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Generalized power means for matrix functions II

By B. MOND (Bundoora) and J. E. PE�CARI�C (Zagreb)

Abstract. In a recent paper, the authors obtained matrix versions of a number
of inequalities involving generalized power means. Here these results are extended to
corresponding inequalities for power means of several matrices.

1. Introduction

Generalized power means are defined by [1]:
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where a, p ∈ R, x, w ∈ Rn
+, n ∈ N. Concerning inequalities for these

means see [2–5].
Matrix version of such results are obtained in [6]. Here, we shall give

analogous results for several matrices.

2. Preliminaries

Let A ∈ Cn×n be a normal matrix, i.e., A∗A = AA∗. Here A∗ means
Āt, the transpose conjugate of A. There exists [7] a unitary matrix U such
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that

(2) A = U∗[λ1, λ2, . . . , λn]U

where [λ1, . . . , λn] is the diagonal matrix (λjδij), and where λ1, λ2, . . . , λn

are eigenvalues of A, each appearing as often as its multiplicity. A is Her-
mitian if and only if λi, i ∈ In = {1, 2, . . . , n} are real. If A is Hermitian
and all λi are strictly positive, then A is said to be positive definite. As-
sume now that f(λi) ∈ C, i ∈ In is well defined. Then f(A) may be
defined by (see e.g. [7, p. 71] or [8, p. 90])

(3) f(A) = U∗[f(λ1), f(λ2), . . . , f(λn)]U.

As before, if f(λi), i ∈ In are all real, then f(A) is Hermitian. If, also,
f(λi) > 0, i ∈ In, then f(A) is positive definite.

We note that for the inner product

(4) (f(A)x, x) =
n∑

i=1

|yi|2f(λi)

where y ∈ Cn, y = Ux and so
n∑

i=1

|yi|2 =
n∑

i=1

|xi|2.
If A is positive definite, so that λi > 0, i ∈ In and f(t) = tr where

t > 0 and r ∈ R, we have f(A) = Ar.

3. Generalized power means for several matrices

Definition 1. Let Aj , j = 1, . . . , k be positive definite Hermitian ma-
trices; xj ∈ Cn, j = 1, . . . , k; a, p ∈ R, then the generalized power mean
of Aj is defined by

(5)
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First, we shall prove the following result:
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Theorem 1. Let a, b, p, q satisfy

(6)
∣∣∣|a| − |b|

∣∣∣+a + 2p ≤ b + 2q.

Then for every positive definite Hermitian matrix Aj , xj ∈ Cn, j =
1, . . . , k

(7) Mp
k (A; x)a ≤ Mq

k (A; x)b.

Proof. Using (4) we have
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, a = 0.

Now, Theorem 1 is a simple consequence of the following lemma ([2]).

Lemma 1. Let a, b, p, q ∈ R. Then

(9) Mn,a(x; w)p ≤ Mn,b(x; w)q

holds for every x ∈ Rn (x 6= 0), if and only if (6) holds.

Similarly, using other results for generalized power means we can ob-
tain (see also [6]).

Theorem 2. Let a, b1, b2, . . . , bs, p, q1, . . . , qs ∈ R, s ≥ 2. Further, let

(10)
Q0 = a− − p, Qi = b+

i + qi, i = 1, . . . , s

Q∗0 = a+ + p, Q∗i = b−i − qi, i = 1, . . . , s

where a+ = (|a|+ a)/2 and a− = (|a| − a)/2, and for i = 0, 1, . . . , s, let
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Let Aj , j = 1, . . . , k, be normal matrices with eigenvalues in I (I ⊂ C);
fi : I −→ R+ be strictly positive functions for i = 1, . . . , s; xj ∈ Cn,
j = 1, . . . , k. If Qi ≥ 0 and Hi ≥ Q∗i (i = 0, . . . , s) then

(12) Mp
k ((f1 . . . fs)(A); x)a ≤ Mq1

k (f1(A); x)b1 . . .M qs

k (fs(A); x)bs
.

Theorem 3. Let a, b1, . . . , bs, p, q1, . . . , qs, Aj , xj (j = 1, . . . , k), fi

(i = 1, . . . , s) be as in the previous theorem. If

(13) max{p + a+, 1} ≤ qi + b+
i ; max{p− a−, 0} ≤ min{qi − b−i , 1}

hold for every i = 1, . . . , s, then

(14) Mp
k ((f1+· · ·+fs)(A); x)a ≤ Mq1

k (f1(A); x)b1 +· · ·+Mqs

k (fs(A); x)bs .

The reverse inequality in (14) holds if

(15) min{p + a+, 1} ≥ max{qi + b+
i , 0}; min{p− a−1, 0} ≥ qi − b−i

is valid for i = 1, . . . , s.

Theorem 4. Let Aj , j = 1, . . . , k be positive definite Hermitian ma-
trices with eigenvalues λji (j = 1, . . . , k; i = 1, . . . , n) such that 0 < m ≤
λji ≤ M . Then

(16) Mq
k (A; x)b ≤ K(m,M)Mp(A;x)a

where a, b, p, q are fixed numbers such that (6) holds and where K(m, M)
is defined by

K(m, M) = Γb,q(t0, γ)/Γa,p(t0, γ),

γ = M/m and t0 is the unique positive root of the equation

λa,p(γ)(γq + t)(γb+q + t) = λb,q(γ)(γp + t)(γa+p + t)

where, for t > 0,

λa,p(t) =





tp
ta−1

a
, a 6= 0

tp log t, a = 0;
(17)

and

Γa,p(t, γ) =

{
((γa+p + t)/(γp + t))1/a, a 6= 0

exp((γp log γ)/(γp + t)), a = 0.
(18)
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4. Generalized quasi-arithmetic means
for several matrices

Definition 2. Let φ : I −→ R+ (I ⊂ R) be a strictly positive function,
F : I −→ R a strictly monotone function, Aj , j = 1, . . . , k, Hermitian
matrices with eigenvalues in I, xj ∈ Cn, j = 1, . . . , k. The generalized
quasi-arithmetic mean of Aj is, for x 6= 0,

(19) Fk(A;x, φ) = F−1





k∑
j=1

((φ.F )(Aj)xj , xj)

k∑
j=1

(φ(Aj)xj , xj)





.

The following result is a consequence of Theorem 1 from [9, p. 262]:

Theorem 5. Let K, L,M be three differentiable strictly monotone
functions from the closed interval I to R; φ, ψ, χ, three functions from I
to R+; f : I2 −→ I such that for all u, v, s, t,∈ I the following inequality is
valid.

(
M ◦ f(u, v)−M ◦ f(t, s)

M ′ ◦ f(t, s)

)
χ ◦ f(u, v)
χ ◦ f(t, s)

≤
(

K(u)−K(t)
K ′(t)

)
φ(u)
φ(t)

f1(t, s) +
(

L(v)− L(s)
L′(s)

)
ψ(v)
ψ(s)

f2(t, s).

Let Aj , j = 1, . . . , k be normal matrices with eigenvalues in J and let
g, h : J −→ I be given functions; xj ∈ Cn, j = 1, . . . , k. Then

(20) f(Kk(g(A); x, φ), Lk(h(A); x, ψ)) ≥ Mk(f(g(A), h(A));x, χ).

Theorem 6. With the notation of the previous theorem,

Mk(A; x, χ) ≤ Kk(A;x, φ)(21)

if, for all u, t ∈ J ,

M(u)−M(t)
M ′(t)

χ(u)
χ(t)

≤
(

K(u)−K(t)
K ′(t)

)
φ(u)
φ(t)

.(22)

Proof. Immediate from the previous theorem taking f(x, y) = x,
g(x) = x.
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An important special case of Theorem 5 is when f(x, y) = x+y. Then
we get

Kk(g(A); x, φ) + Lk(h(A); x, ψ) ≥ Mk(g(A) + h(A); x, χ)(23)

holds if for all u, v, s, t in J , we have

M(u + v)−M(t + s)
M ′(t + s)

χ(u + v)
χ(t + s)

≤ K(u)−K(t)
K ′(t)

φ(u)
φ(t)

+
L(v)− L(s)

L′(s)
ψ(v)
ψ(s)

.

Generalized quasi-arithmetic means are not only extensions of gen-
eralized power means but are also generalizations of the quasi-arithmetic
means. Therefore, in the next section, we give some other results for the
quasi-arithmetic means for matrix functions.

5. The quasi-arithmetic means for several matrices

Definition 3. Let Aj , j = 1, . . . , k be Hermitan matrices with eigen-
values λji ∈ J (j = 1, . . . , k; i = 1, . . . , n). Suppose that F : J −→ R is a
continuous and strictly monotone function. The quasi-arithmetic F -means
is defined by

(24) Fk(A;x) = F−1

{
k∑

j=1

(F (Aj)xj , xj)

}

where xj ∈ Cn, j = 1, . . . , k with
k∑

j=1

(xj , xj) = 1.

Theorem 7. Let F, G be two continuous functions with domain J, G
increasing (decreasing). Then

(25) Fk(A;x) ≤ Gk(A; x)

holds if G is convex (concave) with respect to F , i.e., if the function φ(t) =
(G ◦ F−1)(t) is convex (concave). If G is decreasing (increasing) and G is
convex (concave) with respect to F , inequality (25) is reversed.

This is a consequence of Theorem 4 from [9, pp. 226]. Similarly, we
can use results for three means [9, pp. 246–253].

Let K : [k1, k2] −→ R, L : [`1, `2] −→ R, M : [m1,m2] −→ R, f :
[k1, k2] × [`1, `2] −→ [m1,m2]; g : J −→ [k1, k2], h : J −→ [`1, `2] be given
functions and let Aj be a Hermitian matrix with eigenvalues λji ∈ J (j =
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1, . . . , k; i = 1, . . . , n). Here K, L and M are twice differentiable and
strictly monotone functions, M is increasing. Consider the inequality

(26) f(Kk(g(A); x), Lk(h(A); x)) ≥ Mk(f(g(A), h(A)); x)

or its reverse.

Theorem 8. Inequality (26) holds if the function
H(s, t) = M(f(K−1(s), L−1(t))) is concave. If H is convex, then inequality
(26) is reversed.

Remark. Theorem 8 is a generalization of Hörder’s and Minkowski’s
inequalities. Thus, if f(u, v) = u+v, when H(s, t) = M(K−1(s)+L−1(t)),
E = K ′/K ′′, T = L′/L′′, S = M ′/M ′′ and all of K ′, L′,M ′,K ′′, L′′,M ′′

are positive, then (56) holds if S(u + v) ≥ E(u) + T (v). Moreover, if
f(u, v) = uv when H(s, t) = M(K−1(s)L−1(t)),

A(u) =
K ′(u)

K ′(u) + uK ′′(u)
, B(u) =

L′(u)
L′(u) + uL′′(u)

,

C(u) =
M ′(u)

M ′(u) + uM ′′(u)

and K ′, L′,M ′, A,B,C are all positive, then (56) holds if C(uv) ≥ A(u) +
B(v).

A special case of Theorem 8 is also [9, p. 253]

(27) Fk

(
1
2 (g(A) + h(A)); x

) ≤ 1
2{Fk(g(A); x) + Fk(h(A); x)}

where the function F has continuous second derivatives and is strictly
increasing and strictly convex and F ′/F ′′ is concave.

We now give two converse inequalities. These inequalities can be
obtained as consequences of results from [10]:

Theorem 9. Let F and G be two strictly monotone continuous func-
tions defined on J , G increasing (decreasing) and G convex (concave) with
respect to F . Let Aj , j = 1, . . . , k be Hermitian matrices with eigenvalues
in [m,M ]. Then

(28)
(F (M)− F (m))Gk(A; x)− (G(M)−G(m))Fk(A;x)

≤ F (M)G(m)−G(M)F (m).

If G is decreasing (increasing) and G is convex (concave) with respect to
F , inequality (28) is reversed.
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Theorem 10. Let φ(u, v) be a real function defined on J × J , non-
decreasing in u, G increasing and convex with respect to F . Let Aj ,
j = 1, . . . , k be Hermitian matrices with eigenvalues in [m,M ]. Then

φ(Gk(A;x), Fk(A;x))(29)

≤ max
ϑ∈[0,1]

φ[G−1(ϑG(m) + (1− ϑ)G(M)), F−1(ϑF (m) + (1− ϑ)F (M))].
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