Generalized power means for matrix functions II

By B. MOND (Bundoora) and J. E. PEČARIĆ (Zagreb)

Abstract

In a recent paper, the authors obtained matrix versions of a number of inequalities involving generalized power means. Here these results are extended to corresponding inequalities for power means of several matrices.

1. Introduction

Generalized power means are defined by [1]:

$$
\begin{align*}
M_{n, a}(x ; w)_{p} & =\left\{\frac{\sum_{i=1}^{n} w_{i} x_{i}^{a+p}}{\sum_{i=1}^{n} w_{i} x_{i}^{p}}\right\}^{1 / a}, \quad a \neq 0 \tag{1}\\
& =\exp \left\{\frac{\sum_{i=1}^{n} w_{i} x_{i}^{p} \log x_{i}}{\sum_{i=1}^{n} w_{i} x_{i}^{p}}\right\}, \quad a=0
\end{align*}
$$

where $a, p \in \mathbb{R}, x, w \in \mathbb{R}_{+}^{n}, n \in \mathbb{N}$. Concerning inequalities for these means see $[2-5]$.

Matrix version of such results are obtained in [6]. Here, we shall give analogous results for several matrices.

2. Preliminaries

Let $A \in C^{n \times n}$ be a normal matrix, i.e., $A^{*} A=A A^{*}$. Here A^{*} means \bar{A}^{t}, the transpose conjugate of A. There exists [7] a unitary matrix U such
that

$$
\begin{equation*}
A=U^{*}\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right] U \tag{2}
\end{equation*}
$$

where $\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ is the diagonal matrix $\left(\lambda_{j} \delta_{i j}\right)$, and where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues of A, each appearing as often as its multiplicity. A is Hermitian if and only if $\lambda_{i}, i \in I_{n}=\{1,2, \ldots, n\}$ are real. If A is Hermitian and all λ_{i} are strictly positive, then A is said to be positive definite. Assume now that $f\left(\lambda_{i}\right) \in C, i \in I_{n}$ is well defined. Then $f(A)$ may be defined by (see e.g. [7, p. 71] or [8, p. 90])

$$
\begin{equation*}
f(A)=U^{*}\left[f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{n}\right)\right] U \tag{3}
\end{equation*}
$$

As before, if $f\left(\lambda_{i}\right), i \in I_{n}$ are all real, then $f(A)$ is Hermitian. If, also, $f\left(\lambda_{i}\right)>0, i \in I_{n}$, then $f(A)$ is positive definite.

We note that for the inner product

$$
\begin{equation*}
(f(A) x, x)=\sum_{i=1}^{n}\left|y_{i}\right|^{2} f\left(\lambda_{i}\right) \tag{4}
\end{equation*}
$$

where $y \in C^{n}, y=U x$ and so $\sum_{i=1}^{n}\left|y_{i}\right|^{2}=\sum_{i=1}^{n}\left|x_{i}\right|^{2}$.
If A is positive definite, so that $\lambda_{i}>0, i \in I_{n}$ and $f(t)=t^{r}$ where $t>0$ and $r \in \mathbb{R}$, we have $f(A)=A^{r}$.

3. Generalized power means for several matrices

Definition 1. Let $A_{j}, j=1, \ldots, k$ be positive definite Hermitian matrices; $x_{j} \in C^{n}, j=1, \ldots, k ; a, p \in \mathbb{R}$, then the generalized power mean of A_{j} is defined by

$$
\begin{align*}
M_{k}^{p}(A ; x)_{a} & =\left\{\frac{\sum_{j=1}^{k}\left(A_{j}^{a+p} x_{j}, x_{j}\right)}{\sum_{j=1}^{k}\left(A_{j}^{p} x_{j}, x_{j}\right)}\right\}^{1 / a}, \quad a \neq 0, \tag{5}\\
& =\exp \left\{\frac{\sum_{j=1}^{k}\left(\left(A_{j}^{p} \log A_{j}\right) x_{j}, x_{j}\right)}{\sum_{j=1}^{k}\left(A_{j}^{p} x_{j}, x_{j}\right)}\right\}, \quad a=0 .
\end{align*}
$$

First, we shall prove the following result:

Theorem 1. Let a, b, p, q satisfy

$$
\begin{equation*}
||a|-|b||+a+2 p \leq b+2 q . \tag{6}
\end{equation*}
$$

Then for every positive definite Hermitian matrix $A_{j}, x_{j} \in C^{n}, j=$ $1, \ldots, k$

$$
\begin{equation*}
M_{k}^{p}(A ; x)_{a} \leq M_{k}^{q}(A ; x)_{b} \tag{7}
\end{equation*}
$$

Proof. Using (4) we have

$$
\begin{aligned}
M_{k}^{p}(A ; x)_{a} & =\left\{\frac{\sum_{j=1}^{k} \sum_{i=1}^{n}\left|y_{j i}\right|^{2} \lambda_{j i}^{a+p}}{\sum_{j=1}^{k} \sum_{i=1}^{n}\left|y_{j i}\right|^{2} \lambda_{j i}^{p}}\right\}^{1 / a}, \quad a \neq 0 \\
& =\exp \left\{\frac{\sum_{j=1}^{k} \sum_{i=1}^{n}\left|y_{j i}\right|^{2} \lambda_{j i}^{p} \log \lambda_{j i}}{\sum_{j=1}^{k} \sum_{i=1}^{n}\left|y_{j i}\right|^{2} \lambda_{j i}^{p}}\right\}, \quad a=0 .
\end{aligned}
$$

Now, Theorem 1 is a simple consequence of the following lemma ([2]).
Lemma 1. Let $a, b, p, q \in \mathbb{R}$. Then

$$
\begin{equation*}
M_{n, a}(x ; w)_{p} \leq M_{n, b}(x ; w)_{q} \tag{9}
\end{equation*}
$$

holds for every $x \in \mathbb{R}^{n}(x \neq 0)$, if and only if (6) holds.
Similarly, using other results for generalized power means we can obtain (see also [6]).

Theorem 2. Let $a, b_{1}, b_{2}, \ldots, b_{s}, p, q_{1}, \ldots, q_{s} \in \mathbb{R}, s \geq 2$. Further, let

$$
\begin{array}{ll}
Q_{0}=a^{-}-p, & Q_{i}=b_{i}^{+}+q_{i}, \\
Q_{0}^{*}=a^{+}+p, & Q_{i}^{*}=b_{i}^{-}-q_{i}, \tag{10}
\end{array} \quad i=1, \ldots, s, s
$$

where $a^{+}=(|a|+a) / 2$ and $a^{-}=(|a|-a) / 2$, and for $i=0,1, \ldots, s$, let

$$
H_{i}=\left\{\begin{array}{lr}
\left(\sum_{\substack{j=0 \\
j \neq i}}^{s} Q_{j}^{-1}\right)^{-1}, & \text { when } \prod_{\substack{j=0 \\
j \neq i}}^{s} Q_{j} \neq 0 \tag{11}\\
0, & \text { when } \prod_{\substack{j=0 \\
j \neq i}}^{s} Q_{j}=0
\end{array}\right.
$$

Let $A_{j}, j=1, \ldots, k$, be normal matrices with eigenvalues in $I(I \subset C)$; $f_{i}: I \rightarrow \mathbb{R}_{+}$be strictly positive functions for $i=1, \ldots, s ; x_{j} \in C^{n}$, $j=1, \ldots, k$. If $Q_{i} \geq 0$ and $H_{i} \geq Q_{i}^{*}(i=0, \ldots, s)$ then

$$
\begin{equation*}
M_{k}^{p}\left(\left(f_{1} \ldots f_{s}\right)(A) ; x\right)_{a} \leq M_{k}^{q_{1}}\left(f_{1}(A) ; x\right)_{b_{1}} \ldots M_{k}^{q_{s}}\left(f_{s}(A) ; x\right)_{b_{s}} . \tag{12}
\end{equation*}
$$

Theorem 3. Let $a, b_{1}, \ldots, b_{s}, p, q_{1}, \ldots, q_{s}, A_{j}, x_{j}(j=1, \ldots, k), f_{i}$ $(i=1, \ldots, s)$ be as in the previous theorem. If

$$
\begin{equation*}
\max \left\{p+a^{+}, 1\right\} \leq q_{i}+b_{i}^{+} ; \quad \max \left\{p-a^{-}, 0\right\} \leq \min \left\{q_{i}-b_{i}^{-}, 1\right\} \tag{13}
\end{equation*}
$$

hold for every $i=1, \ldots, s$, then

$$
\begin{equation*}
M_{k}^{p}\left(\left(f_{1}+\cdots+f_{s}\right)(A) ; x\right)_{a} \leq M_{k}^{q_{1}}\left(f_{1}(A) ; x\right)_{b_{1}}+\cdots+M_{k}^{q_{s}}\left(f_{s}(A) ; x\right)_{b_{s}} . \tag{14}
\end{equation*}
$$

The reverse inequality in (14) holds if

$$
\begin{equation*}
\min \left\{p+a^{+}, 1\right\} \geq \max \left\{q_{i}+b_{i}^{+}, 0\right\} ; \quad \min \left\{p-a^{-1}, 0\right\} \geq q_{i}-b_{i}^{-} \tag{15}
\end{equation*}
$$

is valid for $i=1, \ldots, s$.
Theorem 4. Let $A_{j}, j=1, \ldots, k$ be positive definite Hermitian matrices with eigenvalues $\lambda_{j i}(j=1, \ldots, k ; i=1, \ldots, n)$ such that $0<m \leq$ $\lambda_{j i} \leq M$. Then

$$
\begin{equation*}
M_{k}^{q}(A ; x)_{b} \leq K(m, M) M^{p}(A ; x)_{a} \tag{16}
\end{equation*}
$$

where a, b, p, q are fixed numbers such that (6) holds and where $K(m, M)$ is defined by

$$
K(m, M)=\Gamma_{b, q}\left(t_{0}, \gamma\right) / \Gamma_{a, p}\left(t_{0}, \gamma\right)
$$

$\gamma=M / m$ and t_{0} is the unique positive root of the equation

$$
\lambda_{a, p}(\gamma)\left(\gamma^{q}+t\right)\left(\gamma^{b+q}+t\right)=\lambda_{b, q}(\gamma)\left(\gamma^{p}+t\right)\left(\gamma^{a+p}+t\right)
$$

where, for $t>0$,

$$
\lambda_{a, p}(t)= \begin{cases}t^{p} \frac{t^{a-1}}{a}, & a \neq 0 \tag{17}\\ t^{p} \log t, & a=0\end{cases}
$$

and

$$
\Gamma_{a, p}(t, \gamma)= \begin{cases}\left(\left(\gamma^{a+p}+t\right) /\left(\gamma^{p}+t\right)\right)^{1 / a}, & a \neq 0 \tag{18}\\ \exp \left(\left(\gamma^{p} \log \gamma\right) /\left(\gamma^{p}+t\right)\right), & a=0\end{cases}
$$

4. Generalized quasi-arithmetic means for several matrices

Definition 2. Let $\phi: I \rightarrow \mathbb{R}_{+}(I \subset \mathbb{R})$ be a strictly positive function, $F: I \rightarrow \mathbb{R}$ a strictly monotone function, $A_{j}, j=1, \ldots, k$, Hermitian matrices with eigenvalues in $I, x_{j} \in C^{n}, j=1, \ldots, k$. The generalized quasi-arithmetic mean of A_{j} is, for $x \neq 0$,

$$
\begin{equation*}
F_{k}(A ; x, \phi)=F^{-1}\left\{\frac{\sum_{j=1}^{k}\left((\phi \cdot F)\left(A_{j}\right) x_{j}, x_{j}\right)}{\sum_{j=1}^{k}\left(\phi\left(A_{j}\right) x_{j}, x_{j}\right)}\right\} \tag{19}
\end{equation*}
$$

The following result is a consequence of Theorem 1 from [9, p. 262]:
Theorem 5. Let K, L, M be three differentiable strictly monotone functions from the closed interval I to $\mathbb{R} ; \phi, \psi, \chi$, three functions from I to $\mathbb{R}_{+} ; f: I^{2} \rightarrow I$ such that for all $u, v, s, t, \in I$ the following inequality is valid.

$$
\begin{gathered}
\left(\frac{M \circ f(u, v)-M \circ f(t, s)}{M^{\prime} \circ f(t, s)}\right) \frac{\chi \circ f(u, v)}{\chi \circ f(t, s)} \\
\leq\left(\frac{K(u)-K(t)}{K^{\prime}(t)}\right) \frac{\phi(u)}{\phi(t)} f_{1}(t, s)+\left(\frac{L(v)-L(s)}{L^{\prime}(s)}\right) \frac{\psi(v)}{\psi(s)} f_{2}(t, s) .
\end{gathered}
$$

Let $A_{j}, j=1, \ldots, k$ be normal matrices with eigenvalues in J and let $g, h: J \rightarrow I$ be given functions; $x_{j} \in C^{n}, j=1, \ldots, k$. Then

$$
\begin{equation*}
f\left(K_{k}(g(A) ; x, \phi), L_{k}(h(A) ; x, \psi)\right) \geq M_{k}(f(g(A), h(A)) ; x, \chi) \tag{20}
\end{equation*}
$$

Theorem 6. With the notation of the previous theorem,

$$
\begin{equation*}
M_{k}(A ; x, \chi) \leq K_{k}(A ; x, \phi) \tag{21}
\end{equation*}
$$

if, for all $u, t \in J$,

$$
\begin{equation*}
\frac{M(u)-M(t)}{M^{\prime}(t)} \frac{\chi(u)}{\chi(t)} \leq\left(\frac{K(u)-K(t)}{K^{\prime}(t)}\right) \frac{\phi(u)}{\phi(t)} . \tag{22}
\end{equation*}
$$

Proof. Immediate from the previous theorem taking $f(x, y)=x$, $g(x)=x$.

An important special case of Theorem 5 is when $f(x, y)=x+y$. Then we get

$$
\begin{equation*}
K_{k}(g(A) ; x, \phi)+L_{k}(h(A) ; x, \psi) \geq M_{k}(g(A)+h(A) ; x, \chi) \tag{23}
\end{equation*}
$$

holds if for all u, v, s, t in J, we have

$$
\frac{M(u+v)-M(t+s)}{M^{\prime}(t+s)} \frac{\chi(u+v)}{\chi(t+s)} \leq \frac{K(u)-K(t)}{K^{\prime}(t)} \frac{\phi(u)}{\phi(t)}+\frac{L(v)-L(s)}{L^{\prime}(s)} \frac{\psi(v)}{\psi(s)} .
$$

Generalized quasi-arithmetic means are not only extensions of generalized power means but are also generalizations of the quasi-arithmetic means. Therefore, in the next section, we give some other results for the quasi-arithmetic means for matrix functions.

5. The quasi-arithmetic means for several matrices

Definition 3. Let $A_{j}, j=1, \ldots, k$ be Hermitan matrices with eigenvalues $\lambda_{j i} \in J(j=1, \ldots, k ; i=1, \ldots, n)$. Suppose that $F: J \rightarrow \mathbb{R}$ is a continuous and strictly monotone function. The quasi-arithmetic F-means is defined by

$$
\begin{equation*}
F_{k}(A ; x)=F^{-1}\left\{\sum_{j=1}^{k}\left(F\left(A_{j}\right) x_{j}, x_{j}\right)\right\} \tag{24}
\end{equation*}
$$

where $x_{j} \in C^{n}, j=1, \ldots, k$ with $\sum_{j=1}^{k}\left(x_{j}, x_{j}\right)=1$.
Theorem 7. Let F, G be two continuous functions with domain J, G increasing (decreasing). Then

$$
\begin{equation*}
F_{k}(A ; x) \leq G_{k}(A ; x) \tag{25}
\end{equation*}
$$

holds if G is convex (concave) with respect to F, i.e., if the function $\phi(t)=$ $\left(G \circ F^{-1}\right)(t)$ is convex (concave). If G is decreasing (increasing) and G is convex (concave) with respect to F, inequality (25) is reversed.

This is a consequence of Theorem 4 from [9, pp. 226]. Similarly, we can use results for three means [9, pp. 246-253].

Let $K:\left[k_{1}, k_{2}\right] \rightarrow \mathbb{R}, L:\left[\ell_{1}, \ell_{2}\right] \rightarrow \mathbb{R}, M:\left[m_{1}, m_{2}\right] \rightarrow \mathbb{R}, f:$ $\left[k_{1}, k_{2}\right] \times\left[\ell_{1}, \ell_{2}\right] \rightarrow\left[m_{1}, m_{2}\right] ; g: J \rightarrow\left[k_{1}, k_{2}\right], h: J \rightarrow\left[\ell_{1}, \ell_{2}\right]$ be given functions and let A_{j} be a Hermitian matrix with eigenvalues $\lambda_{j i} \in J(j=$
$1, \ldots, k ; i=1, \ldots, n)$. Here K, L and M are twice differentiable and strictly monotone functions, M is increasing. Consider the inequality

$$
\begin{equation*}
f\left(K_{k}(g(A) ; x), L_{k}(h(A) ; x)\right) \geq M_{k}(f(g(A), h(A)) ; x) \tag{26}
\end{equation*}
$$

or its reverse.
Theorem 8. Inequality (26) holds if the function
$H(s, t)=M\left(f\left(K^{-1}(s), L^{-1}(t)\right)\right)$ is concave. If H is convex, then inequality (26) is reversed.

Remark. Theorem 8 is a generalization of Hörder's and Minkowski's inequalities. Thus, if $f(u, v)=u+v$, when $H(s, t)=M\left(K^{-1}(s)+L^{-1}(t)\right)$, $E=K^{\prime} / K^{\prime \prime}, T=L^{\prime} / L^{\prime \prime}, S=M^{\prime} / M^{\prime \prime}$ and all of $K^{\prime}, L^{\prime}, M^{\prime}, K^{\prime \prime}, L^{\prime \prime}, M^{\prime \prime}$ are positive, then (56) holds if $S(u+v) \geq E(u)+T(v)$. Moreover, if $f(u, v)=u v$ when $H(s, t)=M\left(K^{-1}(s) L^{-1}(t)\right)$,

$$
\begin{gathered}
A(u)=\frac{K^{\prime}(u)}{K^{\prime}(u)+u K^{\prime \prime}(u)}, \quad B(u)=\frac{L^{\prime}(u)}{L^{\prime}(u)+u L^{\prime \prime}(u)}, \\
C(u)=\frac{M^{\prime}(u)}{M^{\prime}(u)+u M^{\prime \prime}(u)}
\end{gathered}
$$

and $K^{\prime}, L^{\prime}, M^{\prime}, A, B, C$ are all positive, then (56) holds if $C(u v) \geq A(u)+$ $B(v)$.

A special case of Theorem 8 is also [9, p. 253]

$$
\begin{equation*}
F_{k}\left(\frac{1}{2}(g(A)+h(A)) ; x\right) \leq \frac{1}{2}\left\{F_{k}(g(A) ; x)+F_{k}(h(A) ; x)\right\} \tag{27}
\end{equation*}
$$

where the function F has continuous second derivatives and is strictly increasing and strictly convex and $F^{\prime} / F^{\prime \prime}$ is concave.

We now give two converse inequalities. These inequalities can be obtained as consequences of results from [10]:

Theorem 9. Let F and G be two strictly monotone continuous functions defined on J, G increasing (decreasing) and G convex (concave) with respect to F. Let $A_{j}, j=1, \ldots, k$ be Hermitian matrices with eigenvalues in $[m, M]$. Then

$$
\begin{gather*}
(F(M)-F(m)) G_{k}(A ; x)-(G(M)-G(m)) F_{k}(A ; x) \\
\leq F(M) G(m)-G(M) F(m) \tag{28}
\end{gather*}
$$

If G is decreasing (increasing) and G is convex (concave) with respect to F, inequality (28) is reversed.

Theorem 10. Let $\phi(u, v)$ be a real function defined on $J \times J$, nondecreasing in u, G increasing and convex with respect to F. Let A_{j}, $j=1, \ldots, k$ be Hermitian matrices with eigenvalues in $[m, M]$. Then

$$
\begin{equation*}
\phi\left(G_{k}(A ; x), F_{k}(A ; x)\right) \tag{29}
\end{equation*}
$$

$$
\leq \max _{\vartheta \in[0,1]} \phi\left[G^{-1}(\vartheta G(m)+(1-\vartheta) G(M)), F^{-1}(\vartheta F(m)+(1-\vartheta) F(M))\right] .
$$

References

[1] J. AczÉl and Z. Daróczy, Über verallgemeinerte quasilinear Mittelwerte, die mit Gewichts functionene gebildent sind, Publ. Math. Debrecen 10 (1963), 171-190.
[2] Z. Daróczy and L. Losonczi, Über den Vergleich von Mittelwerten, Publ. Math. Debrecen 17 (1970), 289-297.
[3] Zs. Páles, On Hölder-type inequalities, J. Math. Anal. Appl. 95 (1983), 457-466.
[4] Zs. PÁles, Generalization of the Minkowski Inequality, Ibid. 90 (1982), 456-462.
[5] Zs. PÁLes, On complementary inequalities, Publ. Math. Debrecen 30 (1983), 75-88.
[6] B. Mond and J. E. Pec̆arić, Generalized power means for matrix functions, Publ. Math. Debrecen 46 (1995), 33-41.
[7] M. Marcus and H. Minc, A survey of matrix theory and inequalities, Allyn and Bacon, Boston, 1969.
[8] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York, 1960.
[9] P. S. Bullen, D. S. Mitrinović and P. M. Vasić, Means and their inequalities, D. Reidel, Dordrecht/Boston/Lancaster/Tokyo, 1988.
[10] J. E. Pec̆arić and P. R. Beesack, On Knopp's inequality for convex functions, Canad. Math. Bull. 30 (1987), 267-272.

```
B. MOND
DEPARTMENT OF MATHEMATICS
LA TROBE UNIVERSITY
BUNDOORA, VICTORIA, 3083
AUSTRALIA
J. E. PEC̆ARIĆ
FACULTY OF TEXTILE TECHNOLOGY
UNIVERSITY OF ZAGREB
ZAGREB, CROATIA
```

(Received May 12, 1994)

