# $F(2)$ type structures in the complex Finsler spaces 

By I. ČOMIĆ (Novi Sad)


#### Abstract

There are lot of papers and books ([1]-[3], [6]-[12] etc.) in which the almost complex, almost product and tangent structures are studied in the tangent bundles of Riemannian or Finsler spaces. Here, the $F(2)$ type structures on the tangent bundle of complex Finsler spaces are defined ([4], [5]). They have the property, that for different values of parameters are almost complex, almost product or tangent structures. It is proved that they are tensors of type $(1,1)$ with respect to the coordinate transformations. The invariant subspaces of one structure are determined.


## 1. Complex Finsler spaces

Let us consider two $n$-dimensional Finsler spaces $F_{1}(x, \dot{x})$ and $F_{2}(y, \dot{y})$. The allowable coordinate transformations in $F_{1}$ and $F_{2}$ are given by

$$
\begin{array}{rlr}
x^{a^{\prime}}=x^{a^{\prime}}(x) & y^{i^{\prime}}=y^{i^{\prime}}(y) \\
\dot{x}^{a^{\prime}}=A_{a}^{a^{\prime}}(x) \dot{x}^{a} & \dot{y}^{i^{\prime}}=B_{i}^{i^{\prime}}(y) \dot{y}^{i} \\
A_{a}^{a^{\prime}}=\frac{\partial x^{a^{\prime}}}{\partial x^{a}} & B_{i}^{i^{\prime}}=\frac{\partial y^{i^{\prime}}}{\partial y^{i}}, \tag{1.1}
\end{array}
$$

where

$$
\operatorname{rank}\left[A_{a}^{a^{\prime}}\right]=n \quad \operatorname{rank}\left[B_{i}^{i^{\prime}}\right]=n
$$

so the inverse transformations exist.

[^0]The adapted basis of $T\left(F_{1}\right)$ is $B_{1}=\left\{\frac{\delta}{\delta x^{a}}, \frac{\partial}{\partial \dot{x}^{a}}\right\}$ and the adapted basis of $T\left(F_{2}\right)$ is $B_{2}=\left\{\frac{\delta}{\delta y^{i}}, \frac{\partial}{\partial \dot{y}^{i}}\right\}$, where

$$
\frac{\delta}{\delta x^{a}}=\frac{\partial}{\partial x^{a}}-N_{a}^{b}(x, \dot{x}) \frac{\partial}{\partial \dot{x}^{b}}, \quad \frac{\delta}{\delta y^{i}}=\frac{\partial}{\partial y^{i}}-\bar{N}_{i}^{j}(y, \dot{y}) \frac{\partial}{\partial \dot{y}^{j}} .
$$

$N_{a}^{b}(x, \dot{x})$ and $\bar{N}_{i}^{j}(y, \dot{y})$ are coefficients of the non-linear connections, which satisfy the usual transformation law with repsect to (1.1).

The complex Finsler space $E^{\prime}(x, \dot{x}, y, \dot{y})$ is formed in such a way that $B^{\prime}$, the adapted basis of $T\left(E^{\prime}\right)$, is given by $B^{\prime}=B_{1} \cup i B_{2}$.

For the further exploration we shall use five kinds of indices
$a, b, c, d, e, f, g=1,2, \ldots, n, \quad i, j, k, l, m, p, q=n+1, \ldots, 2 n$
$A, B, C, D, E, F, G=2 n+1, \ldots, 3 n, \quad I, J, K, L, M, P, Q=3 n+1, \ldots, 4 n$
$\alpha, \beta, \gamma, \delta, \kappa, \nu, \mu=1,2, \ldots, 4 n$.
The following equalities are valid

$$
\begin{gather*}
a=i=A=I(\bmod n), \quad b=j=B=J(\bmod n) \\
c=h=C=H(\bmod n) . \tag{1.2}
\end{gather*}
$$

Using these indices, $B^{\prime}$ and its dual $B^{* *}$ can be written in the form
(a) $B^{\prime}=\left\{\partial_{\alpha}\right\}=\left\{\frac{\delta}{\delta x^{a}}, i \frac{\delta}{\delta y^{i}}, \frac{\partial}{\partial \dot{x}^{A}}, i \frac{\partial}{\partial \dot{y}^{I}}\right\}$
(b) $B^{\prime *}=\left\{d^{\alpha}\right\}=\left\{d x^{b},-i d y^{j}, \delta \dot{x}^{B},-i \delta \dot{y}^{J}\right\}$,
where

$$
\delta \dot{x}^{B}=d \dot{x}^{B}+N_{c}^{B}(x, \dot{x}) d x^{c}, \delta \dot{y}^{J}=d \dot{y}^{J}+N_{i}^{J}(y, \dot{y}) d y^{i} .
$$

## 2. The complete list of $F(2)$ type structures

Definition 2.1. The tensor field $F$ of type $(1,1)$ defined on $E^{\prime}$ is the structure of $F(k)$ type, if in the basis $B$ its matrix can be decomposed on $4 \times 4$ blocks of form $n \times n$, such that in each row and each column are $k$ scalar matrices and $4-k$ zero blocks.

Notation. Every one of scalar fields $a, b, c, d$ denotes the corresponding real or complex matrix of type $n \times n$ (for example $a=a(x, y, \dot{x}, \dot{y}) I$.

Theorem 2.1. There exist $90 F(2)$ type structures on $E^{\prime}$.
Proof. There are $36=\binom{4}{2}\binom{4}{2}$ matrices formed in such a way, that in the first two columns the chosen elements are always in different rows

$$
\left[\begin{array}{llll}
a & 0 & e & 0 \\
b & 0 & f & 0 \\
0 & c & 0 & g \\
0 & d & 0 & h
\end{array}\right] \cdots\left[\begin{array}{llll}
0 & c & 0 & g \\
a & 0 & e & 0 \\
b & 0 & 0 & h \\
0 & d & f & 0
\end{array}\right] \cdots\left[\begin{array}{llll}
0 & c & 0 & g \\
0 & d & 0 & h \\
a & 0 & e & 0 \\
b & 0 & f & 0
\end{array}\right] .
$$

The next 48 matrices have the property, thet the first two columns have once two elements in the same row ( $a c$ ) and two elements in different rows:

$$
\left[\begin{array}{llll}
a & c & 0 & 0 \\
b & 0 & e & 0 \\
0 & d & 0 & g \\
0 & 0 & f & h
\end{array}\right] \cdots\left[\begin{array}{llll}
b & 0 & e & 0 \\
0 & 0 & f & g \\
a & c & 0 & 0 \\
0 & d & 0 & h
\end{array}\right] \cdots\left[\begin{array}{llll}
0 & 0 & e & g \\
0 & d & 0 & h \\
b & 0 & f & 0 \\
a & c & 0 & 0
\end{array}\right] .
$$

In the last 6 matrices the first and second columns have two times, two elements in the same row:

$$
\left[\begin{array}{llll}
a & c & 0 & 0 \\
b & d & 0 & 0 \\
0 & 0 & e & g \\
0 & 0 & f & h
\end{array}\right] \cdots\left[\begin{array}{llll}
a & c & 0 & 0 \\
0 & 0 & e & g \\
0 & 0 & f & h \\
b & d & 0 & 0
\end{array}\right] \cdots\left[\begin{array}{llll}
0 & 0 & e & g \\
0 & 0 & f & h \\
a & c & 0 & 0 \\
b & d & 0 & 0
\end{array}\right] .
$$

Definition 2.2. The tensor field $F$ of type $(1,1)$ defined on $E^{\prime}$ is almost complex structure (a.c.s.) iff $F^{2}=-I$, almost product structure (a.p.s.) iff $F^{2}=I$, or tangent structure (t.s.) iff $F^{2}=0$.

Theorem 2.2. There are only six $F(2)$ type structures defined on $E^{\prime}$, which for special values of parameters can be a.c.s., or a.p.s., or t.s.

Proof. Some $F_{i}(i=1, \ldots, 90)$ from the above list of $F(2)$ type structures can be a.c.s., or a.p.s., or t.s. if $F_{i}^{2}$ has the property, that all elements, which are not on the main diagonal are equal to zero. By direct calculation can be proved that 84 of them are such, that $F_{i}^{2}$ has at least on one place $(j, k) j \neq k$, the product of two elements. This product is equal to zero if at least one of the factor is equal to zero, but in this case $F_{i}$ is not $F(2)$ type structure. The exceptions are (for special values of parameters):

$$
F_{1}=\left[\begin{array}{cccc}
a & 0 & b & 0 \\
0 & c & 0 & d \\
e & 0 & -a & 0 \\
0 & g & 0 & -c
\end{array}\right] \quad F_{2}=\left[\begin{array}{cccc}
a & 0 & 0 & b \\
0 & c & d & 0 \\
0 & e & -c & 0 \\
f & 0 & 0 & -a
\end{array}\right]
$$

$$
\begin{array}{ll}
F_{3}=\left[\begin{array}{cccc}
0 & a & b & 0 \\
-c e & 0 & 0 & c d \\
c d & 0 & 0 & -c a \\
0 & d & e & 0
\end{array}\right] & F_{4}=\left[\begin{array}{cccc}
0 & a & 0 & -b \\
c e & 0 & b c & 0 \\
0 & d & 0 & e \\
-c d & 0 & a c & 0
\end{array}\right] \\
F_{5}=\left[\begin{array}{cccc}
a & b & 0 & 0 \\
c & -a & 0 & 0 \\
0 & 0 & e & f \\
0 & 0 & d & -e
\end{array}\right] & F_{6}=\left[\begin{array}{cccc}
0 & 0 & a e & -a b \\
0 & 0 & -a c & d \\
a^{-1} b & b & 0 & 0 \\
c & e & 0 & 0
\end{array}\right] .
\end{array}
$$

By direct calculation we obtain

$$
\begin{aligned}
& F_{1}^{2}=\operatorname{diag}\left[a^{2}+b e, c^{2}+d g, a^{2}+b e, c^{2}+d g\right] \\
& F_{2}^{2}=\operatorname{diag}\left[a^{2}+b f, c^{2}+d e, c^{2}+d e, a^{2}+b f\right] \\
& F_{3}^{2}=c(b d-a e) I \\
& F_{4}^{2}=c(b d+a e) I \\
& F_{5}^{2}=\operatorname{diag}\left[a^{2}+b c, a^{2}+b c, e^{2}+d f, e^{2}+d f\right] \\
& F_{6}^{2}=(d e-a b c) I .
\end{aligned}
$$

From Theorem 2.2 follows
Theorem 2.3. The $F(2)$ type structures $F_{1}-F_{6}$ are a.c.s. if

$$
\begin{array}{ll}
\text { in } F_{1} & a^{2}+b e=c^{2}+d g=-1, \\
\text { in } F_{2} & a^{2}+b f=c^{2}+d e=-1, \\
\text { in } F_{3} & c(b d-a e)=-1, \\
\text { in } F_{4} & c(b d+a e)=-1, \\
\text { in } F_{5} & a^{2}+b c=e^{2}+d f=-1, \\
\text { in } F_{6} & d e-a b c=-1
\end{array}
$$

If in the above equations -1 is everywhere replaced by 1 , the structures $F_{1}-F_{6}$ become a.p.s.; if -1 is everywhere replaced by 0 , the structures $F_{1}-F_{6}$ become t.s.

## 3. The tensor character of $F(2)$ type structures

Theorem 3.4. The $F(2)$ type structures $F_{1}-F_{6}$ are $(1,1)$ tensors with respect to the coordinate transformation (1.1).

Proof. As the proof is the same for all mentioned $F(2)$ type structures, we shall give it only for $F_{1}$. The precise form of $F_{1}$ is the following:

$$
\begin{aligned}
F_{1}= & a \delta_{b}^{a} \frac{\delta}{\delta x^{a}} \otimes d x^{b}+b \delta_{\beta}^{a} \frac{\delta}{\delta x^{a}} \otimes \delta \dot{x}^{B} \\
& +c \delta_{j}^{i}\left(i \frac{\delta}{\delta y^{i}}\right) \otimes\left(-i d y^{j}\right)+d \delta_{J}^{i}\left(i \frac{\delta}{\delta y^{i}}\right) \otimes\left(-i \delta \dot{y}^{J}\right) \\
& +e \delta_{b}^{A}\left(\frac{\partial}{\partial \dot{x}^{A}}\right) \otimes d x^{b}-a \delta_{B}^{A}\left(\frac{\partial}{\partial \dot{x}^{A}}\right) \otimes\left(\delta \dot{x}^{B}\right) \\
& +g \delta_{j}^{I}\left(i \frac{\partial}{\partial \dot{y}^{I}}\right) \otimes\left(-i d y^{j}\right)-c \delta_{J}^{I}\left(i \frac{\partial}{\partial \dot{y}^{I}}\right) \otimes\left(-i \delta \dot{y}^{J}\right)
\end{aligned}
$$

where (1.2) is valid.
Substituting the transformation laws for the basis vectors:

$$
\begin{aligned}
\frac{\delta}{\delta x^{a}} & =A_{a}^{a^{\prime}}(x) \frac{\delta}{\delta x^{a^{\prime}}} & d x^{B} & =A_{B^{\prime}}^{B}\left(x^{\prime}\right) d x^{B^{\prime}} \\
i \frac{\delta}{\delta y^{i}} & =B_{i}^{i^{\prime}}(y) i \frac{\delta}{\delta y^{i^{\prime}}} & -i d y^{j} & =B_{j^{\prime}}^{j}\left(y^{\prime}\right)\left(-i d y^{j^{\prime}}\right) \\
\frac{\partial}{\partial \dot{x}^{A}} & =A_{A}^{A^{\prime}}(x) \frac{\partial}{\partial \dot{x}^{A^{\prime}}} & \delta \dot{x}^{B} & =A_{B^{\prime}}^{B}\left(x^{\prime}\right) \delta \dot{x}^{B^{\prime}} \\
i \frac{\partial}{\partial \dot{y}^{I}} & =B_{I}^{I^{\prime}}(y) \frac{\partial}{\partial \dot{y}^{I^{\prime}}} & -i \delta \dot{y}^{J} & =B_{J^{\prime}}^{J}\left(y^{\prime}\right)\left(-i \delta \dot{y}^{J^{\prime}}\right)
\end{aligned}
$$

we obtain $F_{1}$ in the new basis. The obtained expression shows, that $F_{1}$ is a tensor of type $(1,1)$.

## 4. Invariant subspaces of structure $F_{1}$

Proposition 4.1. The eigenvectors for the almost complex structure $F_{1}$ are:

$$
\begin{equation*}
a_{(1, b)}=\left(-b(a-i)^{-1}, 0,1,0\right), a_{(2, b)}=\left(0,-d(c-i)^{-1}, 0,1\right) \tag{4.1}
\end{equation*}
$$

which correcpond to the eigenvalue $i$ and

$$
\begin{equation*}
a_{(3, b)}=\left(-b(a+i)^{-1}, 0,1,0\right), a_{(4, b)}=\left(0,-d(c+i)^{-1}, 0,1\right) \tag{4.2}
\end{equation*}
$$

which correspond to the eigenvalue $-i$.

Remark 1. As $F_{1}$ is determined by the matrix of type $4 n \times 4 n$, the eigenvectors of $F_{1}$ should have $4 n$ coordinates. In (4.1), (4.2) the coordinates on the place $b, b+n, b+2 n, b+3 n$ are given, the other coordinates are equal to zero and $b=1,2, \ldots, n$.

In the basis $B^{\prime}$, the eigenvectors determined by (4.1) and (4.2) can be written in the following way:

$$
\begin{aligned}
& a_{(1, b)}=-b(a-i)^{-1} \delta_{b}^{a} \frac{\delta}{\delta x^{a}}+\delta_{b+2 n}^{A} \frac{\partial}{\partial \dot{x}^{A}} \\
& a_{(2, b)}=-d(c-i)^{-1} \delta_{b+n}^{j}\left(i \frac{\delta}{\delta y^{j}}\right)+\delta_{b+3 n}^{J}\left(i \frac{\partial}{\partial \dot{y}^{J}}\right) \\
& a_{(3, b)}=-b(a+i)^{-1} \delta_{b}^{a} \frac{\delta}{\delta x^{a}}+\delta_{b+2 n}^{A} \frac{\partial}{\partial \dot{x}^{A}} \\
& a_{(4, b)}=-d(c+i)^{-1} \delta_{b+n}^{j}\left(i \frac{\delta}{\delta y^{j}}\right)+\delta_{b+3 n}^{J}\left(i \frac{\partial}{\partial \dot{y}^{J}}\right) .
\end{aligned}
$$

Proposition 4.2. The invariant subspaces of $T\left(E^{\prime}\right)$ for the a.c.s. $F_{1}$ are $T_{1}$ and $T_{2}$, where

$$
\begin{array}{ll}
\forall X \in T_{1} & F_{1} X=i X \\
\forall Y \in T_{2} & F_{1} Y=-i Y
\end{array}
$$

The space $T\left(E^{\prime}\right)$ is equal to the direct sum $T_{1} \oplus T_{2}$. In the basis $B^{\prime}$ we have

$$
\begin{aligned}
& X=-b(a-i)^{-1} \alpha^{b} \frac{\delta}{\delta x^{b}}-d(c-i)^{-1} \beta^{j}\left(i \frac{\delta}{\delta y^{j}}\right)+\alpha^{B} \frac{\partial}{\partial \dot{x}^{B}}+\beta^{J}\left(i \frac{\partial}{\partial \dot{y}^{J}}\right) \\
& Y=-b(a+i)^{-1} \gamma^{b} \frac{\delta}{\delta x^{b}}-d(c+i)^{-1} \delta^{j}\left(i \frac{\delta}{\delta y^{j}}\right)+\gamma^{B} \frac{\partial}{\partial \dot{x}^{B}}+\delta^{J}\left(i \frac{\partial}{\partial \dot{y}^{J}}\right)
\end{aligned}
$$

where

$$
\begin{array}{ll}
\alpha^{B}=\alpha^{b+2 n}=\alpha^{b} & \beta^{J}=\beta^{j+2 n}=\beta^{j}  \tag{4.3}\\
\gamma^{B}=\gamma^{b+2 n}=\gamma^{b} & \delta^{J}=\delta^{j+2 n}=\delta^{j}
\end{array}
$$

are arbitrary real numbers.
Proposition 4.3. The eigenvectors for the almost product structure $F_{1}$ are:

$$
\begin{equation*}
a_{(1, b)}=\left(-b(a-1)^{-1}, 0,1,0\right), a_{(2, b)}=\left(0,-d(c-1)^{-1}, 0,1\right), \tag{4.4}
\end{equation*}
$$

which correspond to the eigenvalue 1 and

$$
\begin{equation*}
a_{(3, b)}=\left(-b(a+1)^{-1}, 0,1,0\right), a_{(2, b)}=\left(0,-d(c+1)^{-1}, 0,1\right), \tag{4.5}
\end{equation*}
$$

which correspond to the eigenvalue -1 .
The Remark 1 is valid for (4.4) and (4.5).
Proposition 4.4. The invariant subspaces of $T\left(E^{\prime}\right)$ for the a.p.s. $F_{1}$ are $\bar{T}_{1}$ and $\bar{T}_{2}$, where

$$
\begin{array}{ll}
\forall X \in \bar{T}_{1} & F_{1} X=X \\
\forall Y \in \bar{T}_{2} & F_{1} Y=-Y .
\end{array}
$$

The space $T\left(E^{\prime}\right)$ is equal to the direct sum $\bar{T}_{1} \oplus \bar{T}_{2}$. From (4.4) and (4.5) follows, that in the basis $B^{\prime}$ we have:

$$
\begin{aligned}
X & =-b(a-i)^{-1} \alpha^{a} \frac{\delta}{\delta x^{a}}-d(c-i)^{-1} \beta^{j}\left(i \frac{\delta}{\delta y^{j}}\right)+\alpha^{A} \frac{\partial}{\partial \dot{x}^{A}}+\beta^{J}\left(i \frac{\partial}{\partial \dot{y}^{J}}\right) \\
Y & =-b(a+i)^{-1} \gamma^{a} \frac{\delta}{\delta x^{a}}-d(c+1)^{-1} \delta^{j}\left(i \frac{\delta}{\delta y^{j}}\right)+\gamma^{A} \frac{\partial}{\partial \dot{x}^{A}}+\delta^{J}\left(i \frac{\partial}{\partial \dot{y}^{J}}\right) .
\end{aligned}
$$

In the above formulae (4.3) is valid.

## References

[1] Gh. Atanasiu, Natural pairs of almost complex Finsler structures, The Proc. of Fifth Nat. Sem. Brasov. (1988), 67-80.
[2] A. Bejancu, Geometry of CR-Submanifolds, D. Reider Publishing Company, 1986.
[3] K. Buchner and R. Rosca, Cosymplectic Quazi-Sasakian manifolds with $\alpha \phi$-structure vector field $\xi$, Anal. Stii. Al. Univ. Al. I. Cusa, Iaşi 37 (1991), 215-233.
[4] I. Čomić, Generalized connection in the complex Finsler space, Sci. Bull. Ser. A. Appl. Math. and Phys. Pol. Un. Bucharest 55 3-4 (1993), 71-88.
[5] I. Čomić and J. Nikić, Some Hermite metrics in the complex Finsler spaces, Publ. Inst. Math. Beograd 55 (69) (1994), 89-97.
[6] Y. Ichijyo, Almost complex structures of tangent bundles and Finsler metrics, J. Math. Kyoto Univ. 6-3 (1967), 419-452.
[7] Sh. Kobayashi and K. Nomizu, Foundations of differential geometry, Interservice Publishers, New York, London, 1963.
[8] Gh. Munteanu, Metric almost tangent structures, Anal. Stii. Al. Univ. Al. I. Cusa, Iaşi 33 (1987), 151-165.
[9] N. Prakash, Kaehlerian Finsler manifolds, The Math. Student 30 no. 1,2 (1962), 1-11.
[10] G. B. Rizza, Structure di Finsler di tipo quasi hermitiano, Riv. Mat. Univ. Parma 4 (1963), 83-106.
[11] H. Shimada, Remarks on the almost complex structures of tangent bundles, Research Report Kushiro Tech. Coll. 21 (1987), 169-176.
[12] K. Yano, Differential Geometry on Complex and almost Complex Spaces, A Pergamon Press Book, New York, 1965.

IRENA ČOMIĆ
faculty of technical sciences
21000 NOVI SAD
yugoslavia
(Received November 14, 1994; revised May 2, 1995)


[^0]:    Mathematics Subject Classification: 53B40, 53C56, 53C60.
    Key words and phrases: complex Finsler spaces, $F(2)$ type structures, almost complex structures, almost product structures, tangent structures.

