Some interpolatory properties of Tchebicheff polynomials

(0, 2) case modified

By A. K. VARMA and A. SHARMA (Jaipur)

1. Recently P. TURAN and J. SURANYI [1] have studied the case of what
they call (0, 2) interpolation when the abscissas

(1.1) —I=x.<X 1< <x<xn=+1

are the zeros of

(1.2) 11,(x) = (1—X) Py 1 (x) = —n(n—1) | P, (t)dt
-1

where P, (x) denotes the Legendre polynomial of degree n with the normali-
sation
(1.3) P.(1)=1.

By (0, 2) interpolation we seek to find the polynomials f(x) of degree
=2n—1, when the values of f(x) and f”(x) are prescribed at the given
abscissas. They showed that for n even, these polynomials exist and are
unique, but for n odd they are infinitely many. Their explicit forms have
been obtained [2] and it has been shown that these polynomials converge
uniformly to the given function under certain conditions.

Later FREUD [5] proved the convergence theorem of BALAZS—TURAN
under different conditions. SAXENA and SHARMA [3] have extended the results
of TURAN to (0, 1, 3) interpolation and SAXENA has further extended them to
(0,1, 2, 4) case. The results of O. Kis [4] deserve mention because he treats
the case when the abscissas are the n nth roots of unity.

The object of this note is to treat the case of (0, 2) interpolation when
the abscissas are the zeros of the Tchebicheff polynomial 7.(x). It turns out
that the explicit forms in this case are not very elegant. We therefore follow
the lucky idea of the first author to modify the problem as the explicit forms
then come out in a very handy form. In § 9, we also give the corresponding
results for the case when we take the Tchebicheff polynomials of the second
kind. The proofs are naturally omitted.



A. K. Varma and A. Sharma: On Tchebicheff polynomials 337

2. As usual we denote by

(2.1) Ta(X)=cosn@; cosbf=x,
the Tchebicheff polynomials of the first kind, and by

~ sin(n+1)¢ -
(2. 1a) Ua(X)= <y ; cosf=—x,

the Tchebicheff polynomials of the second kind.
Let us consider the set of numbers

(2. 2) — <X <X <+ < X2<1

by which we shall denote the zeros of 7.,(x) or U,(x) as the case may be. Let
(2- 3) R,|+2(x) — (l_xi) T,,(x),

where 7.(x) is the Tchebicheff polynomial of the first kind. Let us consider
the set of numbers

(2.4) —l =X < Xppr<-o < X< Xy =1

by which we shall denote the zeros of R,..(x). We shall prove the following
theorems:

Theorem 1. /f n= 2k then to prescribed values y.,y, there is a
uniquely determined polynomial f(x) of degree =2n-1 such that
f(x‘.) =Yy, 1=v=n-+42
f"(xv): ,vwl! 2%"’%'!_]—]
where x.'s are given by (2. 4).

Theorem 2. If n=2k- 1 and the points xi, Xs, ..., X..o satisfy (2. 4),
there is, in general no polynomial f(x) of degree =2n--1 such that for
given Y, Yu

(2. 6)

(2. 5)

f(xu):"'y‘.m "-"—'1,2....,11-}—2
(%) =y, r=2,3,...,n+1
If there exists such a polynomial, then there is an infinity of them.

ProoOF. First we shall prove Theorem 1. The first part of the condition
requires
(2. 7} f(x) s Rn-ﬂ(x)qlh—l(X)
where ¢..,(x) is a polynomial of degree =n—1. But the second part of the
condition requires

(2. 8) Rii2(%y)qu-1(%0) —2R0i2(x)) gn-1(x,) =0, 2=7r=n+1.
By simple computation
(2.9) Riso(x) = (1—x3) Ti(x)), Rio(xy)=—3x,Ti(x.)),
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which leads to

—3%,u-1(%) +2(1— X)) qi1 (x,) =0.
But this means that
(2.10) 2(1— x5 g1 (x) —3xq,-1(x) = ¢ T..(x)

with a numerical ¢. If ¢s=0 we can express ¢..1(x) as

-1
(2.11) gu-1(x) = > ¢, cos »H.
Therefore :
n-1 .
« Sty Bare
G =76 50g

so (2.10) becomes

n:i n-1
25sinf > ve,sinr#—3cos B D ¢, cos vl — ¢ cos nb.
]

y—ll v=_l

In other words

=1 v
D ve, fcos(r—1)8—cos(r+1)6) —
(2.12) 2

n-1
- D¢, {cos(r—1)8 4 cos(v +1)8} — ¢ cos nb.

Equating coefficients of cosn#, cos(n—1)#,...,cos and constant
term we find at once

~(rt glesmes ~{r—gles=o;

= 2Jecs— o e

(2.13)
3cs—5¢,=0; ¢;—6c,=0
and
—_ —;—c. =0.

Combining all these equations we have (if n is even)
(2.14) Co==(s=m(ym== ecmn(, g==Cp s={)
and
(2.15) Ciem(ye=—=Crmmisomm(, ge=C, =C=0,

This shows that when n is even the only solution is f(x)=0. Hence
writing out (2.5) as a linear system, the linear system is always uniquely
solvable. Hence Theorem 1 is proved.
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For n odd, by a similar argument we have
Gy o iri==y, g ==C==x() (if n is odd)

but ¢, €2, ¢4, ..., €y, €2 all cannot be determined. This shows clearly that
there is in general no polynomial f(x) of degree =2n-1 which satisfies
(2.6) and if there exists such a polynomial, then there is an infinity of them.

The other part of the paper will be devoted to obtaining the explicit
forms of the polynomials when they are uniquely determined.

Explicit determination of the interpolatory polynomials

3. We now consider the following problem :

Let be given (n--2k) distinct points x, xs,...,X,..2, the zeros of
R,.r_r(X), with
(3. 1) —l =X <X < o <Xa< X3 =1,

and arbitrary numbers
Q1,025 . oy Ani2

by, bs,...,0.

We want to find the explicit form of the polynomials S,.(x) of degree
=2n-+1 such that

i Su(x)=a,, r=12...,n+2

Siixy~=l;, v 3 anpl

The existence and uniqueness has already been proved in Theorem 1.
For S.(x) we evidently have the form

2k+2 241
(3.3) Su(X) =2, a,r,(x) + 2, b,0,(x)

v—1 =
where the polynomials r,(x) and o,(x), the fundamental polynomials of the
first and second kind for this interpolation, belonging to the points x,, res-
pectively, are polynomials of degree =2n-+1--4k+1 uniquely determined
by the following conditions:
0 . Jj#v
(3.4) ry(X;) = " for}.:,’
r(x;)=0 J=23 ....0+1
0.(x)=0 fe=2 ;o042
0 [ jsFr
1\ j=»
respectively. In what follows we shall explicitly determine these fundamental
polynomials r,(x), o,(x).

y==1,2 ...,0+2

(3.5) 0,/ (x)) - Ju=2 3, ..., 041
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4. We shall denote by /,(x) the fundamental polynomials of the Lag-
range interpolation. Here all the formulae (4. 1) to (4. 7) hold for 2=r=n+41.

0 j+»
(4.1) W) =115,
Also
-
4.2 L(x) = —————
(4.2) e i
N s T..(xy,) >
b =G Timy /T
2 1 3xy [
4.3 Iy (xy) - l
(4.3) e | e i
From a formula of FEJER (see SzEGO [6])
, PIRIRE - R e A
(4 4) Iv(x) - (x—x,.) T,i(x,) " ? s o H_ % T.(X) T*'(x")'
We know that the differential equation satisfied by 7.(x) is given by

(4.5) (1—x)y'—xy + 1y =0, y=T(x)

’” X; TJ:(XI')
4.6 Ty () =——"7"5~
(4.6) =
(4.7) T3 () = 3 TR (x) ' (x,)-

5. Theorem 3. For the fundamental polynomials r,(x) and o,(x) the
following explicit forms hold :

(a) "
A=x)"T.x) ), (_Tu(® - L) [
(5 l) Qv(x) 2T (x ) AJ (1 t!)l 4 + ] (I__tg)l 4 dt
where :
* Tulf)
Wl A.ll (1—e)" I (1-:*)' ol
(b)

for 2=v=n+1

(5.3) rv(x) = glﬁ(xw ﬁ‘((")) (1= -“;A '(IT(t) dt
XL () —2(1— )LD
2(t—x)(1—1)'"

g [_b®_

(1 —£)" +1]
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where
68 —a[TO g g [ O ] )= 2100 4y
' d (11— d a—o"" ") ¢—x)a—o"
=
2 g ")
o Y a, T, (1) — (l+t)T,.(t)
(6.6) n()—=-—"=T()+(1—x) T()] SEa dt
where
1 1
G T(r)ndf = .ﬂq_th; Q2=
Ja—p) J(1—£)
and X
: :_...__. )34 amz'fn(f) (1—=9T.@®)
(5.8) () TH@+Rea(@(1—2) " | A b

6. In order to prove the above theorem we shall require the following
lemmas:

Lemma 1.
;_T-_,..(r) b s tlr J "l%) |; T
(6.1) '
+(1—x J“"\ﬂj-i—jl 241 (X) |-

e+ ]

ProOF. The lemma follows from the recurrence relation

6.2) | dt - |

3 ) () 4r—5 YR () 4 A e
(l—f)” 4r¢1 (1—f)” 4r-!—1(1 he Ta

where cos# -—x, which is easy to verify.
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Lemma 2. ,
T Lol 4y (' 4)
(IHP) T
(6.3) : ‘ _ F(r' 4]
3]
IR g [rJ Z {‘H_ - ) Tu(x)|].

o3) el d)

Proor. The Lemma follows from the recurrence relation

bl o AP B () 4

Sl |(|—r)“ 4r—1, (l—f‘)“ 4]

(1—x)" " T 2(x)

which is again easy to verity.

Lemma 3.
(6.5) | 7 ’_(‘))H =k |_—'),—4 dt— -(1—x'-')‘”a,,_.(x)
where i
6. 6) k | L@ _

14 _—l - 1 L L
f‘) (1)

and «,.i(x) is a polynomial in x of degree =n—1.
ProoF. We have from (4. 4)

0 o~ dh__'; ey (D0
4 (a—n" (l—r)“ n = Ji—=n®

/t..l‘.‘.

2 2 |(f)‘

+n?‘-‘f-'i L )I'('— )”

Now applying Lemma 1 and 2 we get the result as stated.
Lemma 4. We have

l Cx () —2(1— —OD 4y e 2 9

(6.7) 14 v 4
(i‘—-—\")(l—-f) T(x) J(1—F)

dt+(1—x9""* 8..1(%)
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where

(3 1
; (TJ [ xb—20—660)
(3) 2] - T X"

and 7..,(x) is a polynomial in x of degree =n—1.

(6. 8)

PROOF. It is easy to see that
xLO—20—O)00 ‘ x, T.(f)
2(t—x,)(1—#)" 2Ti(xy) L(t—x)'a—)"

i) Ti) T |
It—x) ~ (—x)y\"

—2(1—

From (4.4) we have on differentiating with respect to ¢ both sides twice:

) T.(t) T .3 N ’
(6.9) e T (x) T,.(x,.) T.(t)
(6.10) ;‘r_g)—z (2“)) 42 @ T g)) = ﬁ T..’(x,)}:l‘ T )TV

Multiplying (4.4), (6.9), (6.10) by n’, —f, (1—#) respectively and using
(4.5) we have

T(r) X% T (-8B _

L= "2(:—x)=_ —x)
- +m_ﬁ+‘\ (i L =D 1.x)T.00)
Therefore
I‘rxJ(i) 20— L e SR
2(t—x,)(1— )" 2n a—"
1, " T
> '\ (n*—r*—1)T.(x, )I(l Py

Now breaking the series into odd and even parts and using Lemma 1 and 2,

we get the stated result.
In order to determine ry(x) and r,,2(x), we shall require the following
lemma
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Lemma 5.

: (1— 3
(6.11) \ 5 "4"4’]
\_1 l_@.i__l i—'f—-{_--—l T-_a;_.(x)(
(2 ’(71;_] =1 f'(k+- ;] \
and
i ake 3
’ Ts,- ‘(?4df—(2r 1 ___def 2 1->_5. . 'l— ;'
(1—p) (I—f') = I'(i-i— 2]
(6.12) | B
(8] = .5 B \
h I‘_J —d (l—r)s*ji—(ufj Ty, ..(x)(
4 (l—f‘) =0 3
1*3)- rfexd) )

Proor. We know that

T () — sm 2rt

sin # - 4r 4‘ 2i-1(f)

and
To1(t) = (2r-——l)ll +22 3 F:,(t)]

Dividing both sides by"(1—#)"" and integrating and again applying Lemma 1
and 2 we have the required result.

Lemma 6.
S aT () —(1 + O T .
6.13 - . dt—M —dt + &
ks 2(1—)" | )
- -1
where

L%): '1 aT.O)—(+OTi0)
r(%) . 2(1—p)"

and y,.1(x) is a polynomial in x of degree =n—1.
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PROOF. As the recurrence relation for 7,(x) is

7‘"-—] (X)— Tn—] (X) — 21 Tn (X),
we have
T (X) + Ta-1(x) —2 T (x) = 2x T (x).
Now by the help of the above relation and Lemma 1, 2 and 5 we get the
stated result.
7. ProorF oF THEOREM 3. Consider the function

R.:2(X) gn-1(x)

(7. 1) 'l})v(x) _"é-TT(x_) it
where

PR T I (Y g (|
(1.2) gu-1x) = (1—x%) A_!(l_,,)lmw_] TRl

Then obviousl
g w,(x;) =0, Ju=1.2 ... 042

{7.3) 2T () (%) = Ti(x)[—3%:9.1(x) + 2(1—x7) g1 (%))
But from (7. 2) we have

2(1—x7)qi-1(%;) —3%;q.-1(x;)) — O for j4 .
Therefore
(7.4) W (x)—0 jfr, j=2,3,...,n—1.
Again

',l’:-’(x\-) = — %x.»q,.-l(xv)+(I—x3)‘?5—l(xv) =1, r=2,3,...,a+1.

Therefore all the conditions of (3.5) are satisfied. In order to make it
a polynomial we equate to zero the coefficient of

..rl l
j =

which determines A as required.

Therefore by Lemma 1, 2 and 3 it is now easy to see that vy, (x) is a
polynomial of degree =2n—1 satisfying all the conditions of [3.5]. So by
the uniqueness theorem

t1.0) v, (x)=o0,(x).
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8. Determination of r,(x). For 2=w»=n-1 consider the function

T, (x)

8. 1) w (x) = (1—x) [ (x) + )
where
Y T g B[O
(JC)——(] ](] dt 2 . (l—f"')H t+
(8.2) ;
4 ‘ Xl O)—2(0—)6(@1) ,
3 2(t—x)(1—)"
Obviously
j=12...,n+2
(8.3) uy(Xi) = 0!;4;, ;ﬁ_2,3,...,n-|-l

is satisfied. Aiso for j=£», j, v= 2,3,...,n+1,

yumzau—ﬁmume2?3wﬂ —X)q1 () — 32,1 (%)

But from (8. 2)

2(1—x7)gn-1(x) — 3,41 (X)) = — g(—l_xf)’:;(-’i‘-).

(x.f_xv)

Therefore
wO)=0  jr.
py () =0 r—=23. ..., 0+1.
For 2=v=n-+1, u,(x) satisfies all the conditions of (3.4). As before
in order to make it a polynomial of degree =2n-}-1 we equate to zero the
coefficients of | : li-r_—ﬁdr which determines A’

Similarly

=1
Now by Lemma 1, 2, 3 and 4 it is easy to see that w,(x) is a poly-
nomial of degree =2n--1 satisfying all the conditions (3. 4), therefore by
the uniqueness theorem

w,(x)=r,(x) 2=v=n+1.

Now we will prove the last part of Theorem 3, namely the determination
of r,(x) and r,.2(x). For this consider the function

(8.4) s () =1 201 (%)
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where
Ca, Tu(t)—(1 + O T

8.5 DR T W ) dt.
(8.5) ( ) " q.-1(x) : 21—y

ad
Obviously

w Il el .

."l(x.f)_"o"j%] » j ],2,...,!1-{-2.

(8.6) wi'(x) = (1+x) T2(x) + 2 T (x){—3%Gu-1 (%) + 2(1—X7) g’ -1 (x))}.
But from (8.5) it is easy to see that

2(1—X7) i1 (X)) — 3%;qu-1(X;) = — (1 +x;) Tu(xy),
hence

a"i‘(x_,r) - 0_1 f 2, 3, R / s + ].
Therefore u,(x) satisfies all the conditions of (3.4); in order to make it a
polynomial, we equate to zero the coefficient of
o
1 4 df,
J(1—1)
-1
which determines a, as stated. Hence by the uniqueness theorem
,(X) = ri(x).
Similarly we can determine r,..(x). Theorem 3 is then completely proved.

9. Here we shall consider the case of (0,2) modified interpolation with
regard to Tchebicheff abscissas of the second kind, namely the zeros of
U.(x), where

9. 1) U (x) — Si“..(s’ifﬁ‘i:(;_‘)_‘_’_.‘ T,
Let
(9.2) Si2(x) = (1—x*) U..(x),

and let us consider the set of numbers
(9. 3) ] R g C Xl < e < Xy ],

by which we shall denote the zeros of S,;:(x). We shall state without proof
the following theorems as their proofs can be given on the same lines as in
the previous case.
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Theorem 4. /f n—2k, then to prescribed values y.,, y.i, there is a
uniquely determined polynomial f(x) of degree =2n+-1 such that
J(x2) =>v, et e R SRR, [

f”(xr)"_—_:yvlp "::2v3141---1 n+l
where x,’s are given by (9. 3).
For n=2k-1 a result similar to theorem 2 can be stated.

For the fundamental polynomials r(x) and e,(x) the following explicit
forms hold.

Theorem 5. As before we have the following representanon

1—x)"U.x) [ Ut 1(t
0,(x) = ( 2U).=( )( ) I (1_52))34 +' ({_))!4
where 1 :
o[t = [ Gy,
. (1—¢) (1—7F)

and for 2=vr=n-1

1= gy (=0 | [ GO Lo
ry(x) Yo L(x)+ 2U(x) zarl(l__f’)” t+b I( _F)“df+
" I'3x,h(t)—-2(l BL) m,’
= {1—7F) \
where
it ‘ U0y |---L‘)“d ‘le(t) 20=DL(O) 4,
' (1—F) (1—r) g—=x)1—1)
and
b, 195:4

o

a1 U.)—Q0+ U (t)

n(x) = ]2 LU+ S (1 —x) 1 [ £ 21—

where
1

RUAGI tU(t)
|-I (}—-—f")“ }(l_{)u

a
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and lastly
@, U ()—(1—)U;()
2(1—)*

l—x
2

Fusa(x) = == Ui () + Sua(@)(1—x) |

-1
where a, = a;.
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