Note on commutable mappings

By M. HOSSZÚ (Miskolc)

Let us consider a system of mappings $x \to F_u x$ of a set X into itself, where u ranges over the elements of a set U. These mappings are called *commutable* if

(1)
$$\forall u, v \in U, \quad x \in X, \quad F_u F_v x = F_v F_u x$$

holds. Commutable mappings play an impotant role e.g. in connection with the groups of iteratives of a given function [2]. A system of mappings $x \to F_u x$ is transitive if

$$\forall x \in X, F_{\nu}x = X$$

holds, where the set of elements $F_u x$ ($u \in U$) is denoted by $F_u x$.

Theorem. Every transitive system of commutable mappings of a set X has the form

$$x \rightarrow F_u x = x + \varphi u$$
,

where + is an abelian group operation on X and $\varphi: U \rightarrow X$ is a mapping of U onto the whole of X.

PROOF. First we prove that every transitive system of commutable mappings contains only 1-1 and onto mappings.

In fact, we see that

$$F_u X = F_u F_U x = F_U F_u x = F_U y = X$$

is true for every $u \in U$ i. e. $x \to F_u x$ maps X onto the whole of X. Further, the suppositions

$$F_u x = F_u y = x_0, \quad y = F_v x$$

(such a v always exists by the supposition of transitivity) imply that

$$F_v x_0 = F_v F_u x = F_u F_v x = F_u y = x_0$$

and, consequently, for arbitrary $z = F_w x_0$,

$$F_v z = F_v F_w x_0 = F_w F_v x_0 = F_w x_0 = z$$

hence

$$y = F_v x = x$$

holds. Thus $x \to F_u x$ is 1-1.

After this, choosing a fixed $x_0 \in X$, let us introduce the notation

$$\varphi u = F_u x_0$$
.

By this mapping of U onto X we can define a binary operation x+y on X by

$$(2) x+y=F_{u}x, \quad y=\varphi u.$$

This relation defines x+y uniquely and independently from the special choice of u since, for $u \neq v$ with $y = \varphi u = \varphi v$, we have the same

$$x+y=F_{\mu}x=F_{\nu}x$$

as

$$F_{u}F_{w}x_{0} = F_{w}F_{u}x_{0} = F_{w}\varphi u = F_{w}\varphi v = F_{w}F_{v}x_{0} = F_{v}F_{w}x_{0}$$

holds for all $x = F_w x_0$. Now, we verify that x + y is an abelian group operation. In fact, if we define u, v by $x = F_u x_0, y = F_v x_0$, we have

(3)
$$x + y = F_v x = F_v F_u x_0 = F_u F_v x_0 = F_u y = y + x,$$

further,

(4)
$$(z+x) + y = F_v F_u z = F_u F_v z = (z+y) + x,$$

and applying successively (3), (4) and again (3) we have

$$(x+y)+z=(y+x)+z=(y+z)+x=x+(y+z).$$

Finally, as we have seen, $x \rightarrow x + y = F_v x$ is a 1 - 1 mapping of X onto itself.

So, by (2), we have obtained the most general form of transitive system of commutable mappings. On the other hand, it is easy to verify, that these mappings $x \to F_u x = x + \varphi u$ are forming a transitive system of commutable mappings, if x + yis an abelian group operation and φ maps U onto X.

Thus our theorem is proved.

Supposing that X is a topological space and $F_{\mu X}$ is a continuous function of x, the grou poperation x + y defined by (2) will be a topological function of x, moreover, being x+y commutative, it is topological also with respect to y group. Being every continuous group defined on an interval isomorphic to the real additive group, in the special case where X is an interval we have the following

Corollary. Every transitive system of commutable and continuous mappings of a real interval X is isomorphic to the translations

$$x \to F_u x = f^{-1} [f(x) + \varphi(u)],$$

where f is a 1-1 mapping of X onto the real axis with inverse mapping f^{-1} and φ is a mapping of U onto the real axis.

This corollary seems to be useful in order to solve the functional equation of translation. See [1], [3].

Bibliography

- [1] J. Aczél, Vorlesungen über Funktionalgleichungen und ihre Anwendungen, Basel, 1961.
 [2] L. Berg, Unstetige Iterationsgruppen, Publ. Math. Debrecen 9 (1962), 47 56.
- [3] M. Hosszú, A generalization of the functional equation of translation, Mitt. Techn. Univ. Schwerind. Miskolc 21 (1960), 7-10.

(Received December 31, 1961.)