely divisible by 2, then the Jensen equation
and the equation

(1.4) 2f

(
x + y

2

)
= f(x) + f(y)

have the same sets of solutions in the class of functions f : D −→ G for
every D ⊂ S which is J-convex (i.e. x+y

2 ∈ D for every x, y ∈ D).

Theorem 1.4. Let S be as in hypothesis (A1), D ⊂ S be a J-convex
set, and (Y, +) be a group (not necessarily commutative). Suppose that a
function f : D −→ Y satisfies equation (1.4) and there is y0 ∈ D such that
condition (ii) of (H2) holds with V = {y ∈ S : y + y0 ∈ D}. Then there
are, uniquely determined, an additive mapping g : S −→ Y and an element
u ∈ Y such that

(1.5) f(x) = g(x) + u for every x ∈ D.

Proof. First, let us observe that V is J-convex, 0 ∈ V , and according
to (1.4), for every x, y ∈ D

(1.6) f(x) + f(y) = 2f

(
x + y

2

)
= 2f

(
y + x

2

)
= f(y) + f(x)



The Cauchy and Jensen differences on semigroups 121

and consequently

(1.7) f(x)− f(y) = −f(y) + f(y) + f(x)− f(y)

= −f(y) + f(x) + f(y)− f(y) = −f(y) + f(x).

Define a function h : V −→ Y by:

h(x) = f(x + y0)− f(y0) for every x ∈ V.

Then h(0) = 0 and, by (1.4), (1.6) and (1.7), for every x, y ∈ V ,

2h

(
x + y

2

)
= 2

(
f

(
x + y0 + y + y0

2

)
− f(y0)

)

= 2f

(
x + y0 + y + y0

2

)
− 2f(y0) = f(x + y0) + f(y + y0)− 2f(y0)

= h(x) + h(y).

Thus

(1.8) 2h
(x

2

)
= 2h

(
x + 0

2

)
= h(x) for x ∈ V

and, for every x, y ∈ V with x + y ∈ V ,

h(x + y) = 2h

(
x + y

2

)
= h(x) + h(y).

Further, since 0 ∈ V and V is J-convex, condition (i) of (H2) holds. Hence,
on account of Lemma 1.2, there exists a unique additive function g : S −→ Y
with h(x) = g(x) for x ∈ V . Consequently, according to the definition of h,

(1.9) f(x) = g(x)− g(y0) + f(y0) = g(x) + u for x ∈ V + y0,

where u = −g(y0) + f(y0). There are m ∈ N and z ∈ V with y0 = 2mz.
Thus

u = −2mg(z) + f(y0) = −2mh(z) + f(y0)

= −2m(f(z + y0)− f(y0)) + f(y0),

which, by (1.6) and (1.7), yields

(1.10) f(x)− u = −u + f(x) for every x ∈ D.

We will show by induction that

(1.11) 2n(f(2−ny + (1− 2−n)x)− u) = f(y) + (2n − 1)f(x)− 2nu
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for every x, y ∈ D and n ∈ N. For this, fix x, y ∈ D. The case n = 1 is
trivial. So suppose that the equality is valid for some n ∈ N. Then, on
account of (1.4), (1.6) and (1.10),

2n+1[f(2−n−1y + (1− 2−n−1)x)− u]

= 2n+1

[
f

(
1
2
(2−ny + (1− 2−n)x + x)

)
− u

]

= 2nf(2−ny + (1− 2−n)x) + 2nf(x)− 2n+1u

= 2n[f(2−ny + (1− 2−n)x)− u] + 2nf(x)− 2nu

= f(y) + (2n − 1)f(x)− 2nu + 2nf(x)− 2nu

= f(y) + (2n+1 − 1)f(x)− 2n+1u.

Thus, by induction, we have shown that (1.11) holds for every n ∈ N and
x, y ∈ D.

Take y ∈ D. According to the fact that V fufils conditions (i), (ii) of
(H2), there is m ∈ N with

(1.12) 2−my0, 2−m−1y0, 2−my + 2−m−1y0 ∈ V.

Further, 0 ∈ V , whence by induction, the J-convexity of V yields

(1− 2−n)w ∈ V for every n ∈ N, w ∈ V.

Consequently from (1.12) we get

2−m−1y + (2−m−1 − 2−2m−1)y0

=
1
2
((2−my + 2−m−1y0) + (1− 2−m+1)2−m−1y0) ∈ V,

which means that

2−m−1y + (1− 2−m−1)(1 + 2−m)y0 ∈ V + y0.

Hence, by virtue of (1.9) and additivity of g,

2m+1[f(2−m−1y + (1− 2−m−1)(1 + 2−m)y0)− u]

= g(y) + (2m+1 − 1)g((1 + 2−m)y0).
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This equality, jointly with (1.11) (for x = (1 + 2−m)y0 ∈ V + y0 and
n = m + 1) and (1.9) (for x = (1 + 2−m)y0 ∈ V + y0), gives

f(y) = 2m+1[f(2−m−1y + (1− 2−m−1)(1 + 2−m)y0)− u]

− (2m+1 − 1)f((1 + 2−m)y0) + 2m+1u

= g(y) + (2m+1 − 1)g((1 + 2−m)y0)− (2m+1 − 1)f((1 + 2−m)y0)

+ 2m+1u

= g(y)− (2m+1 − 1)u + 2m+1u = g(y) + u.

Finally suppose that

g1(x) + u1 = f(x) = g2(x) + u2 for x ∈ D(1.13)

for additive functions g1, g2 : S −→ Y and u1, u2 ∈ Y . Then

g1(y) + g1(y0) + u1 = g2(y) + g2(y0) + u2 for y ∈ V,

from which (with y = 0) we derive g1(y0) + u1 = g2(y0) + u2 and conse-
quenly g1(y) = g2(y) for y ∈ V , where V and y0 are just the same as at
the beginning of the proof. Hence, according to Lemma 1.2, g1 = g2 and
by (1.13), u1 = u2. This completes the proof.

2. The Cauchy and Jensen differences of functions
continuous at a point

In this part we generalize slightly some results from [1], [4], and [5].
Let us begin with the following

Theorem 2.1 (cf. [5], Theorem 1). Suppose (A1)–(A3), (H0), and
(H2). Let V ⊂ S be a neighbourhood of 0 and f : V −→ G be a function
continuous at 0, satisfying

(2.1) f(x + y)− f(x)− f(y) ∈ K for every x, y ∈ V with x + y ∈ V.

Then there exists an additive function A : S −→ G such that

f(x)−A(x) ∈ K for every x ∈ V.

If, moreover, (H3) is valid, then, in a unique way, A can be chosen contin-
uous at 0.

The proof of this theorem is almost the same as the proof of The-
orem 1 in [5] (cf. also [1], the proof of Theorem 3); therefore we omit it.
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There is only one difference. Namely, supposing more general hypothesis
(H2) instead of (H3) (in [5] it is denoted by (H2)) we cannot get continuity
of A at 0. The reason is that by a suitable definition of A, in the proof of
Theorem 1 from [5] we have f(x) = A(x) for every x belonging to some
neighbourhood V ⊂ S of 0 satisfying conditions (i) and (ii). Under our
hypothesis (H2) we get the same relation, but only for a set V ⊂ S such
that (i) and (ii) are valid, which does not need to imply continuity of A
at 0 (cf. Example 2.7).

Theorem 2.2. Suppose (A1)–(A3) and (H0)–(H2). Let F : S −→ G/K
be an additive function continuous at a point x0 ∈ S. Then there exists an
additive function A : S −→ G such that A(x) ∈ F (x) for every x ∈ S. If,
moreover, (H3) holds, then, in a unique way, A can be chosen continuous
at 0.

Proof. Fix a neighbourhood U ⊂ G/K of zero. Since U + F (x0)
is a neighbourhood of F (x0), there is a neighbourhood V ⊂ S of x0 with
F (V ) ⊂ U + F (x0). Let W ⊂ S be a neighbourhood of 0 such that
W + x0 ⊂ V . Then we have

F (W ) + F (x0) = F (W + x0) ⊂ F (V ) ⊂ U + F (x0),

which means that F (W ) ⊂ U .
In this way we have proved that F is continuous at 0. According to

Lemma 1.3, there is a function k : S −→ G continuous at 0, such that
k(x) ∈ F (x) for every x ∈ S. Note that k(x + y) − k(x) − k(y) ∈ K for
every x, y ∈ S. Hence Theorem 2.1 yields the statement.

From Theorem 2.2 we get the following generalization of Theorem 2.1.

Corollary 2.3. Let G, K, and S be the same as in Theorem 2.2 and
f : S −→ G be a function continuous at a point x0 ∈ S, satisfying (1.1).
Then the statement of Theorem 2.1 holds with V = S.

Proof. It is easy to see that the fuction F = p ◦ f (where p : G −→
G/K is the natural projection) is additive and continouous at x0. Thus
Theorem 2.2 implies the assertion.

Remark 2.4. The assumption of Theorem 2.2 and Corollary 2.3 that
the topology in S fulfils (H2) (in particular (ii)) is essential as it results
from Remark 3 in [5].

In the general situation we cannot get continuity of A at x0 6= 0. This
is shown by the two examples given below.
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Example 2.5. Let a, b ∈ R, a > 0, b > 0, ab−1 /∈ Q. Put K = {0}
and

S = {pa + qb : p, q ∈ Q, p ≥ 0, q ≥ 0}
and define a function A : S −→ R by

A(pa + qb) = p for every q, p ∈ Q, p ≥ 0, q ≥ 0.

Suppose that S is endowed with the topology induced by R. Then (H1),
(H3) hold and A is additive, continuous at 0, and discontinuous at every
x ∈ S \ {0}.

Example 2.6. Let (G, +) = (R, +) with the usual topology, (S, +) =
([0, +∞),+) with the topology generated by the following family of open
sets:

T0 = {[a, b) + kN : k ∈ N, a, b ∈ (0, +∞), a < b}
∪ {[a, b) : a, b ∈ [0, 1), a < b},

and K = Z. Then it is easy to check that the topology in S is Hausdorff
and (H1) and (H3) are valid. Put

f(x) = x− [x] for x ∈ S,

where [x] = max{k ∈ Z : k ≤ x}. Then f : S −→ G is continuous and
satisfies (1.1). Further, the function A : S −→ G given by A(x) = x for
x ∈ S is additive, continuous at 0, and discontinuous at every point x ∈ S,
x ≥ 1, because every neighbourhood of a point x ∈ S with x ≥ 1 contains a
subset of the from [x, b)+kN for some b ∈ (x, +∞) and k ∈ N. Since every
additive function A0 : S −→ G continuous at a point must be continuous
at 0 (in view of (H1)), by virtue of Corollary 2.3 A is the only function
additive and continuous at a point which satisfies (1.2).

The next example shows that assuming only (H1) and (H2) we cannot
even get continuity of A at 0.

Example 2.7. Let G, K, S and f be the same as in Example 2.6
with one exception; this time we generate a topology in S by the following
family of open sets:

T = {[a, b) + kN : k ∈ N, a, b ∈ [0, +∞), a < b}.
Then (H1) and (H2) are valid and f is continuous and fulfils (1.1). Since
every additive function A : S −→ G continuous at 0 (in the topology
enerated by T ) is continuous at 0 in the usual topology in [0, +∞), the
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function A0 : S −→ G, A0 ≡ 0 is the only additive function continuous at
0 (with respect to the topology generated by T ) mapping S into G. Of
course it is not true that f(x)−A0(x) ∈ K for every x ∈ S.

The last example in this part shows that we cannot get uniqueness of
A (in Theorem 2.1), in the class of all additive functions mapping S into
G, if G is “only” a topological group. However, the situation is completely
different under some additional assumptions and this will be proved in the
proposition below, but first let us see the following

Example 2.8. In G = R2 we introduce a topology in the following
way: a set D ⊂ G is open iff, for every y ∈ R, the set {x : (x, y) ∈ D} is
open in R (with the usual topology). Then G is an additive topological
group and K = {0} × R is a discrete subgroup of G. Let S = R (with
the usual topology) and define a function f : S −→ G by the formula:
f(x) = (x, 0) for x ∈ S. It is easy to see that f is continuous, satisfies
(1.1), and f − (f + At) = At for every t ∈ R, where At : S −→ K is defined
by: At(x) = (0, tx) for x ∈ S. Since f −At is additive for every t ∈ R, this
completes the example.

Proposition 2.9. Assume that hypotheses (A1)–(A3) are valid, G is

uniquely divisible by 2, and for some neighbourhood U ⊂ G of 0 with

K ∩ U = {0} we have

G =
⋃{2nU : n ∈ N}.

Let A1, A2 : S −→ G be additive functions such that for some mapping

f : S −→ G we have

f(x)−Ai(x) ∈ K for every x ∈ S, i = 1, 2.

Then A1 = A2.

Proof. Let A(x) = A1(x) − A2(x) for x ∈ S. Then A : S −→ K

is additive. Fix x ∈ S. Note that there is n ∈ N with 2−nA(x) ∈ U

and 2−nA(x) = A(2−nx) ∈ K. Hence 2−nA(x) = 0 and consequently
A(x) = 0. Thus we have shown that A(x) = 0 for every x ∈ S, which
means that A1 = A2.

We end this part with a theorem concerning the Jensen difference.
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Theorem 2.10. Suppose (A1)–(A3) and (H0)–(H2). Let D ⊂ S,

intD 6= ∅ be a J-convex set and h : D −→ G be a function continuous

at a point x0 ∈ intD satisfying

2h

(
x + y

2

)
− h(x)− h(y) ∈ K for every x, y ∈ D.(2.2)

Then there exists an additive function A : S −→ G and y ∈ G with

h(x)− y −A(x) ∈ K for every x ∈ D.(2.3)

If, moreover, (H3) holds, then A can be chosen, in a unique way, continuous

at 0.

Proof. It is easy to see that the function f = p ◦ h : S −→ G/K is a
solution of (1.4) continuous at x0. According to (H1) there is a neighbour-
hood W ⊂ S of 0 such that W ⊂ V := {y ∈ S : y + x0 ∈ D}. Further, the
J-convexity of D yields

x

2
∈ V for x ∈ V

and, on account of (H2), S =
⋃{2nW : n ∈ N}. Consequently V satisfies

conditions (i) and (ii) of (H2). Thus, in view of Theorem 1.4, there are
an additive function g : S −→ G/K and an element u ∈ G/K both of
them uniquely determined, such that (1.5) holds. It is easily seen that g

is continuous at x0. Hence, by Theorem 2.2, there is an additive mapping
A : S −→ G with A(x) ∈ g(x) for x ∈ S. Moreover, if (H3) holds, then A

can be chosen continuous at 0. Since

h(x)− (A(x) + y) ∈ f(x)− (g(x) + u) for every x ∈ D, y ∈ u,

we obtain (2.3).
Now suppose that (H3) holds and A0 : S −→ G is also an additive

function continuous at 0 such that, for every x ∈ D, h(x)−y0−A0(x) ∈ K

with some y0 ∈ G. Then f(x) = p(A0(x)) + p(y0) for x ∈ D. Thus
Theorem 1.4 implies p ◦A0 = g, because p ◦A0 is additive. Hence, in view
of Theorem 2.2, A = A0. This ends the proof.



128 Janusz Brzdȩk

3. The Cauchy and Jensen congruences almost everywhere

In this part we consider the situation where the congruences (1.1) and
(1.3) are valid not for every x, y ∈ S, but only almost everywhere in S2

with respect to some ideal in S2. We start with some definitions.
Let X 6= ∅ be a set. We say that J ⊂ 2X is an ideal in X provided

the following two conditions are valid:

if A ∈ J and B ⊂ A, then B ∈ J ;
A ∪B ∈ J for every A,B ∈ J.

If the latter condition is replaced by the following:
⋃{An : n ∈ N} ∈ J for every {An}n∈N ⊂ J,

then J is called a σ-ideal. If, moreover, X /∈ J , we say that J is a proper
ideal (σ-ideal, respectively). Finally, if (X, +) is a group, we say that J
is a proper linearly invariant (abbreviated to p.l.i.) ideal (σ-ideal, resp.)
provided J is a proper ideal (σ-ideal, resp.) in X and {x−A : x ∈ X} ⊂ J
for every A ∈ J .

Given a p.l.i. ideal J in a group (X, +) we set

Ω(J) = {M ⊂ X2 : there is A ∈ J with M [x] ∈ J for every x ∈ X \A},
where M [x] = {y ∈ X : (x, y) ∈ M}. It turns out that Ω(J) is a p.l.i. ideal
in the product group (X2, +) (cf. [9], p. 220).

Next, let us recall the notion “almost everywhere”. Let J0 ⊂ X (J0 ⊂
X2, resp.) be an ideal in X (X2, resp.). We say that a property P (x), x ∈
D ⊂ X (D ⊂ X2, resp.), holds J0-almost everywhere (abbreviated to J0-
a.e.) in D provided there is a set A ∈ J0 such that the property holds for
every x ∈ D \A.

In the sequel the following two hypotheses will be useful:
(T1) S is a subsemigroup of a group (H, +) and S − S = H;
(T2) J ⊂ 2H is a p.l.i. ideal in H and S /∈ J .

We will also need the following two theorems:

Theorem 3.1 (see [9], Theorem 1). Suppose (T1) and (T2). Let (Y, +)
be a group (not necessarily commutative) and f : S −→ Y a function
satisfying

(3.1) f(x + y) = f(x) + f(y) Ω(J)-a.e. in S2.

Then there exists exactly one additive function F : H −→ Y such that
F (x) = f(x) J-a.e. in S.
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Theorem 3.2 (see [12], Theorem 1). Assume (A1) and (T1). Let
x0 ∈ S, P = S − x0, J ⊂ 2H be a p.l.i. σ-ideal in H such that S /∈ J and

1
2
A, 2A ∈ J for every A ∈ J,

and let (Y, +) be a group (not necessarily commutative), and M ∈ Ω(J).
If M−1 := {(y, x) : (x, y) ∈ M} ∈ Ω(J) and k : P −→ Y is a function such
that

k(x + y) = k(x) + k(y) for (x, y) ∈ P 2 \M with x + y ∈ P,

then there is exactly one additive function F : H −→ Y with F (x) = k(x)
J-a.e. in P .

(Theorem 1 in [12] is proved under the assumption that H is commuta-
tive and uniquely divisible by 2. However, we do not assume this in our
Theorem 3.2, because it results from (A1) and (T1) in a similiar way as is
shown in (1.7).)

In the sequel, given S and H satisfying hypotheses (H0) and (T1), we
consider ideals J ⊂ 2H such that

0 ∈ int d (U \A)(3.2)
for every non-empty open set U ⊂ S and every A ∈ J,

where d(D) = {x ∈ S : D∩ (x+ D) 6= ∅} for every D ⊂ S. For instance, if
H = S is a locally compact topological group and J is the σ-ideal of Haar
zero subsets of S, or H = S is an Abelian topological Polish group and J is
the σ-ideal of Christensen zero subsets of S, then (3.2) holds (see e.g. [11]
and [8], resp.). We have as well the following two propositions and remark.

Proposition 3.3. Let (S, +) be a semigroup (not necessarily commu-
tative) with zero and J ⊂ 2S be an ideal in S such that

x + A ∈ J for every x ∈ S and A ∈ J.

Suppose that (H0) holds, for every y ∈ S the translations Ry, Ly : S −→ S
given by: Ry(x) = x + y and Ly(x) = y + x are continuous at 0, and for
every neighbourhood W ⊂ S of zero and every y ∈ S, y + W /∈ J . Then
(3.2) is valid.

Proof. Let U ⊂ S be a non-empty open set and A ∈ J . Put U0 =
U \A and fix x ∈ U . There is an open neighbourhood V ⊂ S of zero with
V +x ⊂ U . Fix y ∈ V and note that y +x ∈ U ∩ (y +U) (because x ∈ U).
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Let W1 and W2 be neighbourhoods of 0 in S such that y + x + W1 ⊂ U

and x + W2 ⊂ U . Then y + x + (W1 ∩W2) ⊂ U ∩ (y + U), which means
that U ∩ (y + U) /∈ J . Since

(U ∩ (y + U)) \ (U0 ∩ (y + U0)) ⊂ A ∪ (y + A) ∈ J,

we must have U0∩(y+U0) 6= ∅. In this way we have proved that y ∈ d(U0)
for y ∈ V . This yields the statement.

Remark 3.4. Let (S, +) be a group (not necessarily commutative) such
that (H0), (H1) hold and every open set is of the second category of Baire.
Then the σ-ideal of the first category subsets of S satisfies the assump-
tions of Proposition 3.3, which means that (3.2) is valid. (See also [10],
Theorem 2.)

Before we proceed to the next proposition let us remind that, given a
topological space X, we say that a set is universally measurable provided,
for every probability Borel measure m on X, there are Borel sets B1, B2 ⊂
X with m(B1) = m(B2) and B1 ⊂ A ⊂ B2 (cf. e.g. [6] and [7]). Further, a
group (H, +) is called semitopological if it is endowed with a topology such
that the group operation is separately continuous with respect to either
variable (cf. [10], p. 597).

We also need the following lemma, which seems to be quite known;
however, for the convenience of the reader we prove it.

Lemma 3.5. Suppose that X and Y are topological spaces and A ⊂ Y

is a universally measurable set. Let h : X −→ Y be a Borel mapping

(i.e., for every Borel set B ⊂ Y, h−1(B) is a Borel set). Then h−1(A) is

universally measurable.

Proof. Let m be a probability Borel measure on X. Put mh(B) =
m(h−1(B)) for every Borel set B ⊂ Y . Then mh is a probability Borel
measure on Y . Thus there are Borel sets B1, B2 ⊂ Y with mh(B1) =
mh(B2) and B1 ⊂ A ⊂ B2. Setting D1 = h−1(B1) and D2 = h−1(B2) we
have D1 ⊂ h−1(A) ⊂ D2 and m(D1) = mh(B1) = mh(B2) = m(D2). This
ends the proof.
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Proposition 3.6. Suppose that (S,+) is a semitopological group with

the topology generated by a complete metric, commutative and uniquely

divisible by 2, the mapping x −→ 2x is continuous, the mappings x −→ x
2

and x −→ −x are Borel, and (H2) holds. Let

J0 = {A ⊂ S : A is universally measurable and 0 /∈ int d (A)}
and J be an ideal (σ-ideal, resp.) generated by J0. Then J is a p.l.i. ideal

(σ-ideal, resp.) in S satisfying (3.2).

Proof. By Lemma 3.5, x + A, x − A ∈ J0 for every A ∈ J0, x ∈ S

(note that in our case d(D) = D − D for every D ⊂ S, because S is a
group). Thus x + A, x − A ∈ J for every A ∈ J and x ∈ S. Hence, on
account of Proposition 3.3, it remains to show that J does not contain any
neighbourhood W ⊂ S of 0.

For the proof by contradiction suppose that this is not the case. Then,
by (H2),

S =
⋃{2nW : n ∈ N}

for some W ∈ J . Further, there is a sequence {Vi}i∈N ⊂ J0 with W ⊂⋃{Vi : i ∈ N}. Thus
S =

⋃{2nVi : i, n ∈ N}.

Since, according to Lemma 3.5, for every i, n ∈ N the set 2nVi is universally
measurable,we may use the following theorem of J. P. R. Christensen.

Theorem 3.7 (see [6], Theorem 1; see also [7], p. 113). Let (S, +)
be a commutative semigroup with the neutral element 0. Suppose that

S is equipped with a topolgy generated by a complete metric such that

all translations Ta : x −→ x + a are continuous. Let {Ai}i∈N ⊂ 2S be

a denumerable covering of S. Then there is k ∈ N such that for every

universally measurable set U⊃Ak the set d (U) = {x∈S : U ∩ (x + U)6=∅}
is a neighbourhood of 0.

According to Theorem 3.7, there are n, i ∈ N such that 0∈ int d (2nVi).
Next, d (2nVi) = 2n(Vi − Vi) = 2nd (Vi). Hence, by the continuity of the
mapping x −→ 2nx, we have 0 ∈ int d (Vi), a contradiction. This ends the
proof.

Now, we are in a position to prove the following
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Theorem 3.8. Suppose (A1)–(A3), (T1), (T2), (H0)–(H2), and (3.2).
Let f : S −→ G be a function continuous at a point x0 ∈ S and fulfilling

f(x + y)− f(x)− f(y) ∈ K Ω(J)-a.e. in S2.

Then there exists an additive function A : S −→ G such that

f(x)−A(x) ∈ K J-a.e. in S.(3.3)

If, moreover, (H3) holds, then A can be chosen continuous at 0 in a unique

way.

Proof. Define a function f0 : S −→ G/K by f0(x) = p(f(x)) for
x ∈ S. Then

f0(x + y) = f0(x) + f0(y) Ω(J)-a.e. in S2.

Thus, by virtue of Theorem 3.1, there exists exactly one additive function
F : H −→ G/K such that F (x) = f0(x) J-a.e. in S. We will show that F

is continuous at 0.
Fix a neighbourhood U ⊂ G/K of 0. There is a neighbourhood V ⊂

G/K of zero with V −V ⊂ U . Since f is continuous at 0, f0 is continuous
at 0, too. Hence there is a neighbourhood W ⊂ S of 0 such that f0(W ) ⊂
V . Put W0 = {x ∈ W : f0(x) = F (x)}. Then W \W0 ∈ J . Hence, in view
of (3.2), 0 ∈ int d (W0). Moreover d (W0) ⊂ W0 −W0, whence

F (d (W0)) ⊂ F (W0)− F (W0) ⊂ V − V ⊂ W.

Thus we have proved that F is continuous at 0. Consequently, by
Theorem 2.2, there exists an additive function A : S −→ G such that
A(x) ∈ F (x) for x ∈ S. Furthermore, if (H3) is valid, then A can be
chosen continuous at 0. It is easily seen that (3.3) holds.

To complete the proof suppose that hypothesis (H3) is fulfilled and
A0 : S −→ G is also continuous at 0 and f(x) − A0(x) ∈ K J-a.e. in
S. Put F0 = p ◦ A0. It is easily seen that F0(x) = f0(x) J-a.e. in S.
Thus, according to Theorem 3.1, F0 = F |S . Hence A(x), A0(x) ∈ F (x)
for x ∈ S, which, on account of Theorem 2.2, means that A0 = A. This
ends the proof.

In order to obtain for the Jensen difference a result analogous to The-
orem 3.8 the following proposition is necessary.
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Proposition 3.9. Suppose (A1), (T1), and (T2). Let (Y, +) be a group
(not necessarily commutative), M ∈ Ω(J), and h : S −→ Y be a function
such that

(3.4) 2h

(
x + y

2

)
= h(x) + h(y) for every (x, y) ∈ S2 \M.

If one the following two conditions holds:

1◦ S = H;

2◦ J is a σ-ideal, 1
2A, 2A ∈ J for every A ∈ J , and M−1 ∈ Ω(J),

then there exists exactly one additive function F : H −→ Y and exactly
one constant u ∈ Y such that

(3.5) h(x) = F (x) + u J-a.e. in S.

The proof of Proposition 3.9 is very similar to the proof of Theorem 3
in [12]. However, since it is not identical and our assumptions are a little
different, we present it.

Proof of Proposition 3.9. According to the definition of Ω(J), there
is AM ∈ J with M [x] ∈ J for every x ∈ S \AM . Fix x0 ∈ S \AM and put
M0 = (M [x0]× S) ∪ (S ×M [x0]) ∪M . It is easy to see that M0 ∈ Ω(J).

Take (x, y) ∈ S2 \M0. Then (x0, x), (x0, y) ∈ S2 \M and

0 = 2h

(
x + x0

2

)
− h(x0)− h(x),

0 = −h(y)− h(x0) + 2h

(
x0 + y

2

)
,

2h

(
x + y

2

)
= h(x) + h(y).

Adding these equalities we get

2h

(
x + y

2

)
= 2h

(
x + x0

2

)
− 2h(x0) + 2h

(
x0 + y

2

)
.

Now, replacing x by x + x0 and y by y + x0 we obtain

2h

(
x + y

2
+ x0

)
= 2h

(x

2
+ x0

)
− 2h(x0) + 2h

(y

2
+ x0

)

for every (x, y) ∈ ((S − x0) × (S − x0)) \ (M0 + (−x0,−x0)). Hence the
function k : S − x0 −→ Y , defined by

k(x) = 2h
(x

2
+ x0

)
− 2h(x0) for every x ∈ S − x0
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satisfies the condition

k(x + y) = k(x) + k(y) for (x, y) ∈ (S − x0)2 \ (M0 + (−x0,−x0))
with x + y ∈ S − x0.

Now we may use Theorems 3.1 and 3.2. On account of them there is
an additive function F : H −→ Y and a set A ∈ J such that

k(x) = F (x) for every x ∈ (S − x0) \A.

It is easy to check that according to the definition of k

2h
(x

2
+ x0

)
= F (x) + 2h(x0) for every x ∈ (S − x0) \A.(3.6)

Observe that for every x ∈ (S−x0)\ (M [x0]−x0) we have x+x0 ∈ S
and (x0, x + x0) /∈ M . Thus (3.4) implies

2h
(x

2
+ x0

)
= h(x + x0) + h(x0) for x ∈ (S − x0) \ (M [x0]− x0).

Whence and by (3.6)

h(x + x0) = F (x) + h(x0) for x ∈ (S − x0) \ (A ∪ (M [x0]− x0)).

Now, replacing x + x0 by x we get

h(x) = F (x)− F (x0) + h(x0) for x ∈ S \ ((A + x0) ∪M [x0]).

Since (A + x0) ∪M [x0] ∈ J , this yields (3.5).
The uniqueness of F and u results easily from (3.5) and Theorems 3.1

and 3.2. This ends the proof.

Finally we have the following

Theorem 3.10. Suppose that (A1)–(A3), (H0)–(H2), (T1), (T2), and
(3.2) are valid, M ∈ Ω(J), and one of conditions 1◦, 2◦ of Proposition 3.9
holds. Let h : S −→ G be a function continuous at a point x0 ∈ S and such
that

2h

(
x + y

2

)
− h(x)− h(y) ∈ K for every (x, y) ∈ S2 \M.

Then there exist an additive function A : S −→ G and a constant y ∈ G
with

h(x)− (A(x) + y) ∈ K J-a.e. in S.(3.7)
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If, moreover, (H3) holds, then, in a unique way, A can be chosen continuous
at 0.

Proof. Note that the function h0 = p ◦ h : S −→ G/K satisfies
(3.4). Thus, on account of Proposition 3.9, there is an additive function
F : H −→ G/K and a constant u ∈ G/K such that (3.5) holds with h = h0.
Further, in the same way as in the proof of Theorem 3.8, one can show
that F |S is continuous at 0. Hence, in view of Theorem 2.2, there is an
additive function A : S −→ G with A(x) ∈ F (x) for x ∈ S. Moreover, if
(H3) holds, then A can be chosen continuous at 0. It is easily seen that
(3.7) holds with every y ∈ u.

To complete the proof suppose that (H3) holds and A0 : S −→ G is
also an additive function continuous at 0 and such that

h(x)− (A0(x) + y0) ∈ K J-a.e. in S

with some y0 ∈ G. Define a function F0 : S −→ G/K by

F0(x) = p(A0(x)) for x ∈ S.

Then F0(x) + p(y0) = h0(x) J-a.e. in S. Thus, by Proposition 3.9, F |S =
F0, which means that A(x),A0(x) ∈ F (x) for x ∈ S. Hence, in view of
Theorem 2.2, A = A0. This ends the proof.
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136 Janusz Brzdȩk : The Cauchy and Jensen differences on semigroups

[11] K. Stromberg, An elementary proof of Steinhaus’ theorem, Proc. Amer. Math.
Soc. 36 (1972), 308.

[12] J. Tabor, Cauchy and Jensen equations on a restricted domain almost everywhere,
Publicationes Math., Debrecen 39 (1991), 219–235.

JANUSZ BRZDȨK
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